
A multi-stage heuristic method for service
caching and task offloading to improve the
cooperation between edge and cloud
computing
Xiaoqian Chen1, Tieliang Gao2, Hui Gao1, Baoju Liu3, Ming Chen4 and
Bo Wang4

1 Management Center of Informatization, Xinxiang University, Xinxiang, China
2 Key Laboratory of Data Analysis and Financial Risk Prediction, Xinxiang University,
Xinxiang, China

3 School of Information Engineering, Pingdingshan University, Pingdingshan, China
4 Software Engineering College, Zhengzhou University of Light Industry, Zhengzhou, China

ABSTRACT
Edge-cloud computing has attracted increasing attention recently due to its efficiency
on providing services for not only delay-sensitive applications but also resource-
intensive requests, by combining low-latency edge resources and abundant cloud
resources. A carefully designed strategy of service caching and task offloading helps
to improve the user satisfaction and the resource efficiency. Thus, in this article, we
focus on joint service caching and task offloading problem in edge-cloud computing
environments, to improve the cooperation between edge and cloud resources. First,
we formulated the problem into a mix-integer nonlinear programming, which is
proofed as NP-hard. Then, we proposed a three-stage heuristic method for solving
the problem in polynomial time. In the first stages, our method tried to make full use
of abundant cloud resources by pre-offloading as many tasks as possible to the cloud.
Our method aimed at making full use of low-latency edge resources by offloading
remaining tasks and caching corresponding services on edge resources. In the last
stage, our method focused on improving the performance of tasks offloaded to the
cloud, by re-offloading some tasks from cloud resources to edge resources. The
performance of our method was evaluated by extensive simulated experiments. The
results show that our method has up to 155%, 56.1%, and 155% better performance
in user satisfaction, resource efficiency, and processing efficiency, respectively,
compared with several classical and state-of-the-art task scheduling methods.

Subjects Computer Architecture, Distributed and Parallel Computing, Mobile and Ubiquitous
Computing, Internet of Things
Keywords Task offloading, Service caching, Edge cloud, Edge computing

INTRODUCTION
As the development of computer and network technologies, mobile and Internet-of-Thing
(IoT) devices have become more and more popular. As shown in the latest Cisco Annual
Internet Report (Cisco, 2020), global mobile and IoT devices will reach 13.1 billion and
14.7 billion by 2023, respectively. However, a mobile or IoT device have very limited
computing and energy capacities, constrained by the limited size (Wu et al., 2019).

How to cite this article Chen X, Gao T, Gao H, Liu B, Chen M, Wang B. 2022. A multi-stage heuristic method for service caching and task
offloading to improve the cooperation between edge and cloud computing. PeerJ Comput. Sci. 8:e1012 DOI 10.7717/peerj-cs.1012

Submitted 22 March 2022
Accepted 31 May 2022
Published 23 June 2022

Corresponding authors
Tieliang Gao, chrisgtl2012@163.com
Bo Wang, wangb@zzuli.edu.cn

Academic editor
Tawfik Al-Hadhrami

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1012

Copyright
2022 Chen et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1012
mailto:chrisgtl2012@�163.�com
mailto:wangb@�zzuli.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1012
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Thus, user requirements usually cannot be satisfied by only using device resources, as
mobile and IoT applications are the rapid growing in all of number, category and
complexity. Globally, 299.1 billion mobile applications will be downloaded by 2023
(Cisco, 2020).

To address the above issue, mobile cloud computing is proposed to expand the
computing capacity by infinite cloud resources (Rahmani et al., 2021). However, cloud
computing generally has a poor network performance, because it provides services over the
Internet. This leads to dissatisfactions of demands for latency-sensitive applications.
Therefore, by putting a few computing resources close to user devices, edge computing is
an effective approach to complement the cloud computing (Huda & Moh, 2022). Edge
computing can provide services with a small network delay for users, because it usually has
local area network (LAN) connections with user devices, over such as WIFI, micro base
stations.

Unfortunately, an edge computing center (edge for short) generally is equipped with
only a few servers due to the limited space (Wang et al., 2020b). Thus, edges cannot
provide all services at the same time, due to their insufficient storage resources. In an edge-
cloud computing, a request can be processed by an edge only when its service is cached in
the edge. To provide services efficiently by edge-cloud computing, the service provider
must design the service caching and the task offloading strategies carefully (Luo et al.,
2021). The service caching decides which services are cached on each edge, and the task
offloading decides where is each request task processed. There are several works focusing
on both service caching and task offloading problems. However, these works have some
issues must be addressed before their practical usages. Such as, several works assume there
is an infinite number of communication channels for each edge, which ignored the
allocation of edge network resources; (Xia et al., 2021a, 2021c; Zhang, Wei & Jin, 2021b).
Some works focus on the homogeneous requests (Farhadi et al., 2021, 2019), which have
limited application scope. All of the existing related works use edge resources first for a
better data transfer performance, and employ cloud resources only when edge resources
are exhausted. This can lead to an inadequate usage of abundant cloud resources. By using
these existing service caching and task offloading strategies, some requests that can tolerate
a certain latency are offloaded to edges at first. This can result in insufficient edge resources
for meeting low-latency requirements of some subsequent requests.

To address issues of existing works, in this article, we focus on the joint service caching
and task offloading problem for improving the cooperation between edge and cloud
computing. We first formulate this problem into a mix-integer non-linear programming
(MINLP) for optimizing the user satisfaction and the resource utilization. In order to solve
the problem with polynomial time, we proposed a multi-stage heuristic method. The aim
of our method is to make full use of both the low-latency of edge resources and the
abundance of cloud resources. In brief, the contributions of this article are as follows.

� We formulated the joint service caching and task offloading problem into a MINLP for
edge-cloud computing with two optimization objectives. The major one is to maximize

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 2/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

the user satisfaction in terms of the number of tasks whose requirements are satisfied.
The minor one is maximizing the overall resource utilization.

� We proposed a heuristic method with three stages to address the joint service caching
and task offloading problem in polynomial time. In the first stage, the method pre-
offloads latency-insensitive request tasks to the cloud for exploiting the abundance of
cloud resources. At the second stage, the proposed method processes latency-sensitive
requests in the edge by caching their requested services on edge servers. In the last stage,
our method re-offloads some requests from the cloud to the edge for improving their
performance, when there are available edge resources at the end of the second stage.

� We conducted extensive simulated experiments to evaluate the performance of our
proposed heuristic method. Experiment results show that our method can achieve better
performance in user satisfaction, resource efficiency, and processing efficiency,
compared with five of classical and state-of-the-art methods.

In the rest of this article, The next section formulates the joint service caching and task
offloading problem we concerned. The third section presents the proposed multi-stage
heuristic method. The fourth section evaluates the proposed heuristic approach by
simulated experiments. The subsequent section illustrates related works and the last
section concludes this article.

PROBLEM FORMULATION
In this article, as shown in Fig. 1, we consider the edge-cloud computing system consisting
of various user devices, multiple edges and one cloud. Each device has a wireless
connection with an edge over various access points, and has a wide area network (WAN)
connection with the cloud. Each edge is equipped with one or more edge servers. For

Cloud

Edge Edge

Figure 1 The edge-cloud computing system. Full-size DOI: 10.7717/peerj-cs.1012/fig-1

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 3/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-1
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

each request task launched by a device, it can be offloaded to an edge server (ES) or the
cloud. When a task is offloaded to an ES, the ES must have a network connection with
its device1, and its requested service must be cached on the ES. If the task is offloaded to the
cloud, there must be a cloud server (CS) that can meet all of its requirements. Next, we
present the formulation for the joint service caching and task offloading problem in detail.
The notations used in our formulation are shown in Table 1.

Table 1 Notation description

Notation Description

T The number of tasks.

ti The ith task.

fi The size of the computing resources required by ti.

ai The amount of the input data of ti.

di The deadline of ti.

pi The start time of the input data transfer for ti that offloaded to an edge server.

qi The finish time of the input data transfer for ti that offloaded to an edge server.

ci The start time of the computing for ti that offloaded to an edge server.

zi The finish time of the computing for ti that offloaded to an edge server.

pCi The start time of the input data transfer for ti that offloaded to a cloud server.

qCi The finish time of the input data transfer for ti that offloaded to a cloud server.

cCi The start time of the computing for ti that offloaded to a cloud server.

zCi The finish time of the computing for ti that offloaded to a cloud server.

E The number of edge servers.

ej The jth edge server

bj The storage capacity of ej.

gj The computing capacity of ej.

Nj The number of communication channels provided by ej.

wj The communication capacity each channel in ej.

V The number of cloud servers.

vk The kth cloud server.

gvk The computing capacity of vk.

wC The network capacity of each cloud server.

S The number of services.

sl The lth service.

hl The storage space required by sl .

oi;j The binary constant indicating whether ti can be offloaded to ej.

ri;l The binary constant indicating whether ti requests sl .

xi;j;m The binary variable indicating whether ti is offloaded to ej and mth channel of ej is allocated to ti

for the data transmission.

xei;j The binary variable indicating whether ti is offloaded to ej. xei;j ¼
PNj

m¼1
xi;j;m.

yi;k The binary variable indicating whether ti is offloaded to vk.

Nfin The number of tasks with deadline satisfactions.

U The overall computing resource utilization.

1 The device of a task means the device
that launches the request task.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 4/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

System model
In the edge-cloud computing system, there are E ESs respectively represented by
ej; 1 � j � E. The storage and computing capacities of edge server ej respectively are bj and

gj. We assume the communications between user devices and ESs employ the orthogonal

frequency multi-access technology, as done by many published works, e.g., (Tian et al.,
2021; Wu et al., 2021). For ej, there are Nj communication channels for the data
transmission of offloaded tasks. As the result data is much less than the input data (Gu &
Zhang, 2021; Peng et al., 2021; Zhao, Lu & Chen, 2021), we ignored the communication
latency caused by the output data transmission. The communication channel capacity can
be easily achieved by the transmission power, the channel bandwidth and the white
Gaussian noise, according to Shannon’s theorem (Wu et al., 2021; Xu et al., 2019). We used
wj to represent the capacity of each communication channel in edge server ej.

For satisfying the user requirements, V CSs (vk; 1 � k � V) need to be rented from the
cloud when edge resources are not enough. For CS vk, the computing capacity is gvk .
The storage capacity of the cloud is assumed to be infinity, so the cloud can provide all
services that users request. In general, a CS is equipped with one network interface card
(NIC) for the network connection. We use wC to represent the network capacity of
each CS for the data transmission of tasks that are offloaded to the cloud.

There are T tasks requested by all of users in the system, represented by ti; 1 � i � T .
For task ti, it has ai input data amount should be processed by its requested service, and
requires fi computing resources for its completion. Then, if task ti is offloaded to ej at mth

channel, the data transmission latency is ai=wj, and the computing latency is fi=gj. The
deadline of ti is di, which means ti must be finished before di. In this article, we focus on the
hard deadline requirements of tasks, and leave soft deadline constraints as our future work.
For each task, it can be only offloaded to the ES that has connection with its device. We use
binary constants oi;j; 1 � i � T; 1 � j � E, to represent these connectivities, where oi;j ¼ 1
if ti can be offloaded to ej, and otherwise, oi;j ¼ 0.

In total, the system provides S kinds of services (sl; 1 � l � S) for its users. For sl, it
requires hl storage space. We use binary constants ri;l (1 � i � T; 1 � l � S) to identify the
service requested by each task. When task ti requests service sl, ri;l ¼ 1.

For the formulation of the joint service caching and task offloading problem, we define
binary variables xi;j;m (1 � i � T; 1 � j � E; 1 � m � Nj) to represent offloading
decisions and communication channel allocations in ESs, as shown in Eq. (1), and use yi;k
(1 � i � T; 1 � k � V) to represent the offloading decisions in the cloud as shown in
Eq. (2). For each task, it can be offloaded to only one ES/CS, and accesses only one channel
when it is offloaded to an ES, thus, in Eqs. (3) hold.

xi;j;m ¼
1; if ti is offloaded to ej

and the mth channel is allocated for the task’s data transmission
0; else

:

8<
: (1)

yi;k ¼ 1; if ti is offloaded to vk
0; else

:

�
(2)

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 5/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

XE
j¼1

XN
m¼1

xi;j;m þ
XV
k¼1

yi;k � 1; i ¼ 1;…;T: (3)

To make following formulations more concise, we define binary variables xei;j
(1 � i � T; 1 � j � E) as the offloading decisions of tasks to ESs, where xei;j ¼ 1 if ti is

offloaded to ej, and otherwise xei;j ¼ 0. Then xei;j ¼ 1 if and only if there is a channel

allocated to ti on ej, i.e.,
PNj

m¼1
xi;j;m ¼ 1. Thus, Eq. (4) are established. A task can be offloaded

to an ES only if the ES has connection with its device, which can be formulated as Eq. (5).

xei;j ¼
XNj

m¼1

xi;j;m; i ¼ 1;…;T; j ¼ 1;…;E: (4)

xei;j � oi;j; i ¼ 1;…;T; j ¼ 1;…; E: (5)

Task processing model in edge
When a task is offloaded to an ES for its processing, its requested service has been cached
on the ES. In such situation, the task transmits its input data to the ES on the channel
allocated to the task (the mth channel such that xi;j;m ¼ 1) for its computing. After the
input data delivery is completed, the service will process these input data by computing
resources of the ES.

For ti offloaded to ej for processing, its finish time of the input data transmission is the
start time of the transmission plus the transmission time. This can be formulated as Eq. (6),
where qi and pi respectively represent the finish time and start time of the input data
transmission for ti offloaded to an ES.

XE
j¼1

XN
m¼1

ðxi;j;m � qiÞ ¼
XE
j¼1

XN
m¼1

ðxi;j;m � ðpi þ ai=wjÞÞ; i ¼ 1;…;T: (6)

For each channel on an ES, it is usually allocated to multiple tasks for their data
transmission. To avoid the interference, we exploit the sequential data transmission model
for these tasks on a channel. For any two tasks, say ti1 and ti2, the input data transmission
of one task can be only started after finishing another’s, when they both use one channel on
one ES. If the transmission of ti1 is started before that of ti2, we have pi1 � qi1 � pi2 � qi2.
Otherwise, pi2 � qi2 � pi1 � qi1. Thus, we have constraints (7) that must be satisfied.

XE
j¼1

XN
m¼1

ðxi1;j;m � xi2;j;m � ðqi1 � pi2Þ � ðqi2 � pi1ÞÞ � 0; i1; i2 ¼ 1;…;T: (7)

Similar to the data transmission constraints, the finish computing time of a task is its
start computing time plus its computing latency. Thus, Eq. (8), where csti and zi are
respectively the start time and the finish time of computing task ti offloaded to an ES.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 6/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

As the computing of a task can be started only after the finish of its input data
transmission, constraints (9) must be met.

XE
j¼1

ðxei;j � ziÞ ¼
XE
j¼1

ðxei;j � ðci þ fi=gjÞÞ; i ¼ 1;…;T: (8)

XE
j¼1

XN
m¼1

ðxi;j;m � ziÞ �
XE
j¼1

ðxei;j � ciÞ; i ¼ 1;…;T: (9)

Also, to avoid the interference, we assume tasks are computed sequentially, and thus,
similar to constraints (7), we have constraints (10).

XE
j¼1

ðxei1;j � xei2;j � ðzi1 � ci2Þ � ðzi2 � ci1ÞÞ � 0; i1; i2 ¼ 1;…;T: (10)

When a task offloaded to an ES, its requested service must be cached in the ES. The
storage capacity of an ES limits the number of services. This can be formulated into
Eq. (11).

XT
i¼1

ðxei;j � ri;l � hlÞ � bj; j ¼ 1;…;E: (11)

Task processing model in cloud
When a task is offloaded to the cloud, there are mainly two ways for using CSs. One use is
that each cloud server is monopolized by a task. Another method of use is that a CS can be
multiplexed by multiple tasks. The first method of use has no data transmission wait
time for tasks. However, this will increase the cost of using CSs, because the CS is charged
on a per-unit-time basis. For example, when a CS is used only 1.1 h, it is charged 2 h.
Thus, we exploit the second way for multiplexing CSs to improve the resource and cost
efficiencies. In such way, the formulation of the task processing in the cloud is similar
to that in edges. When a task is offloaded to a CS, its finish time of the input data
transmission and the computing can be calculated by Eqs. (12) and (13), respectively.
Where qCi (pCi) and z

C
i (cCi) are respectively the finish time (the start time) of the input data

transmission and the computing of ti offloaded to a CS, respectively.

XV
k¼1

ðyi;k � qCi Þ ¼
XV
k¼1

ðyi;k � ðpCi þ ai=w
CÞÞ; i ¼ 1;…;T: (12)

XV
k¼1

ðyi;k � zCi Þ ¼
XE
j¼1

ðyi;k � ðcCi þ fi=g
v
kÞÞ; i ¼ 1;…;T: (13)

To avoid interferences, when multiple tasks are offloaded to one CS, the CS processes
the data transmission and the computing sequentially. Thus, constraints (14) and (15)
must be satisfied, similar to constraints (7) and (10).

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 7/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

XV
k¼1

ðyi1;k � yi2;k � ðqCi1 � pCi2Þ � ðqCi2 � pCi1ÞÞ � 0; i1; i2 ¼ 1;…;T: (14)

XV
k¼1

ðyi1;k � yi2;k � ðzCi1 � cCi2Þ � ðzCi2 � cCi1ÞÞ � 0; i1; i2 ¼ 1;…;T: (15)

Joint service caching and task offloading problem model
Based on the edge-cloud system and the task processing models, we can formulate the joint
service caching and task offloading problem as the following mix-integer non-linear
programming (MINLP).

Maximizing Nfin þ U: (16)

Subject to,

Eq:ð4Þ � ð15Þ; (17)

Nfin ¼
XT
i¼1

ð
XE
j¼1

xei;j þ
XV
k¼1

yi;kÞ; (18)

U ¼

PT
i¼1

ððPE
j¼1

xei;j þ
PV
k¼1

yi;kÞ � fiÞ

PE
j¼1

ðmaxTi¼1ðxei;j � ziÞ � gjÞ þ
PV
k¼1

maxTi¼1ðyi;k � zCi Þ
3600

� �
� 3600 � gvk

� � ; (19)

zi � di; i ¼ 1;…;T; (20)

zCi � di; i ¼ 1;…;T; (21)

xi;j;m 2 f0; 1g; i ¼ 1;…;T; j ¼ 1;…; E;m ¼ 1;…;Nj; (22)

yi;k 2 f0; 1g; i ¼ 1;…;T; k ¼ 1;…;V: (23)

There are two optimization objectives in our problem formulation, as shown in Eq. (16),
which are maximizing the number of tasks whose requirements are satisfied (Nfin) and the
computing resource utilization (U). Nfin is the accumulated number of tasks finished in the
edge-cloud computing system, which is one of popular metrics quantifying the user
satisfaction and can be calculated by Eq. (18). U is the ratio between the amount of
computing resources used by tasks and that of occupied resources. The amount of

computing resources used by tasks is the accumulated amount of computing resources

required by finished tasks, which is
PT
i¼1

��PE
j¼1

xei;j þ
PV
k¼1

yi;k

�
� fi

�
. For each ES/CS, its

occupied time is the latest finish time of tasks offloaded to it. Thus, for an ES ej, the

occupied time is maxTi¼1ðxei;j � ziÞ, and its occupied computing resource amount is

maxTi¼1ðxei;j � ziÞ � gj. For a CS, its occupied time is the ceiling time of the latest finish time

of tasks offloaded to it, because CSs are charged on a per-unit-time basis. In this article, we
assume CSs are charged on hour, as done by Amazon ES2, AliCloud, etc. Thus, for CS vk,

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 8/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

the occupied time is
maxTi¼1ðyi;k � zCi Þ

3600

� �
� 3600 and its occupied computing resource

amount is
maxTi¼1ðyi;k � zCi Þ

3600

� �
� 3600 � gvk . And therefore, the overall computing resource

utilization can be calculated by Eq. (19). Noticing that U is no more than 1, the user
satisfaction maximization is the major optimization objective, and the computing resource
utilization maximization is the minor one. Constraints (17) mainly include the calculation
of tasks’ finish time and the deadline requirements. Constraints (20) and (21) restrict the
deadline of each task. Constraints (22) and (23) represent that each task can be only
offloaded to only one ES/CS for its processing.

Hardness of the optimization problem
For an instance of our optimization problem, there are limitless commutation channels
and storage capacity for each ES. The problem instance is identical to the task scheduling
on multiple heterogeneous cores by seeing each ES/CS as a computing core, which has
been proofed as NP-hard problem (Gary & Johnson, 1979). Thus, our optimization
problem is NP-hard. The optimization problem is MINLP due to the non-liner constraints
(e.g., Eq. (19)). Existing tools, e.g., lp_solve (Berkelaar, Eikland & Notebaert, 2021), can be
used for solving the problem based on simple branch and bound. But these tools need
exponential time, and thus is not applicable to large-scale system. Therefore, we propose a
heuristic method in the following section to achieve an approximate solution.

MULTI-STAGE HEURISTIC METHOD
In this section, we propose a polynomial time heuristic method with three stages, outlined
in Algorithm 1, for solving the joint service caching and task offloading problem presented
in the previous section. We abbreviate the proposed method to MSHCO. In the first stage,
MSHCO employs the abundance of cloud resources, by pre-offloading all tasks to the
cloud considering deadline constraints. For tasks that their deadline constraints can not
ensured by the cloud, MSHCO caches their requested services on edges and offloads them
to edges. This is the second stage of MSHCO, which exploits limited edge resources for
satisfying requirements of latency-sensitive tasks. At the last stage, to take full advantage of
edge resources providing low latency network, MSHCO re-offloads pre-offloaded tasks
from the cloud to edges, to improve the overall performance of task processing. In the

Algorithm 1 Multi-stage heuristic joint service caching and task offloading method (MSHCO).

Input: The information of tasks and resources in the edge-cloud computing system.

Output: A joint service caching and task offloading strategy.

1: Pre-offloading tasks whose requirements can be satisfied by cloud resources to the cloud, using Algorithm 2;

2: For tasks that are not pre-offloaded to the cloud, caching their requested services on and offloading them to edges by Algorithm 3;

3: Re-offloading tasks that have pre-offloaded to the cloud from the cloud to edges by Algorithm 4;

4: return The joint service caching and task offloading strategy;

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 9/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

following, we illustrate the details of MSHCO. Table 2 gives some symbols used in
following illustrations.

As shown in Algorithm 2, in the first stage, MSHCOmakes a decision for pre-offloading
tasks to the cloud. For each task to be offloaded, MSHCO examines whether the task can
be finished before its deadline by a CS that has been rented from the cloud (lines 3–4).
If there is one such CS, MSHCO pre-offloads the task to the CS (lines 5–6), and repeats
these steps (of lines 3–6) for the next task (line 7). Otherwise, MSHCO tries to rent a new
CS for the task (lines 8–12). MSHCO finds a CS type with the resource configuration
that satisfies the task’s requirements, and rents a new CS with the type (line 11). Then,
MSHCO pre-offloads the task to the new CS (line 12). If no rented CS or CS type can be
found for finishing the task within its deadline, the task can not be offloaded to the cloud,

Table 2 The symbols used in algorithm illustrations

Symbol Description

T The set of tasks ftiji ¼ 1;…;Tg. Each task, say t, has following attributes: the required computing resource size (t.f), the input data amount
(t.a), the deadline (t.d), the requested service (t.s), the set of edge servers having network connections with its device (t:E).

S The set of services fsljl ¼ 1;…; Sg. Each service has one attribute, which is its required storage space, s.b.

E The set of ESs fejjj ¼ 1;…; Eg. Each ES has following attributes: the computing capacity (e.g), the number of communication channels (e.N),
the communication channel capacity (e.w), the set of tasks offloaded to the ES with each channel (e:Tm, m ¼ 1;…; e:N), the set of services
cached on the ES (e:S).

VT The set of CS types, fvtojo ¼ 1;…;VTg, provided by the cloud. Each type has following configuration parameter: the computing capacity (vt.
g), the network transmission capacity (vt.w), the price per unit time (vt.p).

V The set of rented CSs fvkjk ¼ 1;…;Vg. Each CS has following attributes: the configuration type (v.vt), the set of tasks offloaded to the CS
(v:T).

Algorithm 2 Stage 1: pre-offloading tasks to the cloud.

Input: tasks to be offloaded, T; CS types provided by the cloud, VT;

Output: rented CSs for satisfying requirements of pre-offloaded tasks, and a task pre-offloading strategy in
the cloud, V; tasks whose requirements cannot satisfied by the cloud, T;

1: for each t ∈ T do

2: for each v ∈ V do

3: calculating the finish time ft of t if it is offloaded to v based on Eqs. (12)–(15);

4: if ft ≤ t.d then

5: v.T ← v.T∪{t}; //pre-offloading t to the rented CS

6: T ← T − {t}; //removing t from un-offloaded task set

7: goto line 1;

8: for each vt ∈ VT do

9: calculating the finish time ft of t if it is offloaded to a CS with type vt based on Eqs. (12)–(15);

10: if ft ≤ t.d then

11: pre-rent a CS v, where v.vt ← vt; //renting a CS with type vt

12: same to lines 5 – 7;

13: return V, T;

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 10/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

and MSHCO examines the next task with previous procedures. After executing
Algorithm 2, we achieve the CSs needed to be rented from the cloud, and the tasks pre-
offloaded to each CS, stored in V (line 13).

The second stage of MSHCO is illustrated in Algorithm 3. For each task that is not pre-
offloaded to the cloud (line 1), MSHCO finds an ES that can receive the request and has
enough resources for processing the task. There are two situations when offloading a
task to an ES, the requested service has or not cached on the ES. When the requested
service has cached on the ES, it is only needed to examine whether the task can be finished
within its deadline using one of communication channels (lines 3–8). If so, the task is
offloaded to the ES (lines 6–8), and otherwise, the task’s requirements cannot be satisfied
by edge resources. When the requested service has not cached for the current examined
task, MSHCO sees whether the ES has enough storage space for caching the requested
service (line 9). If the ES has enough storage space and the task’s deadline constraint
can be met by the ES (line 12), the requested service will be cached on the ES (line 13), and
the task is offloaded to the ES (line 14). After execution, Algorithm 3 provides a task
offloading solution and a service caching solution in edges.

Benefiting from Algorithms 2 and 3, we have a strategy for jointly task offloading and
service caching on the edge-cloud computing system. Because we first exploit cloud
resources for task offloading, some tasks pre-offloaded to the cloud can be processed by
edge resources. Usually edge resources provide a better network performance than cloud
resources. Thus, MSHCO re-offloads these tasks from the cloud to edges in the last stage to

Algorithm 3 Stage 2: offloading tasks to edges.

Input: tasks that are not pre-offloaded to the cloud, T; services, S; edge servers, E;

Output: A joint service caching and task offloading strategy in ESs, {e.Tm, e.S | e ∈ E, m = 1, …,e.N}.

1: for each t ∈ T do

2: for each e ∈ t.E do

3: if t.s ∈ e.S then

4: for each channel of e, m =1 to e.N do

5: calculating the finish time ft of t if it is offloaded to e at mth channel based on Eqs. (6)–(10);

6: if ft ≤ t.d then

7: e.Tm ← e.Tm ∪ {t}; //offloading t to the ES having cached the requested service

8: goto line 1;

9: else if t.s.b+
P

s∈e.S s.b ≤ e.b then

10: for each channel of e, m =1 to e.N do

11: calculating the finish time ft of t, same to line 5;

12: if ft ≤ t.d then

13: e.S ← e.S∪{t.s};//caching the service on the ES

14: same to lines 7 – 8;

15: return E;

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 11/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

improve the overall performance of task processing, as shown in Algorithm 4. In this stage,
MSHCO examines whether each task having been pre-offloaded to the cloud can be
processed by ESs (lines 1–2). The examining procedures are identical to Algorithm 2,
except that when a task can be offloaded to an ES, the task will be removed from the CS
that the task is pre-offloaded to (lines 9 and 16).

The main advantage of our method is that all tasks whose requirements can be satisfied
by the cloud are pre-offloaded to the cloud. This can result in more edge resources for
finishing more delay-sensitive tasks, compared with other methods that offload tasks to the
cloud only when edge resources are exhausted. Here, we give an example to illustrate the
advantage of our method. Considering a simple edge-cloud environment, there are four
tasks (t1, t2, t3, and t4), 1 ES, and 1 CS type. The input data amount and the required
computing size of t1 and t2 are 1 MB and 20 MHz, respectively. The input data amount
and the required computing size of t3 and t4 are 2 MB and 40 MHz, respectively. The
deadline of each task is set as 110 ms. All of services requested by these tasks are all
deployed on the ES. The communication and computing capacities of the ES are 100 MB/s
and 2 GHz, respectively. The network and computing capacities configured by the CS type
are 10 MB/s and 2 GHz, respectively. The time consumed by t1 or t2 (t3 or t4) is 20 ms
(40 ms) when it is offloaded to the ES, and 110 ms (220 ms) when offloaded to the cloud.
In this case, if we offload tasks to the ES first, t1, t2, and t3 are offloaded to ES with finish

Algorithm 4 Stage 3: re-offloading tasks from the cloud to edges.

Input: the service caching and task (pre-)offloading strategy in the cloud and edges, V and E;

Output: An improved joint service caching and task offloading strategy, updated V and E.

1: for each v ∈ V do

2: for each t ∈ v.T do

3: for each e ∈ t.E do

4: if t.s ∈ e.S then

5: for each channel of e, m =1 to e.N do

6: calculating the finish time ft of t if it is offloaded to e at mth channel based on
Eqs. (6)–(10);

7: if ft ≤ t.d then

8: e.Tm ← e.Tm ∪ {t}; //offloading t to the ES having cached the requested service

9: v.T ← v.T − {t};

10: goto line 2;

11: else if t.s.b+
P

s∈e.S s.b ≤ e.b then

12: for each channel of e, m =1 to e.N do

13: calculating the finish time ft of t, same to line 6;

14: if ft ≤ t.d then

15: e.S ← e.S∪{t.s};//caching the service on the ES

16: same to lines 8 – 10;

17: return E, V;

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 12/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

time of 80 ms, and t4 is rejected. But by MSHCO, t1 and t2 are pre-offloaded to two CS
rented from the cloud, at the first stage. t3 and t4 are offloaded to the ES at the second stage,
and thus all tasks can be finished within their respective deadlines. We can see that
MSHCO can satisfy requirements of more tasks. The third stage only changes the locations
where some tasks are offloaded, and has no effect on which tasks are offloaded. Therefore,
the user satisfaction is not changed by the third stage.

Algorithmic complexity analysis
In the first stage, MSHCO visits each rented CSs and CS types for each task. Thus, this
stage hasOðT � ðV þ VTÞÞ time complexity at worst. In real word, the number of CS types
provided by the cloud is very limited, and can be considered as a small constant. Thus, the
time complexity of the first stage is OðT � VÞ. In the second stage, for a task, MSHCO
searches all channels of ESs having connection with its device, and examines whether its
requested service has been cached. In general, there are only a few edges connecting its
device for each task. Therefore, the time complexity of the second stage isOðT � SÞ. Similar
to the second stage, the third stage has a time complexity of OðT � SÞ, too. Thus, in overall,
the time complexity of MSHCO is ðT � ðV þ SÞÞ, which is increased linearly with the
numbers of tasks, rented CSs, and services in the edge-cloud computing system.

PERFORMANCE EVALUATION
In this section, we evaluate the performance of MSHCO by conducting extensive simulated
experiments. The simulated system is established referring to recent related works
(Dai et al., 2019; Xia et al., 2022; Zhang et al., 2021a) and CS types provided by Amazon
EC2 (Amazon.com, 2022). Specifically, in the simulated system, there are 10 ESs and 1 CS
type. Each ES has 20 GHz computing capacity, 10 communication channels, and 300
GB storage capacity. The communication capacity of each communication channel is set as
60 Mbps. The CS type has the configurations of 5 GHz computing capacity and 15 Mbps
network transfer capacity, with the price of $ 0.1 per h. There are 1,000 tasks in the
simulated system. Each task randomly requests one of 100 services. The input data amount
and required computing resource size of a task is randomly set in the ranges of [1.5, 6]
MB and [0.5, 1.2] GHz. The deadlines of tasks are randomly set in range [1, 5] seconds. For
each task, its device has a connection with randomly selected one ES. The storage space
required by a service is randomly set in the range of [40, 80] GB.

To show the advantage of our method, we select the following classical and recently
published works for performance comparison.

� First fit (FF) is one of the classical and most widely used methods in various computing
systems. FF iteratively offloads each task to the ES/CS that can satisfy all requirements of
the task.

� First fit decreasing (FFD) is identical to FF except that FFD makes offloading decision
for the task with maximal computing resource size in each iteration.

� Earliest deadline first (EDF) is one of deadline-aware method. EDF iteratively makes
offloading decision for the task with earliest deadline.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 13/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

� Popularity-based service caching (PSC) is the basis idea exploited byWei et al. (2021).
PSC caches the service with maximal requests on ESs. For offloading decisions, it uses FF
strategy.

� Approximation algorithm for constrained edge data caching (CEDC-A) (Xia et al.,
2021b) caches a service on an ES, such that the caching solution provides maximum
benefit. The benefit is quantified based on the number of network hops. For our
comparison, we set the benefit value as the accumulated slack time for each caching
solution, where the slack time is the different between the deadline and the finish time
for a task.

We evaluate the performance of these methods in the following aspects. For following
each metric, a higher value is better.

� User satisfaction strongly affects the income and the reputation of service providers.
We use three metrics for its quantification, the number of finished tasks2, the computing
resource size of finished tasks, and the processed input data amount of finished tasks.

� Resource efficiency is closely related to the cost of service provision. We use the
computing resource utilization for quantifying the resource efficiency.

� Processing efficiency is representing the workload processing rate, which can determine
the user satisfaction and the resource efficiency at a large extent. We use two metrics for
the quantification, the computing rate and the data processing rate, which are the size of
computing finished per unit time and the amount of input data processed per unit time,
respectively.

For conducting the experiment, we randomly generate 100 edge-cloud system instances.
For each instance, we achieve a set of performance values for each method, and scale each
performance value of a method by that of FF for each metric. For example, Table 3 shows a

Table 3 The finished task number achieved by various methods in several system instances.

Time FF FFD EDF PSC CEDC-A MSHCO

1 192 (1.000) 192 (1.000) 191 (0.995) 173 (0.901) 119 (0.620) 206 (1.073)

2 174 (1.000) 174 (1.000) 174 (1.000) 154 (0.885) 85 (0.489) 186 (1.069)

3 186 (1.000) 186 (1.000) 191 (1.027) 182 (0.978) 108 (0.581) 210 (1.129)

4 178 (1.000) 178 (1.000) 183 (1.028) 164 (0.921) 110 (0.618) 208 (1.169)

5 176 (1.000) 176 (1.000) 179 (1.017) 155 (0.881) 98 (0.557) 190 (1.080)

6 193 (1.000) 193 (1.000) 194 (1.005) 172 (0.891) 111 (0.575) 225 (1.166)

7 185 (1.000) 185 (1.000) 183 (0.990) 176 (0.951) 106 (0.573) 202 (1.092)

8 198 (1.000) 198 (1.000) 201 (1.015) 178 (0.899) 115 (0.581) 231 (1.167)

9 172 (1.000) 172 (1.000) 175 (1.017) 155 (0.901) 96 (0.558) 187 (1.087)

10 185 (1.000) 185 (1.000) 184 (0.995) 174 (0.941) 107 (0.578) 199 (1.076)

…

100 175 (1.000) 175 (1.000) 174 (0.994) 168 (0.960) 98 (0.560) 193 (1.103)

Note:
The data format: the number of finished tasks (the value scaled by that of FF).

2 A finished task means the task’s
requirements are met in the computing
system.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 14/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

part of the experiment data in the metric of finished task number. In the following, we
report the average relative value for each metric.

In addition, we compare the solution solved by our method with the optimal solution in
simulated mini edge-cloud systems, which is illustrated in the end of this section.

Comparison in user satisfaction
Figure 2 shows the overall user satisfaction achieved by various methods in various
performance metrics. As shown in the figure, we can see that MSHCO has 9.94–95.6%,
9.85–97.8%, and 7.97–155% better overall user satisfaction, compared with other methods,
respectively in the number, the computing size, and the input data amount of finished
tasks. This result verifies that our proposed method has good effect on optimizing the user
satisfaction. The main reason is that our method prioritizes the use of abundant cloud
resources for processing tasks. This can avoid the situation that tasks whose requirements
can be satisfied by the cloud occupy limited edge resources at first, and thus leaves more
edge resources for latency-sensitive tasks. While other methods employ cloud resources
only after exhausting all edge resources resources.

Thus, in most of time, the improvement of our method in edges is greater than that in
the cloud in optimizing user satisfaction. For example, compared with PSC, MSHCO has
14.8%, 15.1%, and 10.3% greater values in three user satisfaction metrics in edges,
respectively, as shown in Fig. 3. But MSHCO has 32.3%, 32.4%, and 35.0% greater values in
these three metrics in the cloud, respectively, as shown in Fig. 4. A similar result can be

(a) (b)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO
R

el
at

iv
e

fi
ni

sh
ed

 ta
sk

 n
um

be
r

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
fi

ni
sh

ed
 c

om
pu

tin
g

si
ze

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
pr

oc
es

se
d

da
ta

 a
m

ou
nt

Figure 2 The overall user satisfaction achieved by various methods. (A) Relative number of finished
tasks. (B) Relative computing size of finished tasks. (C) Relative amount of processed input data.

Full-size DOI: 10.7717/peerj-cs.1012/fig-2

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 15/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-2
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

seen from Fig. 3 and Fig. 4, by comparing MSHCO with FF, FFD, or EDF. While, there is
an opposite behaviour for MSHCO vs. CEDC-A. MSHCO has about 1,370% greater value
in edges but only about 0.974% greater value in the cloud, in each user satisfaction metric,
as shown in Figs. 3 and 4. This is because CEDC-A offloads too less tasks to edges,
compared with other methods. This can lead to more remaining tasks with requirements
that can be satisfied by the cloud after conducting task offloading on edges. Meantime,
MSHCO re-offloads some tasks from the cloud to edges for improving the overall
performance of task processing, which results in more tasks offloaded to edge but less tasks
offloaded to the cloud.

Tables 4–6 show the statistical data of user satisfactions achieved by various methods in
the three metrics, respectively. From these tables, we can see that MSHCO achieves the
greatest minimal value for every metric. This means that MSHCO achieves the best user
satisfaction any time. This further confirms the superior performance of our method in
optimizing user satisfaction. The main benefit of MSHCO is the idea of making offloading
decisions by three stages, which can be applied to any task scheduling method to improve
its performance for edge-cloud computing. For a task scheduling method, the use of three-
stage idea ensures a performance no worse than the scheduling method used alone. This is
mainly because the first stage guarantees all tasks can be finished if their requirements can
be satisfied by the cloud, without any edge resources. This enables the limited edge
resources to finish tasks that cannot be satisfied by the cloud at first, in the second stage.
This can lead to more finished tasks that can only be finished by edge resources.

(a) (b)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO
R

el
at

iv
e

Fi
ni

sh
ed

 ta
sk

 n
um

be
r

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
fi

ni
sh

ed
 c

om
pu

tin
g

si
ze

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
pr

oc
es

se
d

da
ta

 a
m

ou
nt

Figure 3 The user satisfaction achieved by various methods in edges. (A) Relative number of finished
tasks. (B) Relative computing size of finished tasks. (C) Relative amount of processed input data.

Full-size DOI: 10.7717/peerj-cs.1012/fig-3

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 16/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-3
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

(a) (b)

(c)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FF FFD EDF PSC CEDC-A MSHCO
R

el
at

iv
e

Fi
ni

sh
ed

 ta
sk

 n
um

be
r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
fi

ni
sh

ed
 c

om
pu

tin
g

si
ze

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
pr

oc
es

se
d

da
ta

 a
m

ou
nt

Figure 4 The overall user satisfaction achieved by various methods in the cloud. (A) Relative number
of finished tasks. (B) Relative computing size of finished tasks. (C) Relative amount of processed input
data. Full-size DOI: 10.7717/peerj-cs.1012/fig-4

Table 4 The statistical data of the relative finished task number.

FF FFD EDF PSC CEDC_A MSHCO

MAXIMUM 1 1 1.0514 0.9821 0.6344 1.2216

AVERAGE 1 1 1.0049 0.9009 0.5647 1.1048

MINIMUM 1 1 0.9677 0.8305 0.4859 1.0452

Table 5 The statistical data of the relative computing size of finished tasks.

FF FFD EDF PSC CEDC_A MSHCO

MAXIMUM 1 1 1.0544 0.992 0.6477 1.2314

AVERAGE 1 1 1.0042 0.8983 0.5576 1.1031

MINIMUM 1 1 0.9661 0.8227 0.4771 1.0363

Table 6 The statistical data of the relative amount of processed data.

FF FFD EDF PSC CEDC_A MSHCO

MAXIMUM 1 1 1.048 1.0776 0.5149 1.1628

AVERAGE 1 1 0.9957 0.9116 0.4219 1.0751

MINIMUM 1 1 0.9141 0.8084 0.3446 1.0333

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 17/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-4
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

Comparison in resource efficiency
Figure 5 shows the relative overall resource utilizations in the edge-cloud system when
employing various methods for task offloading and service caching. From this figure, we
can see that our method achieves 0.21%, 0.21%, 0.522%, 16.9%, and 56.1% higher resource
utilizations than FF, FFD, EDF, PSC, and CEDC-A, respectively. Thus, in overall, MSHCO
can achieve a better resource efficiency. More finished tasks is helpful for improving the
resource utilization, because the data transfer can be performed in parallel, which is benefit
for reducing the idle computing time caused by waiting the input data. Thus, as our
method achieves more finished tasks than other methods, our method has a high
probability in achieving better resource utilization.

In fact, the computing resource utilization is decided by the idle computing time of ESs
and CSs, which is related to the relative time of the input data transfer and the task
computing. Due to much poor network performance of the cloud, the resource utilization
achieved in edges is usually much better than that in the cloud. In our experiment results,
edge resources has more than twice utilization than cloud resources in most of time. This
results in a better opportunity for improving resource utilization for the cloud than for
edges. Thus, compared with FF, FFD, and EDF, MSHCO achieves negligibly lower
resource utilization in edges, but about 4.8% higher in the cloud, as shown in Figs. 6 and 7.
The reason why CEDC-A has much lower resource utilization in edges is mainly because it
offloads too less tasks to ESs. This can give rise to that not all of communication channels
of ESs are used for offloaded tasks most of time, which results in a great percentage of
time that is spent on waiting input data transfer for task processing.

Comparison in processing efficiency
Figure 8 gives the relative task processing efficiency achieved by various methods in overall.
From the figure, we can see that MSHCO achieves 9.49–97.7% and 7.06–155% better
processing efficiency in computing and data processing, respectively, compared with other
methods. The rate of computing (or data processing) is the ratio between the accumulated
computing size (or processed data amount) and the latest finish time of finished tasks.
Thus, the processing efficiency is manly decided by the speedup of task parallel executions.

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
re

so
ur

ce
 u

til
iz

at
io

n

Figure 5 The relative overall resource utilization achieved by various methods.
Full-size DOI: 10.7717/peerj-cs.1012/fig-5

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 18/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-5
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

In general, the resource utilization reflects the speedup to a large extent. Thus, we can
deduce that MSHCO has a greater speedup from that it has a higher resource utilization in
the edge-cloud system, compared with other methods. Therefore, MSHCO has a better
processing efficiency in overall.

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
re

so
ur

ce
 u

ti
li

za
ti

on

Figure 6 The relative resource utilization achieved by various methods in edges.
Full-size DOI: 10.7717/peerj-cs.1012/fig-6

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
re

so
ur

ce
 u

til
iz

at
io

n

Figure 7 The relative resource utilization achieved by various methods in the cloud.
Full-size DOI: 10.7717/peerj-cs.1012/fig-7

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
co

m
pu

tin
g

ra
te

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Figure 8 The relative overall processing efficiency achieved by various methods. (A) Relative com-
puting rate. (B) Relative data processing rate. Full-size DOI: 10.7717/peerj-cs.1012/fig-8

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 19/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-6
http://dx.doi.org/10.7717/peerj-cs.1012/fig-7
http://dx.doi.org/10.7717/peerj-cs.1012/fig-8
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

In edges, An ES provides 10 communication channels for receiving input data transfers
of offloaded tasks. Thus, even though the increased number of offloaded tasks helps to
improve the speedup of parallel executions in edges, it aggravates the scarcity of computing
resources, especially when the computing resources is bottleneck. In this case, the latest
finish time of offloaded tasks can be postponed as there are more waiting time for input
data transfers. While each CS receives input data by only one NIC, and thus the above issue
in an edge is less serious than in the cloud. Therefore, in general, the improvement of
processing efficiency in edges is less than in the cloud, as shown in Figs. 9 and 10. For
example, compared with EDF, MSHCO achieves 3.32% faster computing rate in edges
while 16.3% in the cloud.

Comparison with optimal solution
To compare our method with the exhaustive method providing the optimal solution, we
generate a mini-scale edge-cloud system. The mini-scale system is consisted of one ES, and
one CS type, and provides two services. The ES can cache only one service in a time. We
conduct 11 groups of experiments with varied number of tasks. The number of tasks in uth

group of experiments is 8þ 2 � u. The other parameters of the system is same to the
previous experiment. Each group of experiments was repeated 11 times, and the average

(a) (b)

0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO
R

el
at

iv
e

co
m

pu
tin

g
ra

te
0

0.2

0.4

0.6

0.8

1

1.2

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Figure 9 The relative processing efficiency achieved by various methods in edges. (A) Relative
computing rate. (B) Relative data processing rate. Full-size DOI: 10.7717/peerj-cs.1012/fig-9

(a) Relative computing rate (b) Relative data processing rate

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
co

m
pu

tin
g

ra
te

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FF FFD EDF PSC CEDC-A MSHCO

R
el

at
iv

e
da

ta
 p

ro
ce

ss
in

g
ra

te

Figure 10 The relative processing efficiency achieved by various methods in the cloud.
Full-size DOI: 10.7717/peerj-cs.1012/fig-10

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 20/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-9
http://dx.doi.org/10.7717/peerj-cs.1012/fig-10
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

value of the relative performance of our method to the exhaustive method in finished task
number was reported. The result is shown in Fig. 11.

As shown in Fig. 11, we can see that our method finishes 14.0–23.2% less tasks than the
exhaustive method, and the overall trend is that the different performance between
MSHCO and the exhaustive method is decreased with the increasing scale of the system.
Thus, we could argue that our method can achieve a nearly optimal solution, in a large
scale edge-cloud computing system.

RELATED WORKS
The edge-cloud computing is an efficient way to address the scarcity of edge and device
resources and the high latency of cloud resources. The resource efficiency of edge-cloud
computing can be improved by well designed task offloading strategy. Thus, in recent
years, there are several works focusing on the design of task offloading methods. For
example, Liu et al. (2021) modelled the task offloading problem in edge-cloud computing
as a Markov Decision Process (MDP), and applied deep reinforcement learning to achieve
an offloading solution. Wang et al. (2022) presented an integer particle swarm
optimization-based task offloading method for optimizing service-level agreement (SLA)
satisfaction. Sang et al. (2022) proposed a heuristic algorithm for task offloading problem
in device-edge-cloud cooperative computing environments with the same objective to
our work. These works assumed that all services can be provided by an edge, which does
not match with the actual. In real world, each edge has very limited storage capacity,
and thus only a few services can be deployed on an edge. Thus, for an efficient task
offloading algorithm, the service caching problem must be concerned for deciding which
services are deployed on each edge when making offloading decisions.

Focusing on the improvement of task processing performance in edge-cloud
computing, several works studied on solving the service caching problem.Wei et al. (2020,
2021) proposed a popularity-based caching method based on content similarity. They first
produced the popularity of contents based on the historical information of user requests
and content similarity, and then replaced most unpopular contents by most popular
contents when there is no available storage space in edges. To simplify the edge-cloud
system, they assumed that all dynamic parameters were following Poisson distribution in

0

0.1

0.2

0.3

10 12 14 16 18 20 22 24 26 28 30
R

el
at

iv
e

pe
rf

or
m

an
ce

 to
 th

e
op

ti
m

al
 s

ol
ut

io
n

Number of tasks

Figure 11 The performance achieved by MSHCO, relative to the optimal solution, in the user
satisfaction metric of finished task number, with varied numbers of request tasks.

Full-size DOI: 10.7717/peerj-cs.1012/fig-11

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 21/26

http://dx.doi.org/10.7717/peerj-cs.1012/fig-11
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

both their model and simulated experiments. This can lead to an unguaranteed
performance in practice and unreliable experiment results. Wang et al. (2020a) exploited
Markov chain to predict the cached data to improve the hit ratio. Xia et al. (2021c)
studied on the data caching problem for optimizing the overall service overhead. They
modelled the problem into a time-averaged optimization. To solve the problem, they first
transformed the optimization model to a linear convex optimization, and then applied
Lyapunov optimization technology. Xia et al. (2021b) proposed an approximation
algorithm for edge data caching (CEDC-A). CEDC-A first choose a solution of caching a
data on an ES, with maximum benefit, and then iteratively caching the data with maximum
benefit on the ES. In these above two works, the network latency is quantified by the
number of hops. While in practice, the real latency is not positively associated with the
hop number. All of above works aimed at optimizing the data access latency by designing
edge caching strategy. While the task processing performance is not only decided by the
data access latency, but also by computing efficiency. Thus, task offloading must be
concerned, complementary to edge caching.

Bi, Huang & Zhang (2020) studied on the joint service caching and computation
offloading for a mobile user allocated to an edge server. They modelled the problem into a
mixed integer non-linear programming, and transformed it into a binary integer linear
programming. To solve the problem with a reduced complexity, they designed an
alternating minimization technique by exploiting underlying structures of caching
causality and task dependency. To optimize the overall utility, Ko et al. (2022)modelled the
processing of user requests as a stochastic process, and proposed to apply water filling and
channel inversion for the network resource allocation for users with same service
preference. Then they applied the Lagrange multiplier to iteratively solve computation
offloading and service caching problem for users with heterogeneous preference. In this
work, an edge is assumed to have only one time division multiplexing communication
channel. Tian et al. (2021) modelled the service caching problem as an MDP, and solved
the MDP by combining double deep Q-network (DQN) and dueling-DQN. Xia et al.
(2022) proposed a two-phase game-theoretic algorithm to provide a strategy of data
caching and task offloading. In the first phase, to serve the most users, they iteratively
solved the data caching strategy with corresponded user and channel power allocation
strategy. In the second phase, they tried to allocate more channel power for each user, for
optimizing the overall data transfer rate. These above works didn’t concern the allocation
of computing resources. Zhang et al. (2021a) focused on the joint problem of service
caching, computation Offloading and resource allocation, for optimizing the weight cost of
computing and network latency. They formulated the problem as a quadratically
constrained quadratic program, and used semidefinite relaxation for addressing the
problem.

All of these above existing works consider the use of cloud resources only when edge
resources are exhausted for offloading tasks. This can lead to an underutilized abundance
of cloud resources. Thus, our work tries to exploit the heterogeneity of edges and clouds to
improve the cooperation between them, and aiming at providing a joint strategy of service

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 22/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

caching, computing offloading, computing resource allocation, and communication
channel assignment, for user satisfaction and resource efficiency optimizations.

CONCLUSION
In this work, we studied the joint service caching and task offloading problem for
edge-cloud computing. We first formulated the problem into a MINLP with objectives of
maximizing user satisfaction and resource efficiency, which was proofed as NP-hard. Then,
we proposed a polynomial time algorithm with three stages to solve the problem. The
basis of our performance was first exploiting abundant cloud resources and low-latency
edge resources to satisfy as many requirements as possible in the first two stages,
respectively. Then, edge resources were fully used for improving the overall performance
in the last stage by re-offloading tasks from the cloud to edges. Simulated experiments
are conducted, and the results verified that our method has better performance in user
satisfaction, resource efficiency and processing efficiency, compared with five classical and
up-to-date methods.

In this article, we focused on the decisions of both task offloading and service caching,
without considering the caching replacement. In practice, our method can be applied
in collaboration with existing caching replacement approaches. The collaboration
efficiency should be studied, which is a focus of our future work. In addition, we will also
try to design efficient caching replacement strategy based on predicting user preferences
and user similarity, to improve the resource efficiency and processing performance for
edge-cloud computing systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was supported by the Key Scientific and Technological Projects of Henan
Province (Grant No. 222102210218, 202102210174, 212102210096, 212102210104), the
Key Scientific Research Projects of Henan Higher School (Grant No. 20B520039,
21A520050), the National Natural Science Foundation of China (Grant No. 61902021,
61872043, 61975187, 62072414), the Doctoral Fund of Pingdingshan University (No.
PXY-BSQD-2022004), the Qin Xin Talents Cultivation Program, Beijing Information
Science and Technology University (No. QXTCP B201904), and the fund of the Beijing
Key Laboratory of Internet Culture and Digital Dissemination Research (Grant No.
ICDDXN004).

Grant Disclosures
The following grant information was disclosed by the authors:
Key Scientific and Technological Projects: 222102210218, 202102210174, 212102210096
and 212102210104.
Key Scientific Research Projects of Henan Higher School: 20B520039 and 21A520050.
National Natural Science Foundation: 61902021, 61872043, 61975187 and 62072414.
Pingdingshan University: PXY-BSQD-2022004.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 23/26

http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

Beijing Information Science and Technology University: QXTCP B201904.
Beijing Key Laboratory of Internet Culture and Digital Dissemination Research:
ICDDXN004.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Xiaoqian Chen analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

� Tieliang Gao analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

� Hui Gao performed the computation work, authored or reviewed drafts of the article,
and approved the final draft.

� Baoju Liu conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

� Ming Chen conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

� Bo Wang conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The resource code implementing the methods evaluated in experiments in C
programming language is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1012#supplemental-information.

REFERENCES
Amazon.com. 2022. Amazon ec2: secure and resizable compute capacity for virtually any

workload. Available at https://aws.amazon.com/ec2/.

Berkelaar M, Eikland K, Notebaert P. 2021. lpsolve: mixed integer linear programming (milp)
solver. Available at https://sourceforge.net/projects/lpsolve/.

Bi S, Huang L, Zhang Y-JA. 2020. Joint optimization of service caching placement and
computation offloading in mobile edge computing systems. IEEE Transactions on Wireless
Communications 19(7):4947–4963 DOI 10.1109/TWC.2020.2988386.

Cisco. 2020. Cisco annual internet report (2018–2023). Available at https://www.cisco.com/c/en/us/
solutions/executive-perspectives/annual-internet-report/index.html.

Dai Y, Xu D, Maharjan S, Qiao G, Zhang Y. 2019. Artificial intelligence empowered edge
computing and caching for internet of vehicles. IEEE Wireless Communications 26(3):12–18
DOI 10.1109/MWC.2019.1800411.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 24/26

http://dx.doi.org/10.7717/peerj-cs.1012#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1012#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1012#supplemental-information
https://aws.amazon.com/ec2/
https://sourceforge.net/projects/lpsolve/
http://dx.doi.org/10.1109/TWC.2020.2988386
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
http://dx.doi.org/10.1109/MWC.2019.1800411
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

Farhadi V, Mehmeti F, He T, Porta TL, Khamfroush H, Wang S, Chan KS. 2019. Service
placement and request scheduling for data-intensive applications in edge clouds. In: IEEE
INFOCOM, 2019—IEEE Conference on Computer Communications. Piscataway: IEEE,
1279–1287.

Farhadi V, Mehmeti F, He T, Porta TFL, Khamfroush H,Wang S, Chan KS, Poularakis K. 2021.
Service placement and request scheduling for data-intensive applications in edge clouds.
IEEE/ACM Transactions on Networking 29(2):779–792 DOI 10.1109/TNET.2020.3048613.

Gary M, Johnson D. 1979. Computers and intractability: a guide to the theory of NP-completeness.
New York: WH Freeman and Company.

Gu X, Zhang G. 2021. Energy-efficient computation offloading for vehicular edge computing
networks. Computer Communications 166(1):244–253 DOI 10.1016/j.comcom.2020.12.010.

Huda SA, Moh S. 2022. Survey on computation offloading in uav-enabled mobile edge computing.
Journal of Network and Computer Applications 201:103341 DOI 10.1016/j.jnca.2022.103341.

Ko S-W, Kim SJ, Jung H, Choi SW. 2022. Computation offloading and service caching for mobile
edge computing under personalized service preference. In: IEEE Transactions on Wireless
Communications (in press). Piscataway: IEEE, 1–16.

Liu X-y, Xu C, Zeng P, Yu H-b. 2021. Deep reinforcement learning-based high concurrent
computing offloading for heterogeneous industrial tasks. Chinese Journal of Computers
44(12):2367–2381 [In Chinese] DOI 10.11897/SP.J.1016.2021.02367.

Luo Q, Hu S, Li C, Li G, Shi W. 2021. Resource scheduling in edge computing: a survey. IEEE
Communications Surveys Tutorials 23(4):2131–2165 DOI 10.1109/COMST.2021.3106401.

Peng K, Nie J, Kumar N, Cai C, Kang J, Xiong Z, Zhang Y. 2021. Joint optimization of service
chain caching and task offloading in mobile edge computing. Applied Soft Computing
103(3):107142 DOI 10.1016/j.asoc.2021.107142.

Rahmani AM, Mohammadi M, Mohammed AH, Karim SHT, Majeed MK, Masdari M,
Hosseinzadeh M. 2021. Towards data and computation offloading in mobile cloud computing:
taxonomy, overview, and future directions. Wireless Personal Communications 119(1):147–185
DOI 10.1007/s11277-021-08202-y.

Sang Y, Cheng J, Wang B, Ming C. 2022. Integer particle swarm optimization based task
scheduling for device-edge-cloud cooperative computing to improve sla satisfaction. PeerJ
Computer Science 8(3):e851 DOI 10.7717/peerj-cs.851.

Tian H, Xu X, Lin T, Cheng Y, Qian C, Ren L, Bilal M. 2021. Dima: distributed cooperative
microservice caching for internet of things in edge computing by deep reinforcement learning.
World Wide Web (in press) 1–24 DOI 10.1007/s11280-021-00939-7.

Wang B, Cheng J, Cao J, Wang C, Huang W. 2022. Integer particle swarm optimization based
task scheduling for device-edge-cloud cooperative computing to improve sla satisfaction. PeerJ
Computer Science 8(5):e893 DOI 10.7717/peerj-cs.893.

Wang H, Li Y, Zhao X, Yang F. 2020a. An algorithm based on markov chain to improve edge
cache hit ratio for blockchain-enabled iot. China Communications 17(9):66–76
DOI 10.23919/JCC.2020.09.006.

Wang B, Wang C, Huang W, Song Y, Qin X. 2020b. A survey and taxonomy on task offloading
for edge-cloud computing. IEEE Access 8:186080–186101 DOI 10.1109/ACCESS.2020.3029649.

Wei X, Liu J, Wang Y, Tang C, Hu Y. 2021. Wireless edge caching based on content similarity in
dynamic environments. Journal of Systems Architecture 115(2):102000
DOI 10.1016/j.sysarc.2021.102000.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 25/26

http://dx.doi.org/10.1109/TNET.2020.3048613
http://dx.doi.org/10.1016/j.comcom.2020.12.010
http://dx.doi.org/10.1016/j.jnca.2022.103341
http://dx.doi.org/10.11897/SP.J.1016.2021.02367
http://dx.doi.org/10.1109/COMST.2021.3106401
http://dx.doi.org/10.1016/j.asoc.2021.107142
http://dx.doi.org/10.1007/s11277-021-08202-y
http://dx.doi.org/10.7717/peerj-cs.851
http://dx.doi.org/10.1007/s11280-021-00939-7
http://dx.doi.org/10.7717/peerj-cs.893
http://dx.doi.org/10.23919/JCC.2020.09.006
http://dx.doi.org/10.1109/ACCESS.2020.3029649
http://dx.doi.org/10.1016/j.sysarc.2021.102000
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

Wei X, Liu J, Wang J, Wang Y, Fan J. 2020. Similarity-aware popularity-based caching in wireless
edge computing. In: Proceedings of the 17th ACM International Conference on Computing
Frontiers. New York: ACM, 257–260.

Wu D, Bao R, Li Z, Wang H, Zhang H, Wang R. 2021. Edge-cloud collaboration enabled video
service enhancement: a hybrid human-artificial intelligence scheme. IEEE Transactions on
Multimedia 23:2208–2221 DOI 10.1109/TMM.2021.3066050.

Wu C-J, Brooks D, Chen K, Chen D, Choudhury S, Dukhan M, Hazelwood K, Isaac E, Jia Y, Jia
B, Leyvand T, Lu H, Lu Y, Qiao L, Reagen B, Spisak J, Sun F, Tulloch A, Vajda P, Wang X,
Wang Y, Wasti B, Wu Y, Xian R, Yoo S, Zhang P. 2019. Machine learning at facebook:
understanding inference at the edge. In: 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). New York: IEEE, 331–344.

Xia X, Chen F, Grundy J, Abdelrazek M, Jin H, He Q. 2021a. Constrained app data caching over
edge server graphs in edge computing environment. In: IEEE Transactions on Services
Computing. Piscataway: IEEE, 1–13.

Xia X, Chen F, Grundy J, Abdelrazek M, Jin H, He Q. 2021b. Constrained app data caching over
edge server graphs in edge computing environment. In: IEEE Transactions on Services
Computing. Piscataway: IEEE, 1–14.

Xia X, Chen F, He Q, Cui G, Grundy JC, Abdelrazek M, Xu X, Jin H. 2022. Data, user and power
allocations for caching in multi-access edge computing. IEEE Transactions on Parallel and
Distributed Systems 33(5):1144–1155 DOI 10.1109/TPDS.2021.3104241.

Xia X, Chen F, He Q, Grundy J, Abdelrazek M, Jin H. 2021c.Online collaborative data caching in
edge computing. IEEE Transactions on Parallel and Distributed Systems 32(2):281–294
DOI 10.1109/TPDS.2020.3016344.

Xu Z, Liang W, Jia M, Huang M, Mao G. 2019. Task offloading with network function
requirements in a mobile edge-cloud network. IEEE Transactions on Mobile Computing
18(11):2672–2685 DOI 10.1109/TMC.2018.2877623.

Zhang P, Wei X, Jin H. 2021b. Dynamic qos optimization method based on federal learning in
mobile edge computing. Chinese Journal of Computers 44(12):2431–2446 [In Chinese]
DOI 10.11897/SP.J.1016.2021.02431.

Zhang G, Zhang S, Zhang W, Shen Z, Wang L. 2021a. Joint service caching, computation
offloading and resource allocation in mobile edge computing systems. IEEE Transactions on
Wireless Communications 20(8):5288–5300 DOI 10.1109/TWC.2021.3066650.

Zhao Y, Lu J, Chen X. 2021. Vectorized winograd’s algorithm for convolution neural networks. In:
19th IEEE International Symposium on Parallel Distributed Processing with Applications (IEEE
ISPA 2021). Piscataway: IEEE, 715–722.

Chen et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1012 26/26

http://dx.doi.org/10.1109/TMM.2021.3066050
http://dx.doi.org/10.1109/TPDS.2021.3104241
http://dx.doi.org/10.1109/TPDS.2020.3016344
http://dx.doi.org/10.1109/TMC.2018.2877623
http://dx.doi.org/10.11897/SP.J.1016.2021.02431
http://dx.doi.org/10.1109/TWC.2021.3066650
http://dx.doi.org/10.7717/peerj-cs.1012
https://peerj.com/computer-science/

	A multi-stage heuristic method for service caching and task offloading to improve the cooperation between edge and cloud computing ...
	Introduction
	Problem formulation
	Multi-stage heuristic method
	Performance evaluation
	Related works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

