
Paragraph-level attention based deep
model for chapter segmentation
Paveen Virameteekul

Department of Computer Science & Engineering, Shanghai Jiao Tong University, Minhang,
Shanghai, China

ABSTRACT
Books are usually divided into chapters and sections. Correctly and automatically
recognizing chapter boundaries can work as a proxy when segmenting long texts (a
more general task). Book chapters can be easily segmented by humans, but automatic
segregation is more challenging because the data is semi-structured. Since the
concept of language is prone to ambiguity, it is essential to identify the relationship
between the words in each paragraph and classify each consecutive paragraph based
on their respective relationships with one another. Although researchers have
designed deep learning-based models to solve this problem, these approaches have
not considered the paragraph-level semantics among the consecutive paragraphs. In
this article, we propose a novel deep learning-based method to segment book
chapters that uses paragraph-level semantics and an attention mechanism. We first
utilized a pre-trained XLNet model connected to a convolutional neural network
(CNN) to extract the semantic meaning of each paragraph. Then, we measured
the similarities in the semantics of each paragraph and designed an attention
mechanism to inject the similarity information in order to better predict the chapter
boundaries. The experimental results indicated that the performance of our proposed
method can surpass those of other state-of-the-art (SOTA) methods for chapter
segmentation on public datasets (the proposed model achieved an F1 score of 0.8856,
outperforming the Bidirectional Encoder Representations from Transformers
(BERT) model’s F1 score of 0.6640). The ablation study also illustrated that the
paragraph-level attention mechanism could produce a significant increase in
performance.

Subjects Artificial Intelligence, DataMining andMachine Learning, Natural Language and Speech,
Neural Networks
Keywords Machine learning, Neural networks, Text segmentation, XLNet, Supervised learning,
Convolutional neural network, BERT, Natural language processing

INTRODUCTION
Nowadays, there is a huge amount of books and most of them are unstructured data.
Loading or rendering the massive data at once can make the applications slow. One
technique to solve this problem is to segment those data into multiple parts, and use only
the necessities. As a consequence, the applications will not be easily overloaded. Therefore,
our goal is to convert unstructured data into semi-structured data to avoid the previously
mentioned problems. One commonly seen application is a reading application, which
contains numerous books. Detection and segmentation of chapter boundaries can reduce
the reading application cost.

How to cite this article Virameteekul P. 2022. Paragraph-level attention based deep model for chapter segmentation. PeerJ Comput. Sci.
8:e1003 DOI 10.7717/peerj-cs.1003

Submitted 15 March 2022
Accepted 19 May 2022
Published 10 June 2022

Corresponding author
Paveen Virameteekul,
por.paveen@sjtu.edu.cn

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.1003

Copyright
2022 Virameteekul

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1003
mailto:por.�paveen@�sjtu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1003
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

It is quite important to automatically understand and analyze books. One important
task in understanding and analyzing a book is to correctly segment its chapters. Typically,
books are divided using unique keywords: chapters, parts, and/or Roman numerals.
However, these keywords may be lost due to data corruption and thus are not suitable
when used to determine chapter boundaries. Different approaches have been proposed to
solve this problem.

Text segmentation (Pethe, Kim & Skiena, 2020; Haruechaiyasak, Kongyoung & Dailey,
2008; Koshorek et al., 2018; Li et al., 2020; Lukasik et al., 2020; Nguyen et al., 2021) is a
method that is typically used to segment chapters by separating text into multiple segments
or boundaries. It has also been used in many natural language processing tasks, such as
word tokenization, text summarization (Hulliyah & Kusuma, 2010; Awasthi et al., 2021),
question answering prediction (Wang, Ling & Hu, 2019), and machine translation (Kong,
Zhang & Hovy, 2020; Gupta et al., 2021; Budiwati & Aritsugi, 2022).

Recent research has proposed the building of a deep-learning system to automatically
identify chapter boundaries. For example, Pethe, Kim & Skiena (2020) proposed a Chapter
Captor used to correctly recognize chapter breakpoints in novels. They proposed using
Bidirectional Encoder Representations from Transformers (Devlin et al., 2018) to learn
the semantic features and generate token-wise softmax probabilities. BERT is an auto-
encoder language model that reconstructs original data from any corrupted inputs. Its
advantage is that it can learn the context from both forward and backward directions.
However, such auto-encoder language model algorithms cause the masked tokens in the
pre-training to become non-existent during the fine-tuning stages. This ultimately leads
to a pre-training and fine-tuning discrepancy (Yang et al., 2019). Another disadvantage is
that each unmasked token is independent to the masked tokens, which means that the
relationship between the masked tokens is ignored by the auto-encoder language model’s
algorithms.

Considering these limitations of BERT (Pethe, Kim & Skiena, 2020), we instead propose
the use of the XLNet model (Yang et al., 2019). The XLNet model is a generalized auto-
regressive model that uses a permutation language model that helps the model learn a
bidirectional context. Unlike BERT which tries to reconstruct the original data from the
corrupted input, XLNet does not rely on data corruption. Due to the use of permutation,
XLNet models learn to predict from all positions on both sides. Because of these
advantages, it has been hypothesized that XLNet can overcome the BERT method in
predicting the output for chapter segmentation (Yang et al., 2019).

Previous researchers found that information is mostly processed by token-level
networks that cannot adequately reflect the basic unit of books, i.e., paragraphs. This is
particularly apparent for the task of chapter segmentation because we have to learn the
described topic differences across two chapters, which requires paragraph-level
understanding. As a result, we propose using an attention mechanism to aggregate context
information at the paragraph level.

This article proposes a novel deep learning-based method to segment book chapters.
Our algorithm focused on extracting a paragraph-level attention module by utilizing a pre-
trained XLNet model together with the convolutional neural network (CNN) and an

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 2/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

attention module for paragraph-wise context information. The XLNet model performed
word embedding, and the CNN simultaneously extracted features of the inputs. We then
got semantic meaning from each paragraph following the self-attention layer. We
calculated the distance between semantics from each paragraph and assumed that the
closer the semantics, the more likely that the two paragraphs were in the same chapter,
and vice versa. Then, we improved the model by the ensemble model using different
positive and negative ratio labels of 0 and 1. The paragraph-level attention model had
an F1 score of 0.8084, while the ensemble method improved its F1 score to 0.8856. Our
results were then compared with the best methods found in Pethe, Kim & Skiena (2020)
(BERT Break Point Prediction Model) and the F1 confusion matrix, as Their’s methods
were considered to be the best practice. Pethe, Kim & Skiena (2020) used a pre-trained
BERT model for the Next Sentence Prediction task combining with the dynamic
programming algorithm. The BERT Break Point Prediction model (Pethe, Kim & Skiena,
2020) successfully competed with all baseline models, including the C99 algorithm from
Choi (2000), the three-layer baseline perceptron model with 300 neurons in each layer
(Badjatiya et al., 2018) and trained word2vec embeddings from Mikolov et al. (2013), and
the neural model described by Badjatiya et al. (2018) that used long short-term memory
(LSTM). Ultimately, we used the BERT model in this article as the baseline model for
comparative analysis.

RELATED WORK
Document segmentation
Book and document segmentation have been substantially explored and can be categorized
into two mainstreams: computer vision-based methods and natural language processing-
based methods.

One computer vision method, DocParser (Rausch et al., 2019), provides an end-to-end
system that parses documents into a hierarchical structure. A CNN is used to segment
documents into boundary boxes, which include paragraphs, table cells, and figures, by
processing the document images as inputs.Wang, Li & Fang (2020) used few-shot learning
to extract an image’s features with the advantage of using less data. Using optical character
recognition (OCR) to extract books is another method shown in the ICDAR 2013
competition on Book Structure Extraction (Doucet et al., 2013).

On the other hand, natural language processing can segment books and documents
using only text information. Koshorek et al. (2018) text segmentation model provided a
bidirectional LSTM and sentence embedding model to extract and label text from the
Wiki-727 dataset. McConnaughey, Dai & Bamman (2017) compared three different
models used to automatically label book structures, and found that bidirectional LSTMwas
the best model. Raghavan, Kovashka &Mooney (2010) explored how to identify the author
of a document using probabilistic context-free grammar. Name entity recognition (NER)
(Li, Shang & Chen, 2021a) is used to recognize the type of the text on a passage, such as a
person, location, and time. Next, neural name entity boundary detection (Li, Sun & Ma,
2021b) is another algorithm to detect the start and end boundaries of an entity without
knowing the entity types by using BdryBot, a recurrent neural network encoder-decoder

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 3/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

framework. Although all of the above techniques can be applied to chapter segmentation
tasks, this article will propose novel methods.

BERT
BERT is an auto-encoder language model that uses bidirectional pre-training and masked
language models. It restores the initial data from any corrupted inputs and can learn
context in bi-directions. However, BERT’s algorithm hides the masked tokens during pre-
training. This creates a disparity between the pre-training and fine-tuning stages (Yang
et al., 2019; Gao et al., 2019; Ye et al., 2021). Another disadvantage is that each unmasked
token is independent of the masked tokens, which means the relationship between the
masked tokens are ignored by the auto-encoder language model’s algorithms.

XLNet
The XLNet model differs from the previous techniques because it is not only a transferring
learning method, but it is also an auto-regressive pre-training model that enables the
model to learn bidirectional contexts using a permutation order. The XLNet also utilizes an
idea of relative position encoding and segment recurrence mechanism, unlike BERT which
uses the absolute position embedding. With these two techniques, the model can compute
the query stream without knowing the factorization order from the previous segments.
Because of this advantage, the XLNet method has proven that this method outperforms the
BERTmodel on 20 NLP tasks and achieves state-of-the-art results (Yang et al., 2019;Wang
et al., 2021; Gong, Jin & Zhang, 2019). Therefore, the XLnet is chosen as a backbone.

CNN
A CNN is a method used to learn data characteristics (Wang & Gang, 2018; Albawi,
Mohammed & Al-Zawi, 2017). It consists of multiple layers of the neural network method.
CNNs have been frequently used for image recognition and classification (Chauhan,
Ghanshala & Joshi, 2018; Krizhevsky, Sutskever & Hinton, 2017) as well as text
classification (Song, Geng & Li, 2019).

Attention mechanism
Self-attention (Vaswani et al., 2017) is an attention mechanism that takes n inputs and
returns n outputs. The inputs interact with each other in different positions and determine
the relationship between each input. The outputs are then aggregated from the interaction
and attention scores. Self-attention has been used in many tasks such as dependency
parsing (Martins & Kreutzer, 2017), emoji prediction (Barbieri et al., 2018), and machine
translation (Bahdanau, Cho & Bengio, 2015; Clark et al., 2019).

Pethe, Kim & Skiena (2020) provided a combination of rule-based and neural inferences
in order to create their own label dataset from Project Gutenberg. They utilized a pre-
trained BERT Next Sentence Prediction model and dynamic programming algorithm to
segment books into chapters that were then used as a baseline for comparative analysis in
this article.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 4/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

DATASET
This article used the dataset from Pethe, Kim & Skiena (2020), which contained 9,141
labeled books. This dataset extracted all features from the html file provided by the Project
Gutenberg database into Gutenberg header, front matter, body, and Gutenberg footer
categories.

This article focuses solely on the process of chapter segmentation from the datasets of
multiple books. Therefore, other unused elements were not included and have been
eliminated, and only the body parts that contained paragraphs remain. The remaining
relevant data were then allocated into proportions and split into training data and testing
data with a ratio of 60:40 (60 being the training data and 40 being the testing data). The
training data were then further split into subsets of training data and validating data with a
ratio of 90:10.

METHODS
Our proposed method is presented in Fig. 1, and includes a XLNet for embedding
sentences, a CNN for feature extraction, an attention module for paragraph-level semantic
aggregation, and the final classification module.

Refer to (1), given that P is a sequence of paragraphs, where pi refers to the paragraph
number and n refers to the total number of paragraphs. Refer to (2), let X denote the
input, which will be a list of a pair of two consecutive paragraphs. Let Y be a sequence that
labels between all consecutive paragraphs whether those two consecutive paragraphs
are in the same chapter or not, where yi is the label between paragraphs pi and pi+1 as
shown in (3). If two consecutive paragraphs are in the same chapter, the label is 0. If two
consecutive paragraphs are not in the same chapter, the label is 1.

P ¼ p0; . . . ; pn (1)

X ¼ ½ðp0; p1Þ; ðp1; p2Þ; . . . ; ðpn�1; pnÞ� (2)

Y ¼ y0; . . . ; yn (3)

XLNet and CNN for feature learning
XLNet uses a combination of an autoregressive (AR) language model and autoencoding
(AE). Yang et al. (2019) states that XLNet uses “all possible permutations of the
factorization order”, which means it can avoid the limitations of AR models that only train
on unidirectional contexts. Furthermore, XLNet does not rely on data corruption, unlike
AE base training, which aims to predict only from corrupted data.

According to Yang et al. (2019)’s theory, the input format for the pre-trained XLNet
is (4).

Input ¼ ½A; SEP;CLS� (4)

where “SEP” and “CLS” are special symbols and “A,” is a segment. In this case, “A” is the
paragraph for which we want to determine the semantic meaning.

The words in each paragraph are tokensized using an XLNet pretrain tokenizer. The
inputs are equal to two consecutive paragraphs, and each paragraph may be different in

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 5/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

length. To avoid an incompatible paragraph size, the boundary of the maximum length of
each input paragraph was set at 254 words.

For example, if paragraph A contains fewer than the maximum words of 254 words,
then paragraph A will be concatenated with the consecutive paragraphs that are set prior to
A until the number of words reaches the maximum. However, if the words in paragraph A
are beyond the maximum set-limit, then the algorithm will remove the words at the first
index until there are only 254 words left.

Similar to paragraph A in each input, if the number of words in paragraph B in each
input is fewer than the maximum length, words will be added to the paragraph after
paragraph B until the paragraph reaches the maximum number of words. If the number of
words in paragraph B is greater than the maximum set-limit, the algorithm will remove the
words at the last index until there are only 254 words left.

Figure 1 Illustration of the proposed chapter segmentation method.
Full-size DOI: 10.7717/peerj-cs.1003/fig-1

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 6/17

http://dx.doi.org/10.7717/peerj-cs.1003/fig-1
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

We used the CNN to extract the text features from the XLNet’s matrix output. The
average number of words in an English sentence is 15–20 words. Therefore, the kernel size
was set to seven, which is half of the average sentence length. The convolution kernel
was slid two words at a time. Finally, we filtered the dimension of the output space to 64.
After the concatenation of the CNN and attention layer, we used max pooling to extract
each concatenate CNN filter.

Paragraph level attention for chapter understanding
The semantic features learned by XLNet and CNN were actually mainly at the token level.
However, paragraph-level information is important for better understanding topics in the
chapters. Thus, we proposed a paragraph-level attention module.

First, we created a paragraph-level attention module by connecting the XLNet
pretrained model, CNN, batch normalization, activation, and self-attention layers
together. The purpose of this module was to determine the semantic meaning of the input
paragraphs. Once we determined the matrix of the semantic meaning of the paragraphs,
the model concatenated the semantic meanings of the two consecutive paragraphs and
calculated the contrastive loss, as shown in (5).

LðS1; S2Þ ¼ maxð0; jjS1 � S2jj2Þ (5)

where L is the loss or the distance between the semantics of the two paragraphs. S1 and S2
refer to the semantic meanings of the two consecutive paragraphs.

After calculating the semantic loss of the two paragraphs, we assumed that a small loss
indicated that the two paragraphs were in the same chapter since they had similar
meanings. Therefore, a large semantic loss suggested that two paragraphs were not in the
same chapter. After concatenating the two paragraphs’ semantic meanings, the model
created a down sample of the feature map using the max pool layer. We then flattened the
result into the sigmoid activation layer to classify the labels between the two consecutive
input paragraphs. The flow of the model is shown in Fig. 1.

The training data were balanced with label 1, which designated a pair of consecutive
paragraphs that were not in the same chapter, while label 0 was used for a pair of
paragraphs that were in the same chapter. There was a ratio of 1:2, with label 0 being
double that of label 1. The reason for this ratio was that book chapters usually do not only
consist of a single paragraph.

The model was evaluated by looking at all pairs of consecutive paragraphs from books
and counting all correct predictions, including label 0 and label 1. The paragraph-level
attention model gave an accuracy score of 0.9920, precision score of 0.6900, recall score of
0.9759, and F1 score of 0.8084.

Ensemble paragraph level attention
The paragraph level attention model showed low precision compared to the recall,
indicating that the model made many false positive predictions. Therefore, we improved
the precision by making an ensemble model that kept the recall at about the same level.
First, we added more training data. Next, we increased the ratio of the different chapter

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 7/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

labels to the same chapter labels from 1 to 2 to a ratio of 1 to 5. Then, we trained the model
using the new training set. Finally, we combined the previous paragraph-level attention
model with the new training paragraph-level attention model using a rule: if the previous
model predicted 0, meaning two paragraphs are in the same chapter, the result was 0;
however, if the previous model predicted 1, meaning two paragraphs are in different
chapters, then we used the new trained model to predict the result. If the new trained
model predicted the label 1, then the result was 1. If the new trained model predicted 0,
then we compared the probability of it being 0 from the previous model to the probability
of it being 1 from the new trained paragraph-level attention model. The result was chosen
from the model with the higher probability. Figure 2 illustrates the ensemble paragraph-
level model.

EXPERIMENTS AND RESULTS
Evaluation metrics
Matrices were generated for each model where they were compared using accuracy,
precision, recall, and F1 scores as the measuring criteria. The higher the results of these
measuring criteria, the better the performance of the models. The F1 score categorized the
models with label 1 as positive, and 0 as negative.

Precision
We divided the number of true positive predictions from the model by the total number of
positive scores (Dalianis, 2018; Awan et al., 2020).

L1 == 0

result = 0

true

true

L1 = result of Paragraph level attention model (trained with 1:2 labels)

L2 = result of Paragraph level attention model (trained with 1:5 labels)

false
P(L1 = 0) > P(L2 = 1)

false

true

false

end

L1 == 0

result = 1 result = 0 result = 1

Start

Figure 2 Flowchart of the ensemble for the proposed model.
Full-size DOI: 10.7717/peerj-cs.1003/fig-2

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 8/17

http://dx.doi.org/10.7717/peerj-cs.1003/fig-2
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

Recall
We divided the number of true positive predictions from the model by the total number of
actual positive scores (Dalianis, 2018; Awan et al., 2020).

F1 score
The F1 score is a harmonic mean between the precision and recall scores (Dalianis, 2018;
Awan et al., 2020). Therefore, it is a way to evaluate the balance of both precision and
recall. The F1 score is a better form of measurement for the incorrectly classified class than
the accuracy score. The F1 equation is shown in (6).

F1 ¼ 2 � precision � recall
precisionþ recall

(6)

Compared with state-of-the-art methods
The models were tested in a real situation where the number of output labels were not
balanced in order to demonstrate their true performance. Table 1 shows the accuracy,
precision, recall, and F1 scores for the proposed model.

The paragraph-level attention model achieved an accuracy score of 0.9920. This model
also reached a precision score of 0.6900, recall score of 0.9759, and F1 score of 0.8084.
It should be noted that this particular model achieved higher precision, recall, and F1
scores than the BERT Break Point Prediction model.

Before we ensembled the paragraph-level attention model, we trained the paragraph-
level attention model with another ratio of labels. The ratio of the two paragraphs in
different chapters to the two paragraphs in the same chapter was 1 to 5. This new trained
model had an F1 score of 0.8768, which was a 7% improvement from the model trained
with a ratio of 1 to 2 labels. The new trained paragraph-level attention model also had
improved accuracy (0.9953) and precision (0.8043) scores, but the recall score decreased by
1% to 0.9637.

On the other hand, the ensemble paragraph-level attention model’s results improved
when compared to the paragraph-level attention model across both ratios. The ensemble
paragraph-level attention model had an accuracy of 0.9957. Out of all the models, the

Table 1 Evaluation of the accuracy, precision, recall, and F1 scores for the proposed model.

Model Accuracy Precision Recall F1

Naive Bayes 0.1208 0.2784 0.0055 0.0108

SVM 0.0854 0.0106 0.5636 0.0209

BERT Break Point Prediction (Pethe, Kim & Skiena, 2020) 0.7719 0.6661 0.6618 0.6640

Paragraph level attention model (1:2) 0.9920 0.6900 0.9759 0.8084

Paragraph level attention model (1:5) 0.9953 0.8043 0.9637 0.8768

Ensemble paragraph level attention model 0.9957 0.8177 0.9659 0.8856

Note:
The paragraph-level attention model (1:2) is for the ratio of one to two training data labels. The paragraph-level attention
model (1:5) is for the ratio of one to five training data labels. The ensemble paragraph-level attention model displayed the
best result.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 9/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

ensemble paragraph-level attention model achieved the highest level of precision at 0.8177,
with the second highest in recall at 0.9659. The ensemble paragraph-level attention
model received the highest F1 score of 0.8856, which was more than a 7% improvement
compared to the paragraph-level attention model and an approximately 20% improvement
when compared to the baseline model.

Traditional machine learning models, such as Naive Bayes and Support-vector machine
(SVM), are commonly used for classification tasks. A Naive Bayes (Webb, 2010) uses a
probabilistic mechanism to estimate the probability of each class y, which considers a
chapter break-point or not, given by X features. Multinomial Naive Bayes is used for
comparing with the purposed method. By concatenating two consecutive paragraphs as an
input, the model returns the probability of 0 and 1. The result shows a low overall
score. The Naive Bayes model receives an accuracy of 0.1208, precision of 0.2784, recall of
0.0055, and F1 score of 0.0108. The Naive Bayes model runs fast and is suitable for a
classification task; however, it assumes that all features are independent. which does not fit
with the book’s contents. In consequence, it causes a low accuracy. Next, the SVM is an
algorithm to find the hyperplane which maximizes the margin in N-dimensional space.
Which is commonly used in classification tasks. The large data-set costs a computational
expensive. To avoid this problem, we use stochastic gradient descent to optimize the
SVM’s cost function. The linear kernel is chosen. The overall scores are low similar to the
Naive Bayes algorithm. The SVM model receives an accuracy of 0.0854. It receives
precision and recall of 0.0106 and 0.5636, respectively. Finally F1 score of 0.0209.

According to Pethe, Kim & Skiena (2020), the BERT model has successfully competed
with all other baseline models, such as the C99 algorithm (Choi, 2000), the three-layer
baseline perceptron model with 300 neurons in each layer (Badjatiya et al., 2018) and
trained word2vec embeddings (Mikolov et al., 2013), and the neural model described by
Badjatiya et al. (2018) that uses LSTM. Therefore, we used the BERT Break Point
Prediction model in this article as the baseline model for comparative analysis. Pethe, Kim
& Skiena (2020)’s model used a pre-trained BERT with dynamic programming algorithm
that was fine-tuned with the dataset. This article’s method trained the BERT Break
Point Prediction model as stated and illustrated in Pethe, Kim & Skiena (2020), albeit with
an additional method and an additional step of splitting the training validation and test
dataset. The BERT Break Point Prediction model received an accuracy score of 0.7719,
which was lower than that of our proposed models. The BERT Break Point Prediction
model also received lower precision, recall, and F1 scores of 0.6661, 0.6618, and 0.6640,
respectively.

Case study
This section will show a case study of the purposed ensemble paragraph level attention
model. This ensemble paragraph level attention model outperforms other baselines since
the model not only correctly predicted the chapter breakpoint which contains the chapter
keywords, but also the model can predict the books without those chapter keywords.
The Table 2 shows the examples in results of true-positive prediction, false-negative
prediction, false-positive prediction, and true-negative predictions. Paragraph 1 and

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 10/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

paragraph 2 in the Table 2 refer to two consecutive paragraphs. The examples are taken
from the book called, “The Adventures of A Brownie,” written by Miss Mulock.

Figure 3 shows the number of prediction results on the paragraph level attention
models and the ensemble paragraph level attention model. The ensemble paragraph level
attention model can significantly decrease the number of false positive predictions, while
changing an inconsiderable true positive and false negative predictions. As a result, the

Table 2 A result of the ensemble paragraph level attention model by given two consecutive paragraphs from “The Adventures of A Brownie,”
by Miss Mulock.

Paragraph 1 Paragraph 2 Result

… and brownie played no more tricks with any body–til the next time. adventure the second brownie and the cherry-tree the “Next time”
was …

tp

… keep i must until it crumble into dust. I took the wren’s nest: god
forgive me!

a child’s smile a child’s smile–nothing more; quiet and soft and grave,
and …

fn

… get all my folding done by bedtime, and have a clear day for ironing
tomorrow.

but when she did fetch them in, having bundled them all together in
the dusk …

fp

… thief might have got in, and wandered all over the house without
being found out.

“Hurrah, here’s luck!” cried brownie, lossing his cap up in the air, and
bounding …

tn

Figure 3 Number of true positive, false positive, and false negative predictions on each purposed model.
Full-size DOI: 10.7717/peerj-cs.1003/fig-3

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 11/17

http://dx.doi.org/10.7717/peerj-cs.1003/fig-3
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

precision, which is inversely proportional to a number of false positive predictions, greatly
increase, While the recall, which is inversely proportional to a number of false negative
predictions, decrease insignificantly. Therefore, the F1 score of the ensemble paragraph
level attention model outperforms the paragraph level attention models.

Ablation study
In this section, we will prove that the proposed paragraph-level attention model indeed
produced improved results. The proposed methods will be compared with the model
(Fig. 4). This model did not include paragraph-level attention. It was created using XLNet
and CNN. Instead of using two consecutive paragraphs separately as input, they were
put together into the model. The model concatenated the two paragraphs together to create
the input. This model connected the XLNet, CNN, batch normalization, rectifier activation
function, and max pooling together. Then, the result matrices were flattened and we
used the sigmoid activation function to get the binary classification. Although this model
does not have a paragraph-level attention, it is created in the same fashion.

The results showed that the paragraph-level attention model greatly improved in
overall results for the 1:2 ratio of positive to negative labels, and slightly increased for the
1:5 ratio. For the 1:2 ratio of positive to negative labels, the XLNet with CNNmodel had an
accuracy score of 0.9849, which was 1% lower than the paragraph-level attention
model’s score. The precision score of the XLNet with CNN model was 0.5344. The
precision score of the paragraphlevel attention model was 0.6900, which showed an
increase of 15%. The XLNet with CNNmodel’s recall score was 0.9855, which was only 1%

Figure 4 XLNet followed by CNN model to extract features.
Full-size DOI: 10.7717/peerj-cs.1003/fig-4

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 12/17

http://dx.doi.org/10.7717/peerj-cs.1003/fig-4
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

higher than that of the paragraph-level attention model, which had a recall score of 0.9759.
Ultimately, the F1 score of the XLNet with CNN model was 0.6930. The paragraph level
attention model’s F1 score was 0.8084, which showed an improvement of 11%. This shows
that the paragraph-level model’s overall score significantly improved.

Furthermore, we compared the models with positive and negative labels at the 1:5 ratio.
The XLNet with CNN model received an accuracy score of 0.9948, which was lower than
the paragraph-level attention model’s accuracy score of 0.9953. The precision score of
XLNet with CNN was 0.7863, but the precision score of the paragraph-level attention
model was 0.8043, which shows an improvement of about 2%. Next, the XLNet with CNN
model’s recall score was 0.9574, and the paragraph-level attention model’s recall was
0.9637, which was only lower by 0.5%. The F1 score of the XLNet with CNN model was
0.8635, and the F1 score of the paragraph-level attention model was 0.8768, which showed
an improvement of 1%.

The results show that the paragraph-level attention model had a major effect on
increasing the precision score, but a slightly less significant effect on lowering the recall
score. As a consequence, the F1 score significantly improved. Table 3 shows the results of
the proposed model compared to the XLNet with CNN model.

CONCLUSION
Each book contains unique structures and boundaries that a person can easily identify,
including the book title, authors, table of contents, chapters, and footer. Writers give
unique styles to their books whether they are novels, encyclopedias, journals, or textbooks.
These factors all contribute to the fact that books as a collective form do not share the same
type of structure. Even when using a rule-based algorithm, computers cannot perfectly
segment the boundaries of each book chapter. Therefore, a learning algorithm is required
to improve the accuracy of chapter prediction.

This article proposes a novel chapter segmentation method that uses paragraph-level
attention. Our proposed method utilizes XLNet and CNN for feature learning, as well as a
simple but effective attention mechanism to aggregate paragraph-level context
information. Our thorough comparative analysis demonstrates that our method can
achieve a much higher performance when compared with previous SOTA methods. More
importantly, our ablation study validated the effectiveness of the proposed paragraph-level

Table 3 Evaluation of the proposed model compared to the XLNet with CNN model.

Model Accuracy Precision Recall F1

XLNet with CNN model (1:2) 0.9849 0.5344 0.9855 0.6930

Paragraph level attention model (1:2) 0.9920 0.6900 0.9759 0.8084

XLNet with CNN model (1:5) 0.9948 0.7863 0.9574 0.8635

Paragraph level attention model (1:5) 0.9953 0.8043 0.9637 0.8768

Note:
The paragraph-level attention model (1:2) is for the ratio of one to two training data labels. The paragraph-level attention
model (1:5) is for the ratio of one to five training data labels. The XLNet with CNN model (1:2) is for the ratio of one to
two training data labels. The XLNet with CNN model (1:5) is for the ratio of one to five training data labels.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 13/17

http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

attention module, which may indicate that hierarchical semantic representation works
better than using only token-level semantic features.

The proposed method shows specific improvements in accuracy, precision, recall, and
F1 scores. The paragraph-level attention model increased the F1 score by 15% compared to
the baseline of 0.8084. The ensemble paragraph level attention model showed a
significantly improved F1 score of 0.8856, which was a 20% and 8% improvement from the
baseline and the paragraph level attention model, respectively.

In addition to the results of our proposed method, we also suggest that machine learning
models can still be improved to solve problems such as segmentation on the deeper
multiple layers of seemingly simple, yet ambiguous, structures, such as book volumes,
parts, chapters, and sub-chapters.

ACKNOWLEDGEMENTS
I would like to thank my supervisor, Dr. Kenny Q. Zhu, for his enthusiastic
encouragement, guidance, and comments on this research.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
The author declares that they have no competing interests.

Author Contributions
� Paveen Virameteekul conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental Files.
The dataset is available at figshare: Virameteekul, Paveen (2022): dataset.zip. figshare.

Dataset. https://doi.org/10.6084/m9.figshare.19361390.v1.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1003#supplemental-information.

REFERENCES
Albawi S, Mohammed TA, Al-Zawi S. 2017.Understanding of a convolutional neural network. In:

2017 International Conference on Engineering and Technology (ICET) 1–6.

Awan F, Saleem Y, Minerva R, Crespi N. 2020. A comparative analysis of machine/deep learning
models for parking space availability prediction. Sensors 20(1):322 DOI 10.3390/s20010322.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 14/17

http://dx.doi.org/10.7717/peerj-cs.1003#supplemental-information
https://doi.org/10.6084/m9.figshare.19361390.v1
http://dx.doi.org/10.7717/peerj-cs.1003#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1003#supplemental-information
http://dx.doi.org/10.3390/s20010322
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

Awasthi I, Gupta K, Bhogal PS, Anand SS, Soni PK. 2021. Natural language processing (NLP)
based text summarization - a survey. In: 2021 6th International Conference on Inventive
Computation Technologies (ICICT) 1310–1317.

Badjatiya P, Kurisinkel LJ, Gupta M, Varma V. 2018. Attention-based neural text segmentation.
ArXiv preprint. DOI 10.48550/arXiv.1808.09935.

Bahdanau D, Cho K, Bengio Y. 2015. Neural machine translation by jointly learning to align and
translate. ArXiv preprint. DOI 10.48550/arXiv.1409.0473.

Barbieri F, Espinosa-Anke L, Camacho-Collados J, Schockaert S, Saggion H. 2018. Interpretable
emoji prediction via label-wise attention LSTMs. In: proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for
Computational Linguistics, 4766–4771.

Budiwati SD, Aritsugi M. 2022. Word reordering on multiple pivots for the Japanese and
Indonesian language pair. Machine Translation 35:1–26 DOI 10.1007/s10590-021-09288-8.

Chauhan R, Ghanshala KK, Joshi R. 2018. Convolutional neural network (CNN) for image
detection and recognition. In: 2018 First International Conference on Secure Cyber Computing
and Communication (ICSCCC) 278–282.

Choi FYY. 2000. Advances in domain independent linear text segmentation. ArXiv preprint.
DOI 10.48550/arXiv.cs/0003083.

Clark K, Khandelwal U, Levy O, Manning CD. 2019. What does BERT look at? An analysis of
BERT’s attention. ArXiv preprint. DOI 10.48550/arXiv.1906.04341.

Dalianis H. 2018. Evaluation metrics and evaluation. Cham: Springer International Publishing,
45–53.

Devlin J, Chang M, Lee K, Toutanova K. 2018. BERT: pre-training of deep bidirectional
transformers for language understanding. ArXiv preprint. DOI 10.48550/arXiv.1810.04805.

Doucet A, Kazai G, Colutto S, Muhlberger G. 2013.Overview of the ICDAR 2013 competition on
book structure extraction. In: 2013 12th International Conference on Document Analysis and
Recognition (ICDAR) 1438–1443.

Gao Z, Feng A, Song X, Wu X. 2019. Target-dependent sentiment classification with BERT. IEEE
Access 7:154290–154299 DOI 10.1109/ACCESS.2019.2946594.

Gong X-R, Jin J-X, Zhang T. 2019. Sentiment analysis using autoregressive language modeling
and broad learning system. In: 2019 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM). Piscataway: IEEE, 1130–1134.

Gupta K, Sen S, Haque R, Ekbal A, Bhattacharyya P, Way A. 2021. Augmenting training data
with syntactic phrasal-segments in low-resource neural machine translation. Machine
Translation 35:1–25 DOI 10.1007/s10590-021-09290-0.

Haruechaiyasak C, Kongyoung S, Dailey M. 2008. A comparative study on thai word
segmentation approaches. In: 2008 5th International Conference on Electrical Engineering/
Electronics, Computer, Telecommunications and Information Technology Vol. 1. 125–128.

Hulliyah K, Kusuma HT. 2010. Application of knowledge graph for making text summarization
(analizing a text of educational issues). In: Proceeding of the 3rd International Conference on
Information and Communication Technology for the Moslem World (ICT4M) 2010 E79–E83.

Kong X, Zhang Z, Hovy E. 2020. Incorporating a local translation mechanism into non-
autoregressive translation. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP) 1067–1073.

Koshorek O, Cohen A, Mor N, Rotman M, Berant J. 2018. Text segmentation as a supervised
learning task. In: Proceedings of the 2018 Conference of the North American Chapter of the

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 15/17

http://dx.doi.org/10.48550/arXiv.1808.09935
http://dx.doi.org/10.48550/arXiv.1409.0473
http://dx.doi.org/10.1007/s10590-021-09288-8
http://dx.doi.org/10.48550/arXiv.cs/0003083
http://dx.doi.org/10.48550/arXiv.1906.04341
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.1109/ACCESS.2019.2946594
http://dx.doi.org/10.1007/s10590-021-09290-0
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

Association for Computational Linguistics: Human Language Technologies. Vol. 2. New Orleans,
Louisiana: Association for Computational Linguistics, 469–473.

Krizhevsky A, Sutskever I, Hinton GE. 2017. Imagenet classification with deep convolutional
neural networks. Communications of the ACM 60(6):84–90 DOI 10.1145/3065386.

Li J, Chiu B, Shang S, Shao L. 2020. Neural text segmentation and its application to sentiment
analysis. IEEE Transactions on Knowledge and Data Engineering 34(2):1
DOI 10.1109/TKDE.2020.2983360.

Li J, Shang S, Chen L. 2021a. Domain generalization for named entity boundary detection via
metalearning. IEEE Transactions on Neural Networks and Learning Systems 32(9):3819–3830
DOI 10.1109/TNNLS.2020.3015912.

Li J, Sun A, Ma Y. 2021b. Neural named entity boundary detection. IEEE Transactions on
Knowledge and Data Engineering 33(4):1790–1795 DOI 10.1109/TKDE.2020.2981329.

Lukasik M, Dadachev B, Papineni K, Simões G. 2020. Text segmentation by cross segment
attention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Cedarville: Association for Computational Linguistics, 4707–4716.

Martins AFT, Kreutzer J. 2017. Learning what’s easy: fully differentiable neural easy-first taggers.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark. Cedarville: Association for Computational Linguistics, 349–362.

McConnaughey L, Dai J, Bamman D. 2017. The labeled segmentation of printed books. In:
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.
Copenhagen, Denmark. Cedarville: Association for Computational Linguistics, 737–747.

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. 2013. Distributed representations of words
and phrases and their compositionality. ArXiv preprint. DOI 10.48550/arXiv.1310.4546.

Nguyen H, Nie D, Badamdorj T, Liu Y, Zhu Y, Truong J, Cheng L. 2021. Automated generation
of accurate & fluent medical X-ray reports. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Cedarville: Association for Computational Linguistics,
3552–3569.

Pethe C, Kim A, Skiena S. 2020. Chapter captor: text segmentation in novels. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Cedarville:
Association for Computational Linguistics, 8373–8383.

Raghavan S, Kovashka A, Mooney R. 2010. Authorship attribution using probabilistic context-
free grammars. In: Proceedings of the ACL 2010 Conference Short Papers. Cedarville: Association
for Computational Linguistics, 38–42.

Rausch J, Martinez O, Bissig F, Zhang C, Feuerriegel S. 2019. Docparser: hierarchical structure
parsing of document renderings. ArXiv preprint. DOI 10.48550/arXiv.1911.01702.

Song P, Geng C, Li Z. 2019. Research on text classification based on convolutional neural network.
In: 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA)
229–232.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. ArXiv preprint. DOI 10.48550/arXiv.1706.03762.

Wang W, Gang J. 2018. Application of convolutional neural network in natural language
processing. In: 2018 International Conference on Information Systems and Computer Aided
Education (ICISCAE) 64–70.

Wang L, Li X, Fang Y. 2020. Few-shot learning of part-specific probability space for 3D shape
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 16/17

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TKDE.2020.2983360
http://dx.doi.org/10.1109/TNNLS.2020.3015912
http://dx.doi.org/10.1109/TKDE.2020.2981329
http://dx.doi.org/10.48550/arXiv.1310.4546
http://dx.doi.org/10.48550/arXiv.1911.01702
http://dx.doi.org/10.48550/arXiv.1706.03762
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

Wang R-Z, Ling Z-H, Hu Y. 2019. Knowledge base question answering with attentive pooling for
question representation. IEEE Access 7:46773–46784 DOI 10.1109/ACCESS.2019.2909826.

Wang Y, Zheng J, Li Q, Wang C, Zhang H, Gong J. 2021. XLNet-caps: personality classification
from textual posts. Electronics 10(11):1360 DOI 10.3390/electronics10111360.

Webb GI. 2010. Naive bayes. Boston: Springer, 713–714.

Yang Z, Dai Z, Yang Y, Carbonell JG, Salakhutdinov R, Le QV. 2019. XLNet: generalized
autoregressive pretraining for language understanding. ArXiv preprint.
DOI 10.48550/arXiv.1906.08237.

Ye D, Lin Y, Huang Y, Sun M. 2021. TR-BERT: dynamic token reduction for accelerating BERT
inference. ArXiv preprint. DOI 10.48550/arXiv.2105.11618.

Virameteekul (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1003 17/17

http://dx.doi.org/10.1109/ACCESS.2019.2909826
http://dx.doi.org/10.3390/electronics10111360
http://dx.doi.org/10.48550/arXiv.1906.08237
http://dx.doi.org/10.48550/arXiv.2105.11618
http://dx.doi.org/10.7717/peerj-cs.1003
https://peerj.com/computer-science/

	Paragraph-level attention based deep model for chapter segmentation
	Introduction
	Related work
	Dataset
	Methods
	Experiments and results
	Conclusion
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

