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ABSTRACT
The graphon (W-graph), including the stochastic block model as a special case, has
been widely used in modeling and analyzing network data. Estimation of the graphon
function has gained a lot of recent research interests. Most existing works focus on
inference in the latent space of the model, while adopting simple maximum
likelihood or Bayesian estimates for the graphon or connectivity parameters given the
identified latent variables. In this work, we propose a hierarchical model and develop
a novel empirical Bayes estimate of the connectivity matrix of a stochastic block
model to approximate the graphon function. Based on our hierarchical model, we
further introduce a new model selection criterion for choosing the number of
communities. Numerical results on extensive simulations and two well-annotated
social networks demonstrate the superiority of our approach in terms of parameter
estimation and model selection.
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Keywords Stochastic block model, Graphon, Empirical Bayes, Networks

INTRODUCTION
Network data, consisting of relations among a set of individuals, are usually modeled by a
random graph. Each individual corresponds to a vertex or node in the graph, while their
relations are modeled by edges between the vertices. Such data have become popular in
many domains, including biology, sociology and communication (Albert & Barabási,
2002). Statistical methods are often used to analyze network data so that the underlying
properties of the network structure can be better understood via estimation of model
parameters. Examples of such properties include degrees, clusters and diameter among
others (Barabási & Albert, 1999; Newman, Watts & Strogatz, 2002).

To better understand the heterogeneity among vertices in a network, community
detection and graph clustering methods (Girvan & Newman, 2002; Newman, 2004) have
been proposed to group vertices into clusters that share similar connection profiles. A large
portion of the clustering methods are developed based on the stochastic block model
(SBM) (Freeman, 1983), which constructs an interpretable probabilistic model for the
heterogeneity among nodes and edges in an observed network.

For an undirected simple random graph on n nodes or vertices, the relationships
between the nodes are modeled by 1

2 nðn� 1Þ binary random variables representing the
presence or absence of an undirected edge. The edge variables can be equivalently
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represented by an n × n adjacency matrix X, where Xij = 1 if node i and j are connected
and Xij = 0 otherwise. We do not consider self loops in this work, and thus Xii = 0 for
i = 1, …, n.

Many popular graph models (Lloyd et al., 2012) make exchangeability assumption
on the vertices: The distribution of the random graph is invariant to permutation or
relabeling of the vertices. A large class of exchangeable graphs can be defined by the
so-called graphon function (Lovasz & Szegedy, 2006). A graphon W(u, v) is a symmetric
function: [0, 1]2→ [0, 1]. To generate an n-vertex random graph given a graphon W(u, v),
we first draw latent variables ui independently from the uniform distribution U(0, 1) for i =
1, …, n. Then we connect each pair of vertices (i, j) with probability W(ui, uj), i.e.,

PðXij ¼ 1jui; ujÞ ¼ Wðui; ujÞ; i; j ¼ 1; . . . ; n: (1)

In particular, the stochastic block model mentioned above can be seen as a special case
of the graphon model, where W(u, v) is a piecewise constant function. Abbe (2018) has
summarized recent developments on the stochastic block model. Under an SBM, the
vertices are randomly labeled with independent latent variables Z = (z1, …, zn), where
zi ∈ {1,…, K} for i = 1,…, n and K is the number of communities or clusters among all the
nodes. The distribution of (Z, X) is specified as follows:

Pðzi ¼ mÞ ¼ pm; m 2 f1; . . . ;Kg; i ¼ 1; . . . ; n;

PðXij ¼ 1jzi; zjÞ ¼ hzizj ; i; j ¼ 1; . . . ; n;
(2)

where
P

m pm ¼ 1 and each θkm ∈ [0, 1]. Put π = (π1, …, πm) and � = (θij)K×K.
Many efforts have been made on statistical inference of the SBM to detect block

structures as well as to estimate the connectivity probabilities in the blocks. Some
classical and popular methods include MCMC, degree-based algorithms and variational
inference among other. Nowicki & Snijders (2001) developed a Gibbs sampler to estimate
parameters for graphs of small sizes (up to a few hundred nodes). A degree-based
algorithm (Channarond, Daudin & Robin, 2012) achieves classification, estimation and
model selection from empirical degree data. The variational EM algorithm (Daudin, Picard
& Robin, 2008) and variational Bayes EM (Latouche, Birmele & Ambroise, 2012)
approximate the conditional distribution of group labels given the network data by a
class of distributions with simpler forms. Suwan et al. (2016) recast the SBM to a random
dot product graph (Young & Scheinerman, 2007) and developed a Bayesian inference
method with a prior specified empirically by adjacency spectral embedding.

Due to higher model complexity, estimating a graphon is challenging. Some works
(Airoldi, Costa & Chan, 2013; Olhede & Wolfe, 2014; Latouche & Robin, 2016) have
focused on the nonparametric perspective of this model and developed methods to
estimate a graphon based on SBM approximation. These methods estimate a graphon
function by partitioning vertices and computing the empirical frequency of edges across
different blocks. Many algorithms put emphasis on model selection (Airoldi, Costa &
Chan, 2013) or bandwidth determination (Olhede & Wolfe, 2014). Latouche & Robin
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(2016) proposed a variational Bayes approach to graphon estimation and used model
averaging to generate a smooth estimate.

Meanwhile, model selection that compares different node clustering schemes and selects
the most appropriate number of blocks for SBMs has been one of the major difficulties in
this field. Methods that are generally applicable to all graph clustering results include a
hypothesis testing based method for SBMs (Côme & Latouche, 2015) and a cross-
validation scheme for graphons (Airoldi, Costa & Chan, 2013). Côme & Latouche (2015)
propose an exact integrated complete data likelihood criterion that is combined with a
greedy inference algorithm to identify node clusters for SBMs. Yang et al. (2021)
summarize different model selection methods for spectral graph clustering and propose a
simultaneous model selection framework.

After the block structure of a network is identified, most of the above methods
simply use the empirical connection probability within and between blocks to estimate �.
When the number of nodes in a block is too small, the estimate can be highly inaccurate
with a large variance. Latouche & Robin (2016) developed an alternative method under
a Bayesian framework, where they put conjugate priors on the parameters (π, �). In
particular, they assume θab ∼ Beta(αab, βab) independently for a, b ∈ {1, …, K}, where
the parameters (αab, βab) in the prior are chosen in priori. Similar to the MLE, the
connection probability θab of each block is estimated separately and thus may suffer from
the same high variance issue for blocks with a smaller number of nodes. To alleviate
this difficulty, we propose a hierarchical model for network data to borrow information
across different blocks. Under this model, we develop an empirical Bayes estimator for� =
(θab) and a model selection criterion for choosing the number of blocks. Empirical Bayes
method is usually seen to have better performance when estimating many similar and
variable quantities (Efron, 2010). This inspires our proposal as the connection probabilities
can be similar across many different communities. By combining data from many blocks,
estimates will be much more stable even if the number of nodes is small (as small as a
few nodes) in each block.

In summary, our method has two major novel components: (1) shrinkage estimation for
connectivity parameters, and (2) a novel likelihood-based model selection criterion, both
under our proposed hierarchical model. As demonstrated by extensive simulations and
experiments on real-world data, these contributions give us substantial gain in estimation
accuracy and model selection performance, especially for graphons. Moreover, our method
is very easy to implement and does not cost much extra computational resources
compared to existing approaches.

The article is organized as follows. First, we will develop our empirical Bayes method for
the SBM and the graphon, focusing on connection probability estimation and model
selection on the number of blocks. Then we will compare the performance of our methods
with other existing methods on simulated data and on two real-world networks. The article
is concluded with a brief discussion. Some technical details and additional numerical
results are provided in the Supplemental Material.

Peng and Zhou (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1006 3/29

http://dx.doi.org/10.7717/peerj-cs.1006#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1006
https://peerj.com/computer-science/


METHODS
Let us first consider the SBM. After the vertices of an observed network have been
partitioned into clusters by a graph clustering algorithm, we develop an empirical Bayes
estimate of the connection probability matrix � based on a hierarchical binomial model.
Under this framework, we further propose a model selection criterion to choose the
number of blocks. Our method consists of three steps:

� Graph clustering For a network with n vertices, cluster the vertices into K blocks by a
clustering algorithm. Let Z : ½n� ! ½K� denote the cluster assignment, where [m] :=
{1, …, m} for an integer m.

� Parameter estimationGiven Z, we find an empirical Bayes estimate b�EB ¼ ðĥEBij ÞK�K by
estimating the hyperparameters of the hierarchical binomial model.

� Model Selection Among multiple choices of K, we select the K̂ that maximizes a
penalized marginal likelihood under our hierarchical model.

We will also generalize our method to the graphon model, following the idea of SBM
approximation to a graphon.

Algorithms to detect blocks of a stochastic block model have been widely studied,
including spectral clustering by Rohe, Chatterjee & Yu (2011), Monte Carlo sampling by
Nowicki & Snijders (2001) and variational approximations by Daudin, Picard & Robin
(2008). As an extension to the work ofDaudin, Picard & Robin (2008), Latouche, Birmele &
Ambroise (2012) proposed a variational Bayes approximation to the posterior distribution
of the parameters (π, �) and of the latent cluster labels Z (see Supplemental Material for a
more detailed review). Given the Z estimated by their approach, we will develop our
hierarchical model and empirical Bayes estimates.

Estimating connection probabilities
In this subsection, we consider the SBM and assume a partition Z : ½n� ! ½K� of the nodes
is given, where K is the number of blocks. Note that Z−1(a) for a ∈ [K] is the subset of
nodes in the a-th cluster. Let

Bab ¼ fði; jÞ : ði; jÞ 2 Z�1ðaÞ � Z�1ðbÞ; i < jg
be the collection of node pairs in the (i, j)th block. According to the SBM, the connection
probability between any (i, j) ∈ Bab is θab. Recall that X = (Xij) is the observed adjacency
matrix. Let XB

ab ¼
P

ði;jÞ2Bab Xij be the number of edges in block (a, b). Then, we have

XB
abjhab � Binomialðnab; habÞ; (3)

where nab ¼ jBabj ¼ jZ�1ðaÞj � jZ�1ðbÞj for a ≠ b and naa ¼ jZ�1ðaÞj � ðjZ�1ðaÞj � 1Þ=2 as
self loops are not allowed. Based on the empirical frequency of edges in the block (a, b), we
have an MLE for the edge connection probability

ĥMLE
ab ¼ XB

ab

nab
; a; b 2 f1; . . . ;Kg: (4)

When K is large, the number of nodes, and thus nab, in some blocks will be small,
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which leads to a high variance of the MLE. To stabilize the estimates, we may borrow
information across blocks to improve estimation accuracy. To do this, we set up a
hierarchical model by putting conjugate prior distributions on θab. To accommodate the
heterogeneity in θab, we use two sets of hyperparameters so that the within and between-
block connectivities are modeled separately:

habjðad; bdÞ � Betaðad;bdÞ; a; b 2 f1; . . . ;Kg; (5)

where d = 0 for a = b and d = 1 for a ≠ b, i.e., the diagonal and off-diagonal elements of
the connectivity matrix � follow Beta(α0, β0) and Beta(α1, β1), respectively. The prior
distribution (5) together with (3) defines the distribution [X,�|(αd, βd)d=0,1]. Here (αd, βd),
d = 0, 1, are hyperparameters to be estimated by our method. A diagram of our model
is shown in Fig. 1. Note that the use of two sets of hyperparameters is in line with common
assumptions of the stochastic block model, such as assortativity (Danon et al., 2005) or
disassortativity, i.e., within-group connectivities are different than between-group
connectivities.

The conditional posterior distribution of θab given ðXB
ab; ad;bdÞ is

habjðXB
ab; ad; bdÞ � Betaðad þ XB

ab;bd þ nab � XB
abÞ;

and the conditional posterior mean of θab is

Figure 1 A diagram of the hierarchical model. The connectivity parameters hab; a; b 2 f1; . . . ;Kg,
follow beta distributions of two sets of hyperparameters, i.e., ða0; b0Þ for diagonal blocks (red) and
ða1; b1Þ for off-diagonal blocks, and the number of edges XB

ab in a block, depends on hab as in (3).
Full-size DOI: 10.7717/peerj-cs.1006/fig-1
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ĥab
EBðad;bdÞ � EðhabjXB

ab; ad;bdÞ (6)

¼ ad þ XB
ab

ad þ bd þ nab
¼ gab

ad
ad þ bd

þ ð1� gabÞ
XB
ab

nab
;

for a, b ∈ {1, …, K}, where

gab ¼
ad þ bd

ad þ bd þ nab
2 ½0; 1� (7)

is the shrinkage factor that measures the amount of information borrowed across
blocks. When the variance among θab across the blocks is high, αd and βd will be estimated
to be small. Thus, ηab will be close to 0 so that the estimate ĥab

EB
will be close to ĥMLE

ab .
When the variance among θab is low, our estimates of αd and βd will be large, the shrinkage
factor approaches 1, and eventually ĥab

EB
will become identical across all blocks. In this case,

we are essentially pooling data in all blocks to estimate θab. Generally speaking,
the shrinkage factor ηab is determined by the data through the estimation of the
hyperparameters (αd, βd), and it leads to a good compromise between the above two
extreme cases.

Given the partition Z from a graph clustering algorithm, we maximize the marginal
likelihood of the observed adjacency matrix X to estimate the hyper-parameters (αd, βd)
for d = 0, 1. Let Xab denote the adjacency submatrix for nodes in the block (a, b) defined by
the partition Z. Integrating over �, the marginal log-likelihood function for the diagonal
blocks is

Lða0; b0jX;ZÞ ¼
XK
a¼1

logPðXaaja0;b0Þ

¼
XK
a¼1

log
Z
haa

PðXaajhaaÞpðhaaja0;b0Þdhaa

¼
XK
a¼1

log Betaða0 þ XB
aa; b0 þ naa � XB

aaÞ � K log Betaða0; b0Þ;

(8)

where Betaðx; yÞ ¼ R 1
0 t

x�1ð1� tÞy�1dt is the beta function. Similarly, the marginal log-
likelihood function for the off-diagonal blocks is

Lða1; b1jX;ZÞ
¼

X
a, b

log Betaða1 þ XB
ab;b1 þ nab � XB

abÞ �
1
2
KðK � 1Þ log Betaða1;b1Þ: (9)

We find the maximum likelihood estimates of the hyper parameters, i.e.,

ðâd; b̂dÞ ¼ argmax
ad ;bd

Lðad; bdjX;ZÞ; (10)

for d = 0, 1. Then we can estimate � by plugging the MLE of the hyper-parameters in (10)
into (6), i.e.,
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ĥEBab ¼ ĥEBaa ðâ0; b̂0Þ; a ¼ b
ĥEBab ðâ1; b̂1Þ; a 6¼ b

(
: (11)

Since the hyper-parameters are estimated using all blocks, our empirical Bayes estimates
of θab also make use of information from all data to improve the accuracy. Though (10)
does not have a closed form solution, we can use an optimization algorithm such as
bounded limited-memory BFGS (L-BFGS-B) (Byrd et al., 1995) to find the maximizer.
The optimization algorithm starts at a random initial point, and we re-run the algorithm if
it fails to converge. The log-likelihood functions in (8) and (9) are not necessarily concave,
and thus finding the global maximizers cannot be guaranteed in theory. However, as
shown in Fig. S2 in Supplemental Material, for a typical dataset the maximizers over a
reasonable range of (αd, βd)d=0,1 can be easily found.

Suwan et al. (2016) developed a different empirical Bayesian method for SBMs
under a random dot product graph formulation. They introduce K latent positions,

m1; . . . ; mK 2 Rd , and define the connection probabilities by inner products between the
latent positions, θab = 〈νa,νb〉 for 1 ≤ a, b ≤ K. The prior distribution for νk is a multivariate
Gaussian distribution mk � Ndðblk; b�kÞ. In particular, the parameters blk; b�k in the
prior are chosen by Gaussian mixture modeling of pre-estimated latent positions obtained
via adjacency spectral embedding. Thus, these prior distributions are called empirical
priors and they are used to model the uncertainty in the latent positions ν1, …, νK. In our
method, the hyperparameters (α, β) in the beta prior distributions are not pre-estimated by
a separate method, but instead are estimated under a coherent hierarchical model. In
addition to modeling uncertainty in the connectivity probabilities θab, the hyperparameters
also lead to information sharing via shrinkage.

Selecting partitions
So far we have regarded the number of blocks K as given in our empirical Bayes method.
The choice of K will certainly impact the performance of our method. If K is too small, for
SBM many blocks will not be identified, and for graphon the approximated function
will only have a small number of constant pieces, both leading to highly biased estimates.
On the other hand, if K is too big, the number of vertices in each block will be very small,
resulting in high variances. Thus, it is important to select a proper number of blocks to
achieve the best estimation accuracy.

Our empirical Bayes approach under the hierarchical model also provides a useful
criterion for this model selection problem. Note that (8) and (9) define the conditional
likelihood of X given the hyperparameters (αd, βd) and the partition Z input from a graph
clustering algorithm. We can compare this likelihood for different input partitions and
select the best one.

Suppose we have m candidate partition schemes Z1, …, Zm. Denote the corresponding
number of communities by K1, …, Km. Our goal is to choose the optimal partition that
maximizes the joint likelihood of the observed adjacency matrix X and the partition Z
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with a penalty on the model complexity. To do this, we include Z in our model as in (2) and
put a Jeffreys prior (Jeffreys, 1946) on π, i.e.,

p � Dirichletðs1; . . . ; sKÞ; s1 ¼ . . . ¼ sK ¼ 1=2:

The Jeffrey’s prior is a standard non-informative prior that is invariant to re-
parameterization. In general, τk = τ for any τ ∈ (0, 1] is a common choice for a
non-informative prior, with negligible effect on the posterior inference or model selection
when the network size n is large. Nonetheless, we could also use informative prior if strong
prior knowledge is provided, for example, on π or the expected community sizes.

For a partition Z with K communities, the joint likelihood of X and Z given the hyper-
parameters (α0, α1, β0, β1) is

PðX;Zja0; a1; b0; b1Þ
¼ PðXjZ; a0; a1;b0;b1Þ

Z
PðZjpÞpðpÞdp

¼ PðXjZ; a0; a1;b0;b1Þ
�

�PK
i¼1

si

�QK
i¼1

�ðni þ siÞ

�

�
nþPK

i¼1
si

�QK
i¼1

�ðsiÞ
;

(12)

after marginalizing out the parameter π, where ni is the number of nodes in cluster i
defined by the partition Z. Maximizing over the hyperparameters leads to the MLE

ðâ0; â1; b̂0; b̂1Þ defined in (10). Evaluating the likelihood (12) at the estimated
hyperparameters, we define the goodness-of-fit part for our model selection criterion as

JZ ¼ logPðX;Zjâ0; â1; b̂0; b̂1Þ

¼
X

d2f0;1g
Lðâd; b̂djX;ZÞ þ log

�

�PK
i¼1

si

�QK
i¼1

�ðni þ siÞ

�

�
nþPK

i¼1
si

�QK
i¼1

�ðsiÞ
;

(13)

where Lðâd; b̂djX;ZÞ is as in (8) and (9) for d = 0, 1. Following the ICL-like (integrated
complete likelihood) criterion in Mariadassou, Robin & Vacher (2010), we add two
penalty terms to control model complexity: The first term corresponds to a penalty on the
number of parameters in π and the second the number of parameters in �. Therefore, our
model selection criterion is to choose the partition

Ẑ ¼ argmax
Z2fZ1;...;Zmg

�
JZ � 1

2
ðK � 1Þ log nþ KðK þ 1Þ

2
log

nðn� 1Þ
2

� ��
; (14)

where K is the number of clusters defined by the partition Z. As we have mentioned in the
introduction, there are quite a few graph clustering algorithms, and the performance of
many of them is highly dependent on the input number of partitions. Our criterion for
selecting the number of clusters applies to any method used for the node clustering step,
and thus it protects our method from inferior input node clustering results. The ICL model
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selection criterion (14) is an approximation to the marginal log-likelihood logPðXjKÞ
(Mariadassou, Robin & Vacher, 2010). The joint likelihood (13) depends on the EB
estimates of the hyperparameters, which is unique to our hierarchical model, while the
VBEM criterion (Latouche, Birmele & Ambroise, 2012) uses a standard SBM likelihood
without a hierarchical structure or estimation of priors. We can easily apply other penalty
terms in various model selection criteria to our likelihood, and fully expect similar
behavior in terms of selecting the number of clusters, since most of them approximate in
the same way as the marginal likelihood or the Bayes factor.

Graphon estimate
Now we assume that the true model is a graphon as in (1). We use an SBMwith K blocks as
an approximation to the graphon, i.e., we approximate W(u, v) by a piecewise constant
function: We divide the unit interval [0, 1] into K pieces based on π so that the length of
the k-th piece is πk. Let the endpoints of these pieces be ck ¼

Pk
i¼1 pi for k = 1, ⋯, K

and put c0 ≡ 0. Then the graphon function defined on [0, 1] × [0, 1] is approximated by a
K × K blockwise constant function,

eWðu; vÞ ¼ hab ifðu; vÞ 2 ½ca�1; caÞ � ½cb�1; cbÞ:

To estimate a graphon W, we first run a clustering algorithm to estimate a partition Z
and then apply the empirical Bayes method to obtain ĥEBab . Let nk denote the size of the the
k-th cluster of vertices. We calculate its proportion to estimate πk by p̂k ¼ nk=n and
compute the cumulative proportion ĉk ¼

Pk
i¼1 p̂i for k = 1, ⋯, K. Define a binning

function,

binðxÞ ¼ 1þ PK
k¼1

Iðck 	 xÞ; (15)

and the graphon W is then estimated by

bWðx; yÞ ¼ ĥEBbinðxÞ;binðyÞ; x; y 2 ½0; 1Þ: (16)

As shown by Bickel & Chen (2009), the graphon is not identifiable in the sense that any
measure-preserving transformation on [0, 1] will define an equivalent random graph.
Following their method, imposing the constraint that

gðxÞ ¼ R 1
0 Wðx; yÞdy

is nondecreasing leads to identifiability. For SBM approximation, the corresponding
constraint is that

gðlÞ ¼ PK
k¼1

pkhlk (17)

is nondecreasing in l. This constraint can be satisfied by relabeling the K clusters of nodes.
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As for the SBM, selecting a proper number of clusters K is important for the estimation
of a graphon. We will apply the same model selection criterion (14) to choose the optimal
partition Z and the associated K among a collection of partitions.

RESULTS
Simulated data
In this section we present numerical results on graphs simulated from stochastic block
models and graphon functions. We compare our method with other existing methods in
terms of estimating connection probabilities and model selection for choosing the number
of clusters.

For stochastic block models, we compare our estimated connectivity matrix b�EB (11) to
the maximum likelihood estimate b�MLE as in (4) and the variational Bayes inferenceb�VBEM from Latouche, Birmele & Ambroise (2012). Variational Bayes inference provides a
closed-form approximate posterior distribution for (π, �) by minimizing the KL
divergence between an approximated and the underlying distributions of [Z|X]. It
constructs point estimates for the parameters based on EM iterations (Supplemental
Material). We compute the mean squared error (MSE)

MSE ¼ 1
nðn� 1Þ

Xn
i¼1

X
j6¼i

ðb�0
ij ��0

ijÞ2 (18)

of an estimated n × n connection probability matrix b�0. Here, Θ′ = (Θ′ij)n×n is the true
connection probability matrix among the n nodes, i.e., Θ′ij = θab if Z
(i) = a and Z
(j) = b
for i, j = 1, …, n, where Z
 is the true partition, and b�0

ij ¼ ĥab if Z(i) = a and Z(j) = b. For
graphons, bWðx; yÞ is estimated by SBM approximation, and correspondingly the mean
integrated squared error is calculated as

MSE ¼
Z 1

0

Z 1

0
ðWðx; yÞ � bWðx; yÞÞ2dxdy: (19)

Due to the nonidentifiability of graphons, the MSE is calculated after relabeling node
clusters based on the constraint (17) to make bW comparable to W.

We compare our model selection criterion (14) to the variational Bayes method
developed by Latouche, Birmele & Ambroise (2012) (VBEM) and the cross validation
risk of precision parameter (CVRP) in Airoldi, Costa & Chan (2013). The CVRP is
defined as

JCVRPðKÞ ¼
2K

n� 1
� ðnþ 1ÞK

n� 1

XK
i¼1

�
ni
n

�2

; (20)

where ni is the number of vertices in group i. Then, the number of clusters K is selected by
minimizing the risk JCVRP, i.e.,
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K̂CVRP ¼ argmin
K

JCVRPðKÞ: (21)

We use JEB, JVBEM and JCVRP to denote, respectively, the three criteria mentioned
above.

Results on SBM: homogeneous block connectivity
We designed a constrained SBM that generates affiliation networks, i.e., two vertices within
the same community connect with probability λ, and from different communities with
probability ε < λ. We also added a parameter ρ ∈ (0,1] to control the sparsity of the graph.
The corresponding true connectivity matrix is

�
 ¼ q

� e � � � e

e � � � � ..
.

..

. . .
.

e
e � � � e �

0BBB@
1CCCA

K
�K


;

where K
 is the number of communities.
To generate dense graphs (model 1), we set λ = 0.9, ε = 0.1, and ρ = 1. We generated

graphs with n = 200 vertices and the number of communities K
 ∈ {10, 11, …, 18}. For
each choice of K
, we generated 100 networks independently. For each network, all the
nodes were randomly divided into K
 clusters with equal probability 1/K
, and then
connected according to the connectivity matrix Θ
 and their cluster labels. Note that the
simulated node clusters had very different sizes, ranging between 7 and 35, due to the high
variance in block size.

We also used λ = 0.9, ε = 0.1 and ρ = 0.2 to generate sparse graphs (model 2), while
keeping K
 = 10 but changing the network size n ∈ {200, 250, 300,350, 400, 450}. For each
network size n, we followed the same procedure as in model 1 and generated 100 networks
independently. Here “sparse” refers to a lower edge density around 0.035, which is 20% of
the graphs generated in model 1.

For a simulated graph, we applied the variational Bayes algorithm (Latouche, Birmele &
Ambroise, 2012) with an input number of clusters K = 1,…, 20, from which we obtained K
communities and a Bayesian estimate b�VBEMðKÞ of the connecting probabilities among the
K × K blocks. Given the estimated communities by the variational Bayes algorithm, we
found b�MLEðKÞ as in (4) and our empirical Bayes estimate b�EBðKÞ as in (11) and
compared them to the VBEM estimate. As the estimates are functions of K, so are their
MSEs as defined in (18). Let MSEMLE(K) be the mean squared error of the MLE by
plugging b�MLEðKÞ into (18), where each element b�0

ij is given by b�MLEðKÞ and the partition
Z. Then we define ~K as the number of clusters that minimizes the MSE of the MLE, i.e.,

~K ¼ argmin
K

MSEMLEðKÞ (22)

over the input range of K. For the 100 graphs generated under the same matrix Θ
, they
share the same K
 while each one of them defines a corresponding ~K . Both K
 and ~K were
used in our comparisons on model selection criteria for the number of blocks. In
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particular, for a general graphon, K
 may not be clearly defined and in such a case, ~K serves
as the reference for comparison.

For dense graphs (model 1), as shown in Fig. 2, we compared the MSEs (18) of the three
estimates of Θ to the true connectivity matrix and presented the ratio of the MSE of our
EB estimate to the MSEs of the MLE and VBEM estimate. For dense stochastic block
models, the accuracy of MLE and that of VBEM were close, whereas EB gave better
estimates for almost all K values, i.e., MSE ratios were smaller than 100%. We see a
significantly smaller MSE ratio when K is close to K
, especially when K
 is relatively small.
For example, the MSE ratios EB/MLE and EB/VBEM were lower than 10% at K = K


when K
 = 10,…, 15. When K
 went bigger, such as K
 = 17, 18 in the simulation, the ~K for
most of the graphs was less than K
, and the MSE ratios reached a minimum level at some
K < K
, which was slightly above 50%.

Table 1 presents the model selection results on the simulated dense graphs from model
1, where we define EK
 and E~K as the average deviation of the selected number of blocks K̂
from K
 and from ~K respectively, i.e.,
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Figure 2 MSE ratios in model 1 simulation. The true number of blocks K
 (marked in red) ranges from
10 to 18 and the results for graphs with each K
 are shown in a panel. For the 100 graphs generated under
each K
, the MSE ratios of the estimates b�MLE and b�VBEM over b�EB are plotted against the input number
of blocks K chosen in the clustering step. Full-size DOI: 10.7717/peerj-cs.1006/fig-2
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EK
 ¼ 1
M

XM
t¼1

jK̂t � K
j; E~K ¼ 1
M

XM
t¼1

jK̂t � ~Ktj; (23)

where t ∈ {1,…,M} is the index of the graphs generated under the same Θ
, K̂t is the
estimated number of clusters by a model selection criterion, and ~Kt is the ~K defined by (22)
for the t-th graph. When K
 was small, such as 10 ≤ K
 ≤ 13, JVBEM and JEB gave
the same results, and both accurately selected K̂ ¼ K
 as the optimal number of blocks. As
K
 increased,JEB outperformedJVBEM , and was comparable toJCVRP in terms of EK
. In
fact, for a limited graph size n = 200 here, the average number of vertices in each block
will be smaller as K
 increases, making it hard for small communities to be detected.

Table 1 Model selection comparison for model 1 among the K̂ chosen by (a) CVRP, (b) VEBM, and
(c) EB.

K*\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK* E~K

(a) CVRP

10 99 1 0.99 0.99

11 100 1.00 1.00

12 3 96 1 1.02 1.02

13 67 33 0.67 0.67

14 6 93 1 1.06 1.06

15 23 77 1.23 1.26

16 2 13 85 1.17 1.31

17 1 29 70 1.31 1.33

18 3 87 10 1.93 1.27

(b) VBEM

10 100 0.00 0.00

11 100 0.00 0.00

12 100 0.00 0.00

13 100 0.00 0.00

14 4 96 0.04 0.45

15 1 2 35 62 0.39 0.85

16 1 28 53 18 1.12 1.26

17 6 53 35 6 2.59 2.61

18 1 7 32 44 16 3.33 2.67

(c) EB

10 100 0.00 0.00

11 100 0.00 0.00

12 100 0.00 0.00

13 100 0.00 0.00

14 100 0.00 0.00

15 1 99 0.01 0.04

16 30 70 0.30 0.44

17 33 67 1.33 1.35

18 1 95 4 1.97 1.31

Note:
Each row in a table reports the frequency of K̂ across 100 graphs. The last two columns report two mean absolute
deviations, the minimum of which among the three methods is in bold for each K*.
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Therefore, ~K may better reflect the number of clusters that fit well the observed network.
Considering this, we see JEB had both smaller EK
 and E~K than JVBEM in general,
which indicates the superiority of our model selection method. JCVRP showed relatively
stable performance in terms of EK
 and E~K , but the results were not satisfactory for small
K
. In summary, from the simulation results on dense graphs (model 1), EB has
demonstrated the highest estimation accuracy, especially when the clustering algorithm
finds the true number of communities, and the EB model selection criterion generally
selects the best model.

Detecting the true number of blocks for a sparse graph (model 2) is harder because of
fewer edge connections in a block. Thus, we fixed K
 = 10 and varied the network size n
from 200 to 450. In terms of estimation accuracy, Fig. 3 shows that our EB estimate had
better performance than MLE in almost all the cases (except when K = 1 under which the
two estimates were identical), and the MSE ratio kept decreasing as K increased. In
particular, for K = K
 = 10, the MSE ratio of EB over MLE was about 95%. If the
number of blocks is overestimated (say K > 15), the MSE ratio can drop to <90%. When
compared to VBEM, for a small network size n and a small number of blocks K, EB
estimates can be slightly less accurate (<5% increase in MSE), but as K increases and
becomes close to K
, the MSE ratio decreases to the same level as that of EB over MLE.
As reported in Table 2, for all the casesJEB achieved the best model selection performance
with the smallest EK
 and E~K among the three methods. This highlights the usefulness of
our model selection criterion for the more challenging sparse graph settings.

More detailed results for both models 1 and 2 in this simulation study can be found in
the Supplemental Material.
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Figure 3 MSE ratios in model 2 simulation. The results for graphs with each network size n are shown
in a panel, plotted in the same format as Fig. 2. Full-size DOI: 10.7717/peerj-cs.1006/fig-3
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Results on SBM: heterogeneous block connectivity
In this section, we show how the performance changes when heterogeneous block
connectivity probabilities are used. We consider the following connectivity matrix

�
 ¼ q

�1 e12 . . . e1K


e21 �2 . . . ..
.

..

. . .
.

eðK
�1ÞK


eK
1 . . . eK
ðK
�1Þ �K


0BBBB@
1CCCCA

K
�K


;

where the values are sampled from uniform distributions.
Similar to model 1, to generate dense graphs (model 1s), we set ρ = 1, and drew λi ∼ U

(0.5, 0.9) for i ∈ {1, …, K
} and εij ∼ U(0.3, 0.5) for i, j ∈ {1, …, K
}, i ≠ j. We generated
graphs with n = 200 vertices and the number of communities K
 ∈ {10, 11, …, 18}. For
each choice of K
, we generated 100 networks independently with parameters sampled
from the above uniform distributions. For each network, the nodes were randomly divided
into K
 clusters with equal probability 1/K
, and then connected according to the

Table 2 Model selection comparison for model 2 (K* = 10) among the K̂ chosen by (a) CVRP,
(b) VEBM, and (c) EB, in similar format as Table 1.

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK* E~K

(a) CVRP

200 100 9 2.84

250 100 9 6.86

300 95 1 4 8.56 8.84

350 71 1 14 14 6.55 8.17

400 37 28 35 3.61 5.21

450 17 11 71 1 1.65 2.50

(b) VBEM

200 28 51 19 2 8.05 2.18

250 8 30 42 13 6 1 6.16 4.04

300 1 11 31 37 20 4.36 4.59

350 14 43 36 7 2.64 4.22

400 3 34 47 14 1 1 1.27 2.83

450 1 3 37 52 6 1 0.54 1.25

(c) EB

200 6 12 24 29 24 4 1 5.31 2.09

250 6 21 38 21 12 2 3.82 2.20

300 1 13 32 35 18 1 2.41 2.74

350 2 31 47 20 1.15 2.81

400 10 38 48 3 1 0.63 2.13

450 2 13 78 7 0.24 0.97

Note:
Each row in a table reports the frequency of K̂ across 100 graphs. The last two columns report two mean absolute
deviations, the minimum of which among the three methods is in bold for each K*.
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connectivity matrixΘ
 and their cluster labels. Overall, EB outperformed MLE and VBEM
with respect to MSE. Different from model 1 where the smallest ratios of EB/MLE and
EB/VBEM were observed at K = K
 for most of the simulations, the MSE ratio of EB over
MLE and VBEM decreases smoothly with the increase in K (Fig. 4). In terms of model
selection, EB was better than VBEM when K
 ≥ 14 and comparable to VBEM with smaller
K, although the improvement was slightly less substantial. The detailed results are reported
in Table 3.

We also used ρ = 0.2 and the same setting for λ and ε as above to generate sparse
graphs (model 2s), while keeping K
 = 10 but changing the network size n ∈ {200, 250,
300,350, 400, 450}. For each network size n, we followed the same procedure as in model 1s
and generated 100 networks independently. The results are similar to the homogeneous
case (model 2). The detailed results are provided in the Supplemental Material.

Results on graphon model
Following the same design as in Latouche & Robin (2016), we choose a graphon function

Wðx; yÞ ¼ q�2ðxyÞ��1

with two parameters � 	 1=
ffiffiffi
q

p
. Here, ρ controls the sparsity of the graph, as the
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Figure 4 MSE ratios in model 1s simulation, plotted in the same format as Fig. 2.
Full-size DOI: 10.7717/peerj-cs.1006/fig-4
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expected number of edges is proportional to ρ, and λ controls the concentration of the
degrees, so that more edges will concentrate on fewer nodes if λ is large. We chose ρ ∈
{10−1, 10−1.5, 10−2 } and λ ∈ {2, 3, 5}, and simulated graphs of size n = 100 (model 3) and of
size n = 316 (≈102.5) (model 4). For each network, we used SBM approximation with
the number of clusters K = 1, 2, …, 10. Using (22), we also defined ~K as the number of
blocks that minimizes the mean squared error (19) of the MLE, i.e., ~K is the number of
communities that best fits the observed network. Figure 5 shows the graphon function for
some values of (ρ, λ). The parameter ρ controls the scale of the function, and thus the
grophon functions reach the maximum height when ρ = 10−1. While not shown in the

Table 3 Model selection comparison for model 1s among the K̂ chosen by (a) CVRP, (b) VEBM, and (c) EB, in the same format as Table 1.

K*\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EK* E~K

(a) CVRP

10 2 1 7 42 46 2 0.79 0.88

11 3 1 10 44 42 0.97 1.15

12 1 2 3 15 48 29 1 1 1.1 1.55

13 14 1 2 3 15 22 29 12 1 1 3.17 3.51

14 23 1 16 18 22 15 5 4.81 5.01

15 41 1 3 7 18 11 14 4 1 7.14 6.94

16 45 1 1 3 10 15 13 6 5 1 8.82 7.61

17 53 1 1 1 5 9 12 7 4 3 2 2 10.34 8.53

18 80 1 1 1 1 4 2 7 1 2 14.71 10.37

(b) VBEM

10 1 5 88 6 0.13 0.1

11 1 15 81 3 0.2 0.32

12 1 8 27 56 8 0.54 0.85

13 2 6 15 30 25 18 3 1 1.7 2.02

14 1 8 27 13 33 16 2 2.75 2.93

15 1 1 9 17 34 19 13 5 1 3.79 3.43

16 10 13 18 27 18 9 4 1 5.21 3.94

17 1 2 6 19 17 28 9 10 5 2 1 6.3 4.27

18 1 3 4 12 24 16 15 11 8 4 1 1 8.9 4.38

(c) EB

10 2 81 13 1 0.17 0.16

11 8 76 15 1 0.25 0.36

12 1 5 5 8 66 13 4 0.58 0.89

13 1 6 8 10 16 19 15 23 1 1 1.76 2.27

14 1 2 3 1 2 11 18 17 17 23 3 1 1 1.63 2.19

15 2 3 3 5 8 8 12 19 25 14 1 1.96 2.48

16 1 2 2 4 10 9 10 18 24 15 3 2 2.48 2.52

17 1 1 3 2 1 10 11 12 19 22 16 1 1 3.56 2.4

18 1 3 5 10 9 5 17 14 17 18 1 4.88 2.73

Note:
Each row in a table reports the frequency of K̂ across 100 graphs. The last two columns report two mean absolute deviations, the minimum of which among the three
methods is in bold for each K*.
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figure, for ρ = 10−1.5 or 10−2 the functions are scaled down and have lower values.
Meanwhile, λ controls the concentration of the function, such that a graphon defined by a
higher value of λ shows a highly concentrated peak as for λ = 5 in the figure.

The MSE ratios between our EB estimate and the other two competing methods, MLE
and VBEM, are shown in Fig. 6 for graphs of size n = 316. The results for n = 100 are
similar and relegated to the Supplemental Material. In general, our EB method achieved

Figure 5 Visualization of the graphon function Wðx; yÞ ¼ q�2ðxyÞ��1 in model 3 and 4.
Full-size DOI: 10.7717/peerj-cs.1006/fig-5

Figure 6 MSE ratios in model 4 simulation with graph size n = 316. The results for graphs with each
combination of q and � are shown in a panel. Full-size DOI: 10.7717/peerj-cs.1006/fig-6
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higher accuracy with smaller MSEs than the other two methods. For most cases, our EB
estimate was more accurate than the MLE, with the MSE ratios between 60% and 100%.
Compared to VBEM, our EB estimate achieved substantially smaller MSEs with ratios
below 20%. For both graph sizes, the improvement of the EB method over the other
two competitors was especially significant when the graph was sparse (ρ small). In such a
case, fewer connections between nodes are observed in a network, and there is a high
probability to have zero edge within the cluster. For blocks with lower connectivity, MLE
tends to underestimate their connectivity, while shrinkage helps the situation by borrowing
information from other blocks.

The model selection results are reported in Table 4. Since the true number of
communities under the graphon model is not clearly defined, we used ~K as the ground-
truth to evaluate model selection performance. For both n = 100 and n = 316, the
mean absolute deviation E~K (23) of the K̂ selected by our criterion JEB was either the
smallest or was very close to the smallest value among the three methods. While EB and
VBEM were generally comparable, CVRP showed unstable performance as its E~K could be
much larger than the other two methods in some cases (such as ρ = 10−1 and ρ = 10−1.5).
See Supplemental Material for more detailed results.

To expand the scope of this study, we further compared the performance of our EB
method on graphons with a non-Bayesian approach. A commonly used algorithm is
network histogram approximation (NHA) developed by Olhede & Wolfe (2014). The
authors showed the universality of graphon approximation through regular stochastic
block model and introduced an automatic bandwidth selection rule to select the best block
model to represent graphon functions. The method fist divides degree-sorted vertices into
equal-sized groups and selects the histogram bandwidth that maximizes the likelihood
under an SBM. Given the automatically selected histogram bandwidth, the model
parameters are estimated by the MLE in (4). In the comparison, we substitute the MLE
estimate with our EB estimate to see if it can improve the accuracy.

Table 4 Model selection comparison for graphons. (Reported is the mean absolute deviation E~K for
graphs generated under each combination of (ρ, λ).

n = 100 n = 316

CVRP VBEM EB CVRP VBEM EB

ρ = 10−1 λ = 2 1.16 0.96 1.11 4.92 2.55 2.38

λ = 3 5.42 1.54 2.03 5.8 1.92 1.91

λ = 5 3.88 1.28 1.63 7.43 1.66 1.50

ρ = 10−1.5 λ = 2 2.01 1.86 1.83 4.76 3.72 3.70

λ = 3 1.81 1.02 0.95 3.93 2.02 1.96

λ = 5 2.05 1.03 0.98 4.58 1.60 1.79

ρ = 10−2 λ = 2 0.86 0.85 0.86 2.56 2.24 2.25

λ = 3 1.41 1.45 1.48 1.48 1.35 1.31

λ = 5 1.52 1.61 1.7 2.77 1.72 1.67

Note:
The minimal E~K among the three methods is highlighted in bold.
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In our simulation we used NHA to estimation the graphon functions in model 3 and 4
with ρ = 10−1, using the suggested parameter (c = 4 in Olhede & Wolfe (2014)) to select the
NHA bandwidth. NHA did not work on the sparser cases since too many nodes have a
degree of zero. Table 5 shows that EB indeed improved the graphon estimation by NHA
as well. The MSE for each set of parameters shown in the table is the average results from
100 networks. For λ = 2 in which case the graphon function has lower variability, EB
outperformed MLE substantially. For larger λ’s, the two methods had comparable
accuracy.

We briefly summarize a few key observations from the simulation studies. It is seen
that EB estimates had smaller MSEs than the other twomethods in most of the cases above.
For the dense SBM (model 1), the accuracy of EB estimate was much higher. The relative
low variance in connectivity across different blocks led to higher degree of shrinkage
and information sharing among the EB estimates. For the sparse SBM (model 2),
heterogenous SBM (model 1s and 2s) and graphon models (model 3 and 4), EB showed
moderate improvements over the two competing methods in general. When the graph is
sparse, EB can be much more accurate than VBEM, as shown in Fig. 6. As for model
selection, EB generally selected the number of clusters K̂ that was closer to K
 and ~K in all
the models above, which demonstrates the usefulness of our hierarchical model for
deriving likelihood-based model selection criterion.

Alternative clustering and running time comparison
Our results and numerical comparisons were conducted to demonstrate the uniform
accuracy improvement: By varying the input number of clusters so some cluster results
could be very inaccurate, our EB estimates reached smaller MSEs for almost all the
clustering results. To further demonstrate this point, we also applied our EB estimates after
spectral clustering. As shown in Fig. 7, our method improved the parameter estimation
accuracy as well: Under the same simulation setting as in Figs. 2 and 3, the EB/MLE MSE
ratio shows a similar pattern to the results of the previous simulation in SBMs.

The computation of our EB method is only the maximization of the likelihood (8, 9).
The objective is the sum of two separate functions. Thus, we just need to maximize two
bi-variate functions, regardless of the problem size (n, K). In general, the computation time
is negligible compared to the graph clustering step. Table 6 reports the average running
times (in seconds) of spectral clustering (TC) and our EB estimation (TE) by BFGS for
various network size n and number of communities K, on a single 2.6 GHz Intel i7 core. It

Table 5 Comparison of MSE of the graphon estimates by network histogram approximation (NHA)
and empirical Bayes (EB).

n = 100 n = 316

NHA EB Improve % NHA EB Improve %

ρ = 10−1, λ = 2 0.00459 0.00351 23.5 0.00284 0.00230 19.1

ρ = 10−1, λ = 3 0.00223 0.00214 3.88 0.000671 0.000654 2.58

ρ = 10−1, λ = 5 0.0116 0.0116 0 0.00760 0.00756 0.55
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is seen from the table that for large problems (n = 10,000, K = 500), the running time of EB
estimation step was less than 1% of the runtime of spectral clustering.

Real data examples
In this section, we apply our empirical Bayes method on two real-world networks. For
these networks, we do not have the underlying connectivity matrix as the ground truth,
which makes it difficult to evaluate estimation accuracy. However, for a network with
known node labels that indicate their community memberships (the “ground truth”), the
true partition Ztrue of the vertices is given. Thus, we will develop accuracy metrics based on
Ztrue to compare different methods.

For real data, the assumption of the regular stochastic block model (2) may be
restrictive. A commonly used model is the degree-corrected stochastic block model
(DCSBM) (Karrer & Newman, 2011) that uses a Poisson distribution to model the
number of edges across blocks and takes within-community degree heterogeneity into
consideration. Some methods have been developed to compare the goodness of fit of
different types of SBMs to real world networks. Yan et al. (2012) has proposed a method to
select models for DCSBM, which is essentially a hypothesis test against the null model of a
regular SBM. The method calculates a test statistic from node degrees and their labels,
and compares the value of the statistic to a Gaussian distribution to obtain a p-value under
the null SBM.We used this method to test whether the regular SBM is a good model for the
two real-world networks.

Political blogs
First we consider the French political blogosphere network from Latouche, Birmelé &
Ambroise (2011). The network is made of 196 vertices connected by 2,864 edges. It was
built from a single day snapshot of political blogs automatically extracted on October 14th,
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Figure 7 MSE ratios of EB/MLE in spectral clustering simulation. (A) model 1 with parameters
K
 ¼ 10, n ¼ 200. (B) model 2 with parameters K
 ¼ 10, n ¼ 450.

Full-size DOI: 10.7717/peerj-cs.1006/fig-7

Table 6 Simulation running time.

(n, K) (100, 10) (1,000, 10) (1,000, 100) (5,000, 10) (5,000, 100) (10,000, 500)

TC 0.06 0.7 4.4 6.7 149 2,696

TE 0.08 0.1 0.2 0.6 1.9 11.6
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2006 and manually classified by the “Observatoire Presidentiel” project (Zanghi, Ambroise
& Miele, 2008). In this network, nodes correspond to hostnames and there is an edge
between two nodes if there is a known hyperlink from one hostname to the other. The four
main political parties that are present in the data set are the UMP (french republican),
liberal party (supporters of economic-liberalism), UDF (moderate party), and PS (french
democrat). However, in the dataset annotated by Latouche, Birmelé & Ambroise (2011)
there are K
 = 11 different node labels in total, since they considered analysts as well as
subgroups of the parties. The test statistic by the method in Yan et al. (2012) yielded a
p-value of 0.08 according to the bootstrap distribution suggested by the authors, which
indicates that the regular SBM is a fair representation of this network compared to
DCSBM.

Given the known community memberships, we constructed a connectivity matrix Θ
 =
(θ
ab)K
×K
 with entries

h
ab ¼ XB
ab=nab; a; b 2 f1; . . . ;K
g; (24)

where XB
ab is the number of edges observed in block (a, b), nab ¼ jZ�1

trueðaÞj � jZ�1
trueðbÞj for a

≠ b and naa ¼ jZ�1
trueðaÞj � ðjZ�1

trueðaÞj � 1Þ=2, and K
 is the true number of communities.
Then the MSE (18) between an estimate b�ðKÞ and �
 (24) were used as an accuracy
metric to compare estimated connectivity matrices, where K is the input number of
clusters.

We also used test data likelihood as another comparison metric. We randomly
sampled 70% of the nodes, denoted by Vo, as observed training data, and estimated a
connectivity matrix b� ¼ ðĥijÞK
�K
 from their edge connections and true memberships.
Denote by Vt the test data nodes not used in the estimation. Recall that Xij is the (i, j)th
element in the adjacency matrix of the network. Then test data likelihood Ltest was
calculated according to (2) given the b� estimated by a method,

Ltest ¼ Q
i2Vo;j2V t

ĥXij
zizjð1� ĥzizjÞ

1�Xij � Q
k, j2V t

ĥ
Xjk
zjzkð1� ĥzjzkÞ

1�Xjk
; (25)

where zi, zj, zk are the known ground truth labels (ground truth) of the nodes. Note that Xij

∈ {0, 1} is the edge connection between a vertex i in the training data and a vertex j in
the test data, while Xjk is the edge connection between two vertices j and k in the test data.
We repeated this procedure 100 times independently to find the distribution of test
data likelihood Ltest across random sample splitting of the n nodes into Vo and Vt.

We applied VBEM to detect communities with an input number of clusters K = 1,
2,…, 20. The MSE ratios of EB over the other two competing methods were calculated and
plotted against K in Fig. 8A. It is clear that EB achieved smaller MSE than the other two
methods for all values of K. When K was close to or greater than K
 = 11, EB provided
more accurate estimates than both MLE and VBEM with smaller MSEs. Figure 8B shows
the box-plot of test data log-likelihood values across 100 random sample splitting.
From the box-plots, we see that the test data likelihood of EB was significantly higher than
the other two estimates. These comparisons confirm that EB estimates were more accurate
than the other two competing methods in terms of both metrics. In terms of model

Peng and Zhou (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1006 22/29

http://dx.doi.org/10.7717/peerj-cs.1006
https://peerj.com/computer-science/


selection, Fig. 8C plots the three model selection criteria, JCVRP, JVBEM , JEB, over the
input range of K. All three model selection criteria have been standardized to [0, 1] with a
higher value indicating a better model, such that the best model is selected by the
maximizer of each criterion. Accordingly, CVRP, VBEM and EB estimated K̂ ¼ 1, 12 and
10, respectively, while the true K
 = 11. The K̂ by VBEM and EB were both reasonably
close to the ground-truth, while CVRP did not work well in this case. Figures 8D and 8E
show the distributions of the shrinkage values ηab at K = K
. We see that the diagonal
blocks had higher shrinkage. Around 70% of the ηab’s were around 0, which means that
most blocks had a similar estimate to the MLE, while a few blocks with large ηab borrowed
information from shrinkage and increased the estimation accuracy.

Email network
The Email-Eu-core network (Eucore) is a directed network generated using email data
from a large European institute, consisting of incoming and outgoing communications
between members of the institute from 42 departments. Leskovec & Krevl (2014) organized
the data and labeled which department each individual node belongs to, i.e., the
“ground-truth” community memberships. The network has n = 1,005 nodes and 25,571
directed edges, which we converted to undirected ones by removing their orientations.
Although the test of Yan et al. (2012) suggested rejection of the hypothesis that a
regular SBM is the true underlying model, our results on this network still show the

Figure 8 Results for French blogsphere network analysis. (A) The ratio of MSE of EB estimate over
that of MLE and VBEM for different values of K . (B) Box-plot of 100 test data log-likelihood values for
each method. (C) Model selection criteria against input values of K , with dashed line indicating the best
number of clusters K̂ by EB. (D and E) Histograms of (D) diagonal and (E) off-diagonal shrinkage values
gab of EB estimate at K ¼ K
 ¼ 11. Full-size DOI: 10.7717/peerj-cs.1006/fig-8
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improvement brought by EB assuming a regular SBM. We leave the generalization of our
EB estimate to DCSBM as a future direction.

We applied VBEM to detect communities with an input number of clusters K = 1,
2,…, 50. The MSE ratios of EB over the other two competing methods were calculated and
plotted against K in Fig. 9A. Similarly, EB achieved smaller MSE than the other two
methods for all values of K. The MSE ratios ranged from 60% to 90%. When the input
number of communities K was close to or greater than K
 = 42, the improvement of
EB over the competing methods became more substantial. Figure 9B shows higher test data
likelihood of EB than the other two estimates. Figure 9C shows the values of three model
selection criteria for k ∈ {1, …, 50}. The three methods, CVRP, VBEM and EB, gave
estimates K̂ ¼ 1, 39 and 39, respectively. The K̂ by VBEM and EB were both reasonably
close to the ground-truth of K
 = 42, while the performance of CVRP was much worse
on this dataset. Moreover, JVBEM is relatively flat around the estimated K̂ , while the
curve of JVBEM shows a higher sensitivity. From the distributions of the shrinkage values
ηab in (d) and (e), we see η ≥ 0.3 for a good number of diagonal and off-diagonal blocks,
which led to substantial shrinkage and better performance than the MLE.

Figure 9 Results for Email-Eu-core network analysis. (A) The ratio of MSE of EB estimate over that of
MLE and VBEM for different values of K . (B) Box-plot of 100 test data log-likelihood values for each
method. (C) Model selection criteria against input values of K , with dashed line indicating the estimated
K̂ by EB. (D and E) Histograms of (D) diagonal and (E) off-diagonal shrinkage values gab of EB estimate
at K ¼ K
 ¼ 42. Full-size DOI: 10.7717/peerj-cs.1006/fig-9
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DISCUSSION
We first briefly summarize this article and then discuss some limitations of this work and
potential generalizations in future work.

Summary
In this article, we developed an empirical Bayes estimate for the probabilities of edge
connections between communities in a network. While empirical Bayes (EB) under a
hierarchical model is a well-established method, its application to SBMs is very limited
before our work. Our method is a natural fit to the SBM and the idea is generally applicable
to different community detection methods. It does not require complicated algorithms or
heavy computation, yet can effectively improve the estimation accuracy of model
parameters. For the large volume of published community detection or network clustering
algorithms, our parameter estimation method can be adopted as a superior alternative
after the node clustering step. SBM approximation to graphons could result in a large
number of blocks, for which case the EB often shows substantial advantage over the MLE,
and this was a key motivation for our generalization to graphon estimation. This also helps
the development of a good model selection criterion based on the marginal likelihood.

Though shrinkage in empirical Bayes approach leads to more accurate estimate of the
connectivity probabilities, the improvement depends on the variability of the underlying
connectivity matrix or graphon function. Typically, a higher variance reduces its
improvement relative to the MLE. Therefore, for some graphon functions with high
volatility, EB cannot guarantee a better estimate, but from our simulation results, EB
estimate and MLE are usually comparable for such cases. A main reason for this
observation is that EB estimate uses a very small number of hyperparameters, which
effectively reduces the model complexity via shrinkage and greatly minimizes the risk of
overfitting the data.

In our experiments, we compared the model estimation accuracy by the mean squared
error, which is a gold standard criterion to evaluate parameter estimation. However,
several other metrics, such as the KL-divergence of the estimated graphon function to the
truth, deviation of the estimated number of motifs in the graph to the true value, and
divergence of degree distributions, can also be considered. For the application on real data,
the goodness of fit of SBM or graphon model to the datasets may be compared to more
existing network modeling methods in addition to DCSBM. A decent fit of the SBM and/or
graphon to these datasets will further demonstrate the usefulness of our method in a
more convincing way.

Future work
We put a beta conjugate prior on connection probability Θ, and the estimates of the
hyperparameters (αd, βd)d={0,1} are always positive. Thus, when a true connectivity θab = 0
for some block (a, b), which is likely to happen in sparse networks, our hierarchical model
introduces bias to the estimate of θab by Eq. (6). However, since the empirical Bayes
estimator is pooling data in all the blocks, the overall accuracy measured by MSE is still
expected to be higher. To alleviate this bias, we may consider a proportion γ of zero
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connectivity blocks and only apply shrinkage across blocks with a nonzero connectivity
parameter.

We have focused on parameter estimation for binary and assortative stochastic block
models and graphons. For some real-world applications, a regular SBM may not be the
most appropriate model, and degree corrected SBM mentioned above is usually a better
choice, in which the edge variable Aij between two nodes i, j is modeled as

Aijjzi; zj � PoissonðhzizjxixjÞ; (26)

where zi and zj are the node community labels. The node-specific parameter ωi scales
the number of connections to allow different expected degrees. The idea of empirical Bayes
can be generalized for this model: After community labels are determined by a graph
clustering algorithm, the MLE of ωi, which only involves degree distributions and
community labels, can be calculated. After we plug in these MLEs, we can construct a
hierarchical model for the parameters θab with a conjugate Gamma prior, which leads to a
similar empirical Bayes estimator via shrinkage across multiple blocks.

Furthermore, the idea can be generalized to more sophisticated random graph models,
such as SBM with mixed memberships (Airoldi et al., 2008), SBM with weighted edges
(Aicher, Jacobs & Clauset, 2015), and bipartite SBM (Larremore, Clauset & Jacobs, 2014)
etc. While most of the related works focus on graph clustering, our empirical Bayes method
can be applied after clustering to improve the estimation accuracy and to identify a proper
number of blocks for these models.
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