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ABSTRACT
Sea cucumber farming is an important part of China’s aquaculture industry, and
sea cucumbers have higher requirements for aquaculture water quality. This article
proposes a sea cucumber aquaculture water quality prediction model that uses an
improved whale optimization algorithm to optimize the gated recurrent unit neural
network(IWOA-GRU), which provides a reference for the water quality control in
the sea cucumber growth environment. This model first applies variational mode
decomposition (VMD) and the wavelet threshold joint denoising method to remove
mixed noise in water quality time series. Then, by optimizing the convergence factor,
the convergence speed and global optimization ability of the whale optimization
algorithm are strengthened. Finally, the improved whale optimization algorithm is used
to construct a GRU predictionmodel based on optimal network weights and thresholds
to predict sea cucumber farming water quality. The model was trained and tested
using three water quality indices (dissolved oxygen, temperature and salinity) of sea
cucumber culture waters in Shandong Peninsula, China, and compared with prediction
models such as support vector regression (SVR), random forest (RF), convolutional
neural network (CNN), recurrent neural network (RNN), and long short-termmemory
neural network (LSTM). Experimental results show that the prediction accuracy and
generalization performance of this model are better than those of the other compared
models.

Subjects Computational Biology, Algorithms and Analysis of Algorithms, Artificial Intelligence,
Data Mining and Machine Learning, Data Science
Keywords Variational modal decomposition, Gated recurrent unit, Water quality prediction,
Whale algorithm, Wavelet packet denoising

INTRODUCTION
In the sea cucumber farming production and management process, water quality is
an important factor affecting healthy sea cucumber growth. The most suitable water
environment for sea cucumber farming requires pollution-free water quality, dissolved
oxygen above 5 mg, water temperature 0–30 degrees (preferably 10–16 degrees), and
salinity maintained above 25 parts per thousand. Therefore, accurate prediction of the
development trend of water quality indicators such as dissolved oxygen, water temperature
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and salinity is of great significance for ensuring sea cucumbers growth in a suitable
water environment. Water quality data are often affected by various natural environments,
showing strong volatility and randomness in time series, making predictions more difficult.
With the continuous improvement and development of artificial intelligence technologies
such as deep learning, the accuracy of water quality prediction continues to increase.
In recent years, many scholars have proposed many nonlinear prediction models based
on artificial intelligence technology. Noori, Kalin & Isik (2020) developed a hybrid water
quality predictions model by combining a process-based watershed model and artificial
neural network(ANN). Lu & Ma (2020) proposed two short-term water quality prediction
models based on extreme gradient boosting (XGBoost) and random forest (RF). Bui
et al. (2020) studied the application of four standalone and twelve hybrid intelligent
algorithms in water quality prediction. Aldhyani et al. (2020) studied the application of
advanced artificial intelligence (AI) algorithms to predict the water quality index (WQI)
and water quality classification (WQC). Avila et al. (2018) studied the application of
intelligent algorithms such as Bayesian networks and random forests in water quality
prediction. Azimi, Azhdary Moghaddam & Hashemi Monfared (2019) studied the water
quality prediction model using an artificial neural network and fuzzy clustering. Shi et al.
(2019) proposed a clustering-based softplus extreme learning machine(CSELM) method
to predict the change trend of dissolved oxygen concentration in aquaculture. Xu & Liu
(2013) combined the wavelet transform with the BP neural network to build the water
quality prediction model. Zou et al. (2020) proposed a water quality prediction method
based on a bidirectional long short-term memory network. Yan et al. (2021) proposed
water quality prediction based on 1-DRCNN and BiGRU hybrid neural network model.

Synthesizing the above analysis, a large number of prediction methods based on
artificial intelligence have been proposed for water quality prediction. All these methods
have improved the accuracy of water quality prediction to a certain extent. However,
there are many uncertain factors in sea cucumber farming water, and water quality time
series are highly noisy and unstable; therefore, using the primary water quality series
directly to establish prediction models is subject to substantial errors (Zhang et al., 2017).
To improve the prediction accuracy, an effective method is to decompose the input data
according to different fluctuation scales, extract components that are relatively stable
and have different characteristic information, and then perform data noise reduction
processing on each component. Commonly used data decomposition algorithms include
empirical mode decomposition (EMD) (Huang et al., 1998; Ren, Suganthan & Srikanth,
2015), extended EMD (EEMD) (Wu & Huang, 2009), complete EEMD with adaptive noise
(CEEMDAN) (Yeh, Shieh & Huang, 2010), empirical wavelet transform(EWT) (Gilles,
2013), and variational mode decomposition (VMD) (Dragomiretskiy & Zosso, 2014).

Ahmed et al. (2019) proposed a water quality prediction model based on neuro-fuzzy
inference system and wavelet denoising technique. Eze et al. (2021) used EEMD and
LSTM to form a chlorophyll-a concentration prediction model. Fijani et al. (2019)
implemented a water quality parameter monitoring model based on the two-layer
decomposition method (CEEMDAN and VMD) and extreme learning machine. Ren et al.
(2020) proposed dissolved oxygen prediction in recirculating aquaculture systems based
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on VMD and a deep belief network (DBN). Barzegar, Asghari Moghaddam & Adamowski
(2016) proposed wavelet-artificial intelligence hybrid models for water quality prediction.
Liu, Xu & Li (2016) proposed a water temperature prediction model using empirical
mode decomposition with back-propagation neural networks. Huan, Cao & Qin (2018)
proposed a dissolved oxygen (DO) prediction model based on ensemble empirical mode
decomposition (EEMD) and least squares support vector machine (LSSVM). Fan et al.
(2021) proposed a hybrid prediction model based on wavelet decomposition(WD) and
LSTM. These studies showed that a denoising algorithm based on data decomposition is a
useful tool for time series preprocessing.

The EMD decomposition algorithm is prone to end effect and mode mixing problems.
EEMD and CEEMDAN suppress the mode mixing problem to a certain extent, but there
are problems of excessive decomposition and noise residue. The EWT algorithm needs to
set the wavelet basis function, the number of decomposition layers and the noise reduction
threshold in advance, and human factors have a greater impact on the decomposition
results. VMD is a completely nonrecursive variational mode decomposition model (Lei,
Su & Hu, 2019). By setting the parameters reasonably, VMD can effectively suppress mode
mixing and end effect problems. In addition, there is no need to set wavelet functions in
advance, and it can perform signal processing adaptively. VMDhas advantages in processing
nonstationary signals and suppressing noise.The above decomposition and denoising
methods have good denoising effects, but they also have some shortcomings. In recent
years, an increasing number of studies have shown that hybrid denoising methods have
better performance than single denoising algorithms (Cao et al., 2021; Nie, Wang & Zhao,
2018; Fu et al., 2020). To effectively decompose and denoise sea cucumber aquaculture
water quality data, this article applied a hybrid algorithm combining variational mode
decomposition (VMD) and wavelet threshold denoising (WTD) to realize the denoising
processing of water quality data.

In the prediction model based on intelligent calculation, the recurrent neural network
(RNN) achieves good performance in the prediction of time series sequences. Long
short-term memory neural network (LSTM) improve the structure of recurrent neural
network. LSTM is a special RNN that solves the problems of gradient disappearance and
gradient explosion during long sequence training. The principle of gated recurrent unit
(GRU) is similar to that of LSTM, which simplifies the gating structure, which simplifies
the gating structure by combining the forget gate and the input gate into an ‘‘update gate’’,
has fewer parameters than LSTM, and can achieve functions equivalent to LSTM in some
applications. GRU (Gated Recurrent Unit) combines the unit state and the hidden state.
Since the structure of the GRU network is simpler than that of the LSTM, it requires fewer
parameters to adjust, and the training speed is faster, and the prediction performance is
roughly equivalent to that of the LSTM. Therefore, the GRU recurrent neural network is
used in this article to construct the water quality prediction model.

Like most neural network models, the prediction accuracy and stability of the
GRU model are affected by its hyperparameter settings. In order to better solve the
parameter optimization problem of intelligent models, a large number of intelligent
swarm optimization algorithms have been proposed in recent years, such as Particle
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Swarm Optimization (PSO) (Kennedy & Eberhart, 1995), Grey Wolf Optimizer (GWO)
(Mirjalili, Mirjalili & Lewis, 2014), Sparrow Search Algorithm (SSA) (Xue & Shen, 2020)
and so on. Whale Optimization Algorithm (WOA) (Mirjalili & Lewis, 2016), a new type of
algorithm, builds a model based on the hunting behavior of whales. It has the advantages
of simple optimization mechanism, few adjustable parameters, and effectively avoid local
optimization. The Whale Optimization Algorithm has the problems of slow convergence
speed and reduced global optimization ability in the later stage of iteration. Therefore,
this article improves the Whale Optimization Algorithm to elevate its optimization
performance, and it uses the IWOA (Improved Whale Optimization Algorithm) to
optimize the parameters of the GRU model and improves the prediction performance
through the reasonable parameter configuration of the GRU model.

In this article, GRU is used to construct a prediction model to predict and analyze
the changing trends of dissolved oxygen, water temperature and salinity in sea cucumber
aquaculture water. To improve the prediction accuracy of the GRU model, this article
uses VMD-WTD to effectively reduce the noise of the water quality data, and selects an
improved whale algorithm to optimize the parameters of the GRU prediction model. The
research contributions of this article are summarized as follows: (1) Using relative entropy
to optimize the VMD decomposition parameters, realizes the joint noise reduction in VMD
decomposition and wavelet threshold, and reduces the nonstationarity of water quality data
and the influence of noise on the prediction results. (2) By improving the calculationmethod
of the nonlinear convergence factor of the whale algorithm, the position update method of
the whale algorithm is optimized, the search accuracy and breadth are improved, and the
optimization performance of the algorithm is improved. (3) The improved whale algorithm
is used to optimize the parameters of the GRU recurrent neural network prediction model,
the optimal model structure and parameters are determined, and its convergence speed
and prediction accuracy are improved. The rest of the article is structured as follows. The
related theories, including VMD, wavelet threshold denoising, whale algorithm and GRU,
are introduced in ‘Materials and Method’. The proposed prediction model is presented
and compared with those of other existing methods in ‘Simulation Experiment and Result
Analysis’. The conclusions are presented in ‘Conclusions’.

MATERIALS AND METHOD
Variational mode decomposition
VMD (Dragomiretskiy & Zosso, 2014) is a nonrecursive adaptive decomposition processing
method that decomposes the input signal into different numbers of intrinsicmode functions
(IMFs) through continuous iteration. Each mode component has a certain bandwidth and
center frequency.In the VMD decomposition process, the number of modes k of the given
sequence can be customized, and the optimal center frequency and limited bandwidth of
eachmode can be adaptively matched in the subsequent search and decomposition process.

Variational mode decomposition finds k mode functions with the smallest sum of
estimated bandwidths, and requires the sum of all mode functions to be the original signal.
The resulting constrained variational problem is shown in Eq. (1) (Rehman & Aftab, 2019).
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min(wk,uk)

{∑
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e−jwk t
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(1)

s.t .
∑
k

uk = x(t ).

In the above formula, x(t ) is the original signal, k denotes the total number of IMFs,
and {uk} = {u1,u2, ···uk} are the k IMF components obtained after decomposition.
{wk} = {w1,w2, ···wk} represents the corresponding central frequency of the IMF
component. ∂t denotes the differential processing of t, ‖•‖2 indicates 2-norm processing,
δt is the Dirac function, j is the imaginary unit, and ∗ is the convolution operation (Niu, Xu
&Wang, 2020). To solve the optimal solution of the abovementioned variational problem,
the augmented Lagrange function is introduced, as shown in the following Eq. (2).
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π t

)∗uk(t )]e−jwk t
∥∥∥∥2
2

+

∥∥∥∥∥x(t )−∑
K

uk(t )
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2

2

+

〈
λ(t ),x(t )−

∑
K

uk(t )

〉
. (2)

In the above formula, α is the quadratic penalty term, λ is the Lagrangian multiplication
operator, and 〈∗〉 denotes the vector inner product.

Using the alternating direction multiplier algorithm (ADMM), {uik}, {wk}, and λ are
iteratively updated to find the above variational problem and obtain the saddle point of the
Lagrange function.When the accuracy requirements aremet, the iteration stops, and finally,
k optimal decomposition modal functions are obtained. The complete decomposition
process is detailed in reference (Dragomiretskiy & Zosso, 2014).

Relative entropy
Relative entropy is the quantification of the degree of difference between two probabilities
(Zhu et al., 2021). Relative entropy can measure the difference and closeness of two
probability distributions, and can be used as the loss function of some optimization
algorithms. The relative entropy between the probability density functions p(x) and q(x)
of the discrete random variable x is defined as formula ((3)):

D(p||q)=
∑
x∈X

p(x)log
p(x)
q(x)

. (3)

The Variational Mode Decomposition (VMD) algorithm needs to pre-set parameters such
as the number of modes k and penalty factor α. Studies have shown that the combination
of K and α values has a significant impact on the decomposition accuracy. Using relative
entropy to select the best combination of VMD parameters [k, α] can effectively avoid
insufficient or over decomposition, and achieve reasonable decomposition of the data
signal.

The implementation steps are as follows:
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Step 1: The water quality data is decomposed according to a decomposition algorithm
such as Empirical Mode Decomposition (EMD) that does not need to preset such
parameters as the number of decompositionmodes, and themax value of the decomposition
mode number k of the relevant sequence is determined.

Step 2: The initial value of the penalty factor α is set to 1000 according to experience
and the mode number parameter k is from two to the max value determined in step one,
and then Variational Mode Decomposition can be multiply performed on the signal. The
relative entropy of the modes obtained by each decomposition will be calculated, and the
k value corresponding to the minimum relative entropy is the best parameter.

Step 3: After the mode number parameter k is determined, the range of α is set as
[1000, 2000] according to experience, and α is incremented by 50 within the value range to
perform multiple VMD decompositions. The relative entropy of each decomposed mode
can be calculated, and then the optimal value of the penalty factor α can be determined
according to the smallest relative entropy.

Step 4: By using the VMD’s optimal parameter combination [k, α], the water quality
signal will be re-decomposed to obtain a more reasonable decomposition sequence.

Wavelet threshold denoising
The essence of wavelet threshold noise reduction is to decompose the signal containing
noise, and separate the signal and noise into wavelet packet coefficients with different
amplitudes. The coefficients with smaller amplitudes contain more noise. A suitable
threshold is used to strip the noise and retain the useful signal, to realize the denoising
processing of the original signal. In the process of wavelet threshold denoising, the threshold
function choice is very important. Wavelet threshold processing methods are divided into
hard thresholding and soft thresholding (Zhou et al., 2016).

The hard thresholding function expression is shown in Eq. (4):

si,j =

{
si,j,

∣∣si,j∣∣≥ λ
0,

∣∣si,j∣∣≺ λ (4)

where, si,j is the j-th wavelet coefficient on the i-th scale, and si,j is the wavelet coefficient
after hard threshold denoising. λ is the critical threshold (Badiezadegan & Rose, 2015) .

The soft thresholding function expression is shown in Eq. (5):

si,j =

{
sgn(si,j)(

∣∣si,j∣∣−λ), ∣∣si,j∣∣≥ λ
0,

∣∣si,j∣∣≺ λ. (5)

In the above formula, sgn(*) is called Signum function, which is a logic function to judge
the sign of its parameters.

When using wavelet threshold denoising, it is necessary to select the appropriate wavelet
basis, threshold and threshold function. According to the set parameters, the signal is
decomposed into a series of wavelet packet coefficients. After denoising and reconstructing
all wavelet packet coefficients according to the threshold function, the denoised signal is
obtained.
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Gated recurrent unit neural network
The gated recurrent unit (GRU) has two gated units, an update gate and a reset gate.
Compared with LSTM, the structure is simpler, the number of parameters is fewer, and
the model training more easily converges and predicts similar performances. The neuron
structure of the GRU neural network is shown in Fig. 1:

The update gate zt is used to control how much of the previous hidden state enters
the current input state, as in Eq. (6).

zt = σ (Wzxxt +Wzhht−1+bz). (6)

The reset gate rt reset gate is used to determine the degree of discarding previous
information, as in Eq. (7).

rt = σ (Wrxxt +Wrhht−1+br ). (7)

In the above formula, zt is the output of the update gate at time t, rt is the value of the reset
gate at time t, σ is the sigmoid activation function, ht−1 is the hidden state at t-1, and xt is
the input vector at the current time.Wrx ,Wrh and br are the corresponding weight matrix
and bias vector.

The reset gate output at the current time rt and the hidden state at the previous time
ht−1 are bitwise multiplied. The result of the operation and the input at the current time
are used to calculate the candidate hidden state h̃t through the fully connected layer with
the activation function tanh, as in eq. (8).

h̃t = tanh(Wxhxt +Whr (rt ⊗ht−1)+bh). (8)

The hidden state ht−1 at the last moment and the current candidate hidden state h̃t
perform related operations through the update gate to obtain the current hidden state ht ,
as in Eq. (9).

ht = zt ⊗ h̃t + (1−zt )⊗ht−1. (9)

The GRU neural network is a time recursive neural network. The gated loop unit can
retain relevant information and pass it to the next unit, which fully reflects the long-term
historical process of the time series, and is suitable for long-term prediction of the time
series.

Improved whale optimization algorithm
The whale optimization algorithm (Mirjalili & Lewis, 2016) is a swarm intelligence
optimization algorithm inspired by whale hunting behavior. The algorithm achieves
the goal of global optimization by simulating the three group behaviors of whale searching,
encircling and predation. In the whale algorithm, finding a solution to a problem can be
understood as the process of whales looking for prey. Whales first search for prey in space
and obtain relevant information, and then continue to surround and spiral close to the
prey. The behavior of the whale searching for the optimal position can be described by
formula (10):

Xt+1=X∗t −A
∣∣CX∗t −Xt

∣∣. (10)
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Figure 1 GRU neuron structure diagram.
Full-size DOI: 10.7717/peerjcs.1000/fig-1

In the above formula, Xt indicates the position vector of the current iteration, and t
indicates the current iteration number. A and C represent the coefficient vectors of the
convergence factor and the swing factor respectively, and X∗t is the position vector of the
best solution obtained thus far. The expressions of the efficient vectors A and C are shown
in formula (11) and formula (12) respectively.

A= 2EaEr−Ea (11)

C = 2Er . (12)

In the above formula, Er is a random vector with a value range of [0,1], and C is a random
number uniformly distributed in (0,2). The initial value of Ea is 2, and linearly decreases to
0 over the course of iterations, as in Eq. (13):

Ea= 2−2×
t

Tmax
(13)

where Tmax represents the maximum number of iterations.
However, in the iterative process of the algorithm, the linear change in a cannot

effectively reflect the convergence process of the parameters (Ding, Wu & Zhao, 2020; Peng
et al., 2021). Therefore, the following nonlinear convergence method is applied, as in Eq.
(14):

Ea= (ainit −afinal)(
Tmax− t
Tmax

)
3
. (14)
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In the above formula, ainit and afinal are the initial and final values of parameter Ea,
respectively, and Tmax is the maximum number of iterations. The improved whale
algorithm can ensure that the algorithm accelerates the convergence speed in the early
iterations to ensure the global search capability. In the later stage of the iteration, the
change in parameters slows down to improve the local search ability of the algorithm
(Luan et al., 2019).

The whale algorithm is set so that when |A|< 1, the whale chooses to swim toward the
optimal individual and executes the method of surrounding the prey; when |A| ≥ 1, the
whale cannot obtain effective clues, so it uses a random search for prey. When searching
randomly, the positions of other whales are updated according to the positions of the
randomly selected whales, to find a more suitable prey, so that the WOA algorithm can
perform a global search. As in Eq. (15).

Xt+1=X r
t −A

∣∣CX r
t −Xt

∣∣. (15)

In the above formula, X r
t is the position vector of the randomly selected whale.

When hunting, humpback whales eject a steam drum to form a bubble net to drive away
the prey, and swim to the prey in a spiral motion, so the mathematical formula of hunting
behavior is shown in Eq. (16):

Xt+1=
∣∣X∗t −Xt

∣∣ ·ebl .cos(2π l)+X∗t . (16)

In the above formula, b is a logarithmic spiral constant, and l is a random number in (−1,
1).

During the hunting process of a school of whales, each whale has a certain possibility
to choose to shrink and surround or spiral to approach its prey. The probability p is used
to judge the behavior of the whale. When p< 0.5, the enveloping contraction method is
executed, and formula (10) is used to update the position; when p≥ 0.5, the spiral approach
hunting method of formula Eq. (16) is executed.

Construction of the GRU prediction model based on the improved
whale algorithm
Sea cucumber aquaculture water quality data are easily affected by factors such as
temperature, rainfall, man-made operations, and sea cucumber metabolism. It has
characteristics such as nonlinearity, a large fluctuation range, and considerable noise,
which affect the prediction accuracy. This article uses variational modal decomposition
(VMD) to decompose the original time series data, andmines the characteristic information
of different time scales in the original signal to achieve data stabilization. By calculating the
correlation coefficient between each component and the original data, the noisy component
is determined, and the wavelet packet threshold denoising method is used to reduce noise.
To improve the prediction performance of the GRU recurrent neural network, the article
improves the whale optimization algorithm, applies the improved algorithm to optimize
the GRU model parameters, and builds a GRU water quality prediction model based on
the improved whale algorithm (IWOA-GRU), and the model construction flowchart as
shown in Fig. 2.
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Figure 2 The IWOA-GRU prediction model construction flowchart.
Full-size DOI: 10.7717/peerjcs.1000/fig-2

SIMULATION EXPERIMENT AND RESULT ANALYSIS
Data sources
This article selectes the water quality data of a sea cucumber farming area from a marine
ranch in Yantai, Shandong, China for simulation experiments. The Yantai sea area is
26,000 square kilometers, the coastline is 1,038 kilometers long, and it is located near 38
degrees north latitude. It has sufficient sunlight, and the water temperature is between
−1.0 and 28 throughout the year; the seawater salinity is between 28 and 32; the pH value
is between 7.8 and 8.2. It is the original ecologically good ground for sea cucumbers to
inhabit and multiply. The sea cucumber farming area in Yantai is approximately 596,000
mu, accounting for approximately 16.7% of China. Nearly 90% of Yantai sea cucumbers
are cultivated by bottom sowing in the sea.

This article used water quality data collected from June 2 to July 1, 2021, for experimental
verification. Water quality data were collected every 10 min, including the temperature,
salinity and dissolved oxygen of the aquaculture water. After data preprocessing, 4,106
valid data points were obtained. Eighty percent of the sample data were used as the training
set to train the prediction model, and the remaining data were used as the test set.
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Evaluation index
This article used mean absolute error (MAE), mean square error (MSE), and the coefficient
of determination (R2) as the evaluation indicators of model prediction performance (Filik
& Filik, 2017; Shcherbakov et al., 2013). (1) MAE is the average of the absolute value of the
error between the predicted value and the true value. As in Eq. (17):

MAE =
1
N

n∑
i=1

∣∣yi− ŷi∣∣. (17)

(2) MSE refers to the expected value of the square of the difference between the predicted
value and the true value; the smaller the value is, the better the accuracy of the prediction
model. As in Eq. (18):

MSE =
1
N

N∑
i=1

(ŷi−yi)2. (18)

(3) R2 is generally used to evaluate the degree of linear fit of the prediction model. The
closer its value is to 1, the better the prediction performance of the model. As in Eq. (19):

R2
= 1−

∑
(ŷi−yi)2∑
(ŷi− ȳi)2

. (19)

In the above three formulas, yi represents the true value, ŷi represents the predicted value,
ȳi is the average of the true value, and N is the number of samples.

Data decomposition based on VMD
The VMD decomposition method uses an iterative search for the optimal solution to
determine the set of modal components and their respective center frequencies, realizes
the effective decomposition of the inherent modal components (IMF) of the nonlinear
time series, and obtains a number of different frequency scales and relative stationary
subsequence.

The VMD algorithm needs to reasonably set the number of decomposition modes
K and the penalty parameter α. If the value of k is set too large, the sequence may be
overdecomposed, resulting in too many high-frequency modes. If the k value is too small,
the sequence will not completely decompose. If the value of α is too large, the frequency
band information will be lost, otherwise, the information will be redundant. This article
used relative entropy to optimize the parameters of VMD and determined the optimal
combination of the decomposition level K and the penalty factor α.

In this article, by calculating the relative entropy of the intrinsic mode component
(IMF) obtained in the iterative decomposition process, the optimal solution of K and
α corresponding to the minimum relative entropy was obtained. Figure 3 shows the
VMD decomposition effect of dissolved oxygen, water temperature, and salinity in sea
cucumber farming waters of a marine ranch in Yantai, China. According to the parameter
optimization based on relative entropy, the decomposition layer number K was 3, and the
value of α was 1,350.

The correlation factors between each IMF component obtained by VMD decomposition
and the original water quality sequence were calculated, and the IMF components were
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Figure 3 VMD decomposition effect of water quality data.
Full-size DOI: 10.7717/peerjcs.1000/fig-3

divided into noise dominant mode and effective information dominant mode according to
the correlation analysis. The IMF components whose correlation factor with the original
signal was less than 0.5 were processed by wavelet threshold denoising. As shown in
Table 1, it is the correlation coefficient between the dissolved oxygen, water temperature,
and salinity components and their original sequence.

Wavelet threshold denoising of noise dominant signals
The wavelet coefficient of the effective signal is greater than the wavelet coefficient of the
noise. Therefore, an appropriate threshold is selected, the wavelet coefficient of the effective
signal is greater than the threshold, and it is retained. Signals with wavelet coefficients less
than the threshold need to be denoised (Wu et al., 2015). The article used the wavelet
packet denoising algorithm combining soft and hard thresholds for the abovementioned
components whose correlation coefficients after VMD decomposition were less than 0.5.
The wavelet base was sym8, and the number of decomposition layers was 3. The threshold
function is shown in Eq. (20):

λ=
median(

∣∣W1,j
∣∣)

0.6745

√
2ln(N ). (20)

The effect of the original signal after VMD decomposition and wavelet packet threshold
denoising is shown in Fig. 4.
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Table 1 Correlation coefficient between IMF and original data.

Water quality index IMF1 IMF2 IMF3

Dissolved oxygen 0.662 0.726 0.369
Water temperature 0.983 0.221 0.096
Salinity 0.997 0.092 0.021

Figure 4 Water quality data denoising effect.
Full-size DOI: 10.7717/peerjcs.1000/fig-4

Construction of the water quality prediction model
When using the whale algorithm to train the recurrent neural network, due to the large
number of parameters in the recurrent neural network, the difficulty in finding the global
optimal solution increases accordingly, the search ability of the algorithm deteriorates, and
it easily falls into the local optimal state. In this article, an improved whale algorithm is
used to train and optimize the hyperparameters of the GRU recurrent neural network. The
specific steps are as follows:

Step 1: Perform noise reduction processing on the water quality data of sea cucumber
farming waters, and determine the training set and test set.
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Step 2: Set the number of hidden layers of the GRU cyclic neural network and the
number of neurons in each layer, the number of model training iterations, learning rate
and other parameters, and construct a parameter vector wi={w1,w2,...wn}, where n is the
number of parameters.

Step 3: Initialize the whale algorithm population size, maximum number of iterations,
initial minimum weight and maximum weight and other parameters. Convert the
parameter vector in step 2 into the position vector of the improved whale algorithm.

Step 4: Use the mean square error between the output value predicted by the model and
the measured value as the fitness function. Calculat the fitness value of each whale and
determin the current optimal position vector.

Step 5: Iteratively update the position vector according to the improved optimization
strategy.When themaximumnumber of iterations ismet or the error accuracy requirement
is met, the optimization algorithm is terminated, and the current optimal parameters are
assigned to the GRU prediction model.

step 6: Use the optimized GRU neural network to predict water quality indicators such
as dissolved oxygen, water temperature, and salinity, and evaluate the prediction effect.

Take the denoised water quality data as input samples, and apply the improved whale
algorithm in this article to optimize the learning rate, number of iterations, number
of hidden layers, and the number of neurons in each layer of the GRU recurrent
neural network. By empirical data being selected, and being adjusted through multiple
experiments, the parameters of the whale algorithm are set as follows: the number of whales
is 50, the maximum number of iterations is 200, and the number of dimensions is six.
The position of the whale represents parameters such as the learning rate, the number
of iterations, the number of neurons in the first hidden layer, the number of neurons in
the second hidden layer, the batchsize, and the timesteps of the GRU model. Taking the
dissolved oxygen data prediction as an example, the optimization process of the parameters
of the GRU prediction model by the improved whale algorithm is shown in Fig. 5.

Forecast effect analysis
To verify the prediction performance of the model in this article, support vector regression
(SVR), convolutional neural network (CNN), random forest (RF), long short-termmemory
(LSTM) , and gated recurrent units (GRU) were used to conduct water quality prediction
experiments to observe the prediction effects of different models on sea cucumber
aquaculture water quality data. To eliminate the contingency of results caused by one
experiment, five experiments were carried out on each model, and the average of the
results of multiple experiments was taken as the final experimental result. The evaluation
indicators of each model are shown in Table 2.

It can be seen in Table 2 that the water quality prediction model proposed in this article
achieves higher prediction accuracy than the other compared models. Among them, the
prediction performance of the LSTM and GRU recurrent neural network are equivalent,
and the value of R2 is greater than 98 percent, which is better than prediction models
such as RNN, SVR, CNN and RF. The structure of the GRU recurrent neural network is
optimized through the improved whale algorithm, which greatly improves its prediction
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Figure 5 Parameter optimization curve.
Full-size DOI: 10.7717/peerjcs.1000/fig-5

Table 2 Forecast model accuracy comparison.

Prediction model Dissolved oxygen Water temperature Salinity

MAE MSE R2 MAE RMSE R2 MAE MSE R2

SVR 0.1514 0.0359 0.9235 0.1794 0.0486 0.8963 0.2495 0.0893 0.8297
CNN 0.0668 0.0064 0.9861 0.0530 0.2101 0.9301 0.1965 0.0931 0.8105
RF 0.0798 0.0098 0.9785 0.1373 0.1876 0.8959 0.0859 0.0559 0.9655
RNN 0.0785 0.0165 0.9691 0.1026 0.0217 0.9593 0.0888 0.0184 0.9825
LSTM 0.0449 0.0041 0.9864 0.1010 0.0285 0.9845 0.0961 0.0136 0.9825
GRU 0.0485 0.0059 0.9889 0.0912 0.0191 0.9891 0.0846 0.0169 0.9827
IWOA-GRU 0.0335 0.0035 0.9983 0.0361 0.0072 0.9954 0.0533 0.0118 0.9947

Notes.
Results for the IWOA-GRU model are shown in bold.

performance. Taking water temperature as an example, MAE decreased by 60.4 percent,
MSE decreased by 62.3 percent, and the value of RR increased to more than 99 percent.
The experimental results show that the prediction model in this article can predict the
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Figure 6 The prediction effect of the SVRmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-6

Figure 7 The prediction effect of the CNNmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-7

water quality of sea cucumber farming with higher precision. The prediction effect of each
comparative model on dissolved oxygen is shown in Figs. 6, 7, 8, 9, 10, 11 and 12.

Figures 6, 7, 8, 9, 10, 11 and 12 show that the predicted value on the dissolved oxygen
sequence of the IWOA-GRU model in the article is the closest to the true value curve, and
themodel has the smallest prediction error and the highest degree of linear fit. LSTMneural
network and GRU neural network have the characteristics of being suitable for processing
time series problems, and simultaneously solving the problem of long-term dependence
in the time dimension. The prediction curve fitting effect is better than that of RNN, RF,
CNN, and SVR. Through further experimental observation, the prediction effects of each
model on water temperature and salinity are shown in Figs. 13 and 14 below.

In Figs. 13 and 14, it can be seen that the water temperature and salinity of sea cucumber
farming waters are easily affected by the external environment, there are many data
mutations, and the overall stability of the prediction effect is lower than that of dissolved
oxygen. Themodel proposed in the article improves the accuracy and stability of traditional
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Figure 8 The prediction effect of the RFmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-8

Figure 9 The prediction effect of the RNNmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-9

Figure 10 The prediction effect of the LSTMmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-10
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Figure 11 The prediction effect of the GRUmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-11

Figure 12 The prediction effect of the IWOA-GRUmodel on dissolved oxygen.
Full-size DOI: 10.7717/peerjcs.1000/fig-12

prediction models. The prediction errors are smaller than those of the other compared
models, and the overall trend is more consistent with the original data. It also has more
accurate predictions for sudden changes and peaks in the data, with the highest degree of
fit.

To further verify the generalization performance of the prediction model (IWOA-GRU)
in this article, the water quality data of the sea cucumber farming area of four marine
ranches in the Shandong Peninsula, China are used for further experimental verification.
The water quality indicators are dissolved oxygen, water temperature and salinity. The
results of the experiment on a certain day are shown in Fig. 15.

As seen in Fig. 15, this model has stable prediction performance when the water quality
data change relatively smoothly. When the data undergo large jumps, it can also predict the
change trend better and improve the prediction accuracy of the peak value of the sequence.
This model has a good fitting effect on the overall change trend of various water quality
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Figure 13 Predictive effect of each comparative model on water temperature.
Full-size DOI: 10.7717/peerjcs.1000/fig-13

Figure 14 Predictive effect of each comparative model on salinity.
Full-size DOI: 10.7717/peerjcs.1000/fig-14

data and its partial details, and is suitable for predicting the future change trend in sea
cucumber aquaculture water quality.

Conclusions
In this article, the combined noise reduction in VMD decomposition and wavelet threshold
can effectively strip the noise in the original data and reduce the influence of noise on
prediction accuracy. The GRU neural network solves the long-term dependence of time
series data forecasting, and is suitable for short-term or long-term forecasting of water
quality time series data. Whether the selection of the learning rate, number of hidden
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Figure 15 Water quality prediction effect of multiple marine ranches.
Full-size DOI: 10.7717/peerjcs.1000/fig-15

layers, and number of nodes of the GRU prediction model are appropriate will affect
its prediction performance. The parameters of the GRU prediction model are optimized
through the improved whale algorithm, and the IWOA-GRU water quality prediction
model is established by applying the optimal parameter combination, which can greatly
improve the prediction accuracy.

The water environment of the sea cucumber farming area is complex, and the model in
this article has a good predictive effect on the indicators of water temperature, dissolved
oxygen, salinity and other factors that have a greater impact on sea cucumbers growth. In
future studies, the mutual influence of water quality indicators will be studied, multivariate
predictions will be made, the impact of extreme weather conditions on water quality
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will be considered, and high-precision water quality prediction models under complex
environments will be explored.
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