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ABSTRACT
The application of Monte Carlo simulation and resampling techniques to analyse
possible binding stoichiometries in NMR titration experiments is presented. Four
simulated NMR titration experiments having complex species with 1:1, 2:1 and 1:2
stoichiometries were each analysed using a 1:1, 2:1/1:1, 1:1/1:2 and a 2:1/1:1/1:2 model
as implemented in SupraFit. Each best-fit model was inspected using Monte Carlo
simulation (MC), CrossValidation (CV) and a newprotocol termedReductionAnalysis
(RA). The results of the statistical post-processes were used to calculate characteristic
descriptors that are the base of the judgment for both, the models and individual
stability constants. The results indicate promising approaches to correctly identify 1:1,
2:1/1:1 and 1:1/1:2 models, however with some limitations in case of the 2:1/1:1/1:2
model. All simulations and post-processing protocols were performed with the newly
presented SupraFit.

Subjects Analytical Chemistry (other), Chemometrics, NMR Spectroscopy
Keywords Chemometrics, NMR spectroscopy, Statistical analysis, Supramolecular chemistry,
Titration experiment, Software package

INTRODUCTION
Supramolecular chemistry, the chemistry dominated by noncovalent interactions,
is a highly interdisciplinary field. While the first steps are connected to synthetic
chemistry (Lehn, 1988; Cram, 1988; Pedersen, 1988; Hoss & Vögtle, 1994), physicochemical
methods became important to characterise and understand supramolecular systems (Schal-
ley, 2012). Nowadays, the role of supramolecular chemistry in biological processes,
including pathogenic ones, has become more and more clear (Mazik, 2009; Kubik, 2009;
Mazik, 2012).

The understanding of biological processes which are dominated by noncovalent
interactions benefits from the analysis of smaller model systems, which can be
comprehensively characterised with modern experimental (Walker, Joshi & Davis, 2009;
Mazik & Geffert, 2011; Francesconi et al., 2013; Rosien, Seichter & Mazik, 2013; Lippe &
Mazik, 2013; Kaufmann et al., 2014; Lippe & Mazik, 2015; Traulsen et al., 2015) and
theoretical methods (Wendler et al., 2010; Grimme et al., 2010; Caldeweyher et al., 2019;
Hohenstein & Sherrill, 2012; Sure, Antony & Grimme, 2014; Antony, Sure & Grimme, 2015;
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Brauer et al., 2016) as well as the combination of thereof (Kaufmann et al., 2012; Lohse et
al., 2015). An elementary process is the complex formation between two components A
and B (also termed host and guest). As a result of this complex formation, species of the
various composition or stoichiometry like AB, A2B, AB2 or AaBb in general may exist.
These species are connected through individual stability constants which are usually of
interest in the analysis of supramolecular systems. Assuming a system of A and B, where
AB exist alongside AB2, two individual stability constants K11 and K12 describe the ratio of
the concentration of the various species:

K11=
[AB]
[A][B]

(1)

K12=
[AB2]
[AB][B]

(2)

Common experimental techniques such as NMR titration or ITC experiments estimate
the stability constants alongside other mandatory parameters (chemical shifts, heat of
formation) based on the change of a signal that itself is a consequence of the change
in the concentrations. The change in concentration is due to the variation of the initial
concentration of the components A and B as set up during the experimental design.
Typically, the concentration of one component (A) is kept fixed while the concentration of
the other component (B) is varied resulting in a continuous change of the ratio of [B]0 and
[A]0. As the underlying mass-balance equations to calculate the equilibrium concentrations
are polynomial, the stability constants alongside with the other parameters are obtained
after nonlinear curve fitting of the experimental data (titration curve) (Thordarson, 2011;
Thordarson, 2012; Hirose, 2006). Given this fact, several difficulties arise: (a) The binding
stoichiometry is the model input and not the output. Hence, the stoichiometry does not
change during fit process, however parameters may become meaningless. (b) Nonlinear
regression with multiple parameters can have many different solutions, of which some
may have parameter with meaningless values after fitting. (c) In multiple linear regression,
variable selection on the basis of statistical tests is well described in the literature, however
in case of nonlinear regression a general or unified approach is to the best of the authors
knowledge not available.

Several strategies to tackle the binding stoichiometry problems have been discussed in
the literature. These strategies cover variation of the experimental set up or performing
different or complementary experimental techniques. For example, a method called
Continuous Variation, also known as Job’s Method, has been very popular however critical
shortcomings were identified in connection with supramolecular chemistry (Ulatowski
et al., 2016; Hibbert & Thordarson, 2016). It is therefore not recommended to apply Job’s
Method for analysing binding stoichiometries. Performing additional titration experiments
like UV/VIS and Fluorescence titration (Hirose, 2006) or analysing host-guest crystal
structures with X-ray experiments (Mazik, Cavga & Jones, 2005; Köhler et al., 2021) help to
understand binding stoichiometries better. However, on the one hand, X-ray experiments
depend on the crystal structures which may not be obtained routinely. On the other hand,
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solid state structures and solutions differ significantly, therefore a direct comparison may
be less meaningful. A typical example is the structural variety of liquid water and ice (Finney
et al., 2002; Odelius, 2009; Nilsson & Pettersson, 2011). Furthermore, additional titration
experiments depend on physical properties like fluorescence activity or a measurable
change of heat upon complex formation which may not always be ‘‘in place’’ (Schmidtchen,
2006; von Krbek, Schalley & Thordarson, 2017).

UV/VIS or Fluorescence titration can initially be analysed by determining the rank of the
absorption matrix (Wallace, 1960). The obtained rank estimates the number of (principal)
components contributing to the absorbance, giving an idea of the amount of species which
have to be considered. Using the web service Sivvu.org provided by Vander Griend et al.
(2021), a decomposition of the absorbance matrix is available. With only a few numbers of
chemical shifts tracked during NMR titration or in the limit of only one available signal,
the results of the decomposition may be of limitted relevance as the number of columns in
the data matrix is the upper limit of the number of factors. The same holds true in case of
ITC experiments, where only the integrated heat signal is processed. Some titration curves
can be analysed according to the Molar-Ratio or Mole-Ratio method (Yoe & Jones, 1944),
where two linear functions are used to fit the experimental data. These plots can easily be
generated using SupraFit. Although, critical shortcomings of the Mole-Ratio method have
been pointed out (Marcus, 1967; Momoki et al., 1969), a brief introduction in conjunction
with NMR titration will be given: The ratio of the components B and A ( B0A0

) assigned
to the intersection of the two linear functions indicates the stoichiometry. If the ratio is
1, a system with 1:1 stoichiometry was analysed. In case the ratio is below 1, 2:1 species
are relevant and if the ratio is above 1, 1:2 species have to be taken into account. Vander
Griend et al. (Kazmierczak, Chew & Vander Griend, 2022c) recently proposed an approach
to overcame the first limitation (a) mentioned above. By defining the stoichiometric ratios
(Eq. (3)) and the nuclearities (Eq. (4)) they reformulated the fitting problem.

ri=
bi
ai

(3)

ni= bi (4)

Using two auxiliary functions and so called z-factors, additional to the individual
stability constants the adequate stoichiometric ratios became parameters to be obtained
from a hybrid nonlinear fitting process. The fitting procedure is divided in a global particle
swarm optimisation to locate various minima across the stoichiometric error surface
and a local optimisation to minimise the error within the global minimum. The proposed
approach has been successfully tested on simulated and experimental data sets. TheMatLab
implementation is accessible via Zenodo (Kazmierczak, Chew & Vander Griend, 2022a) and
the protocol will available at Sivvu.org.

Hibbert & Thordarson (2016) proposed a post-processing strategy, which includes first
testing all possible models and then judging the result on the basis of scatter plots of
residuals and the sum-of-squared errors (SSE) F-test. In this article, additional strategies
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1Clearly, binding models having more
complex stoichiometries were also used,
however reported less frequently, which
may be due to either the limitation of the
used programs or the lack of justification
to use a more complex model. However,
in the recent development version of
SupraFit, binding models with any
stoichiometry AaBb can be applied in
conjunction with NMR and UV/VIS
titration as well as ITC experiments.

to support that post-processing procedure are proposed. In order to use that protocol,
no additional experiments have to be performed, however the results may give rise to a
modification of the experimental set up, such as considering additional ratios of [B]0 and
[A]0 during the experiments. Analogously to the approach proposed by Thordarson, the
main idea of this protocol is first to perform a statistical analysis after fitting possiblemodels
and second to compare for each used model the graphical results of this post-processing
analysing. Furthermore, the resulting plots and histograms are then characterised by
statistical descriptors like the standard deviation and Shannon entropy. However, the
descriptors are not based on somewhat fundamental physical relations like the so-called
spin contamination in the unrestricted Hartree–Fock ansatz (Szabo & Ostlund, 1989).
Hence, no justification to interpret the absolute values is given. The concept is more based
on a rule-of-thumb interpretation, as done for example using fractional occupation number
density (FOD) (Grimme & Hansen, 2015; Bauer, Hansen & Grimme, 2017), which can be
used to identify static electron correlation in molecules. The prior step is to estimate in
which dimension the results of the descriptors are expected to be in case they indicate
a model to be correct. This is realised using simulated experimental data with known
stoichiometries and then fitting various models to this experimental data. Special pattern
arising, if a model suits a simulated data set, help then to establish the rule-of-thumb
approach.

Two main differences to the protocol proposed by Vander Griend et al. (Kazmierczak,
Chew & Vander Griend, 2022c) have to be mentioned: In the approach of Vander Griend
et al. flexible stoichiometries are taken into account, while this approach was tested with
binding models having species of 1:1, 2:1 and 1:2 stoichiometries. These models were the
first ones implemented during the development of SupraFit as they are the most common
models which are considered in the recognition of carbohydrates with artificial receptors
(Mazik, 2009;Mazik, 2012;Miron & Petitjean, 2015; Amrhein, Lippe & Mazik, 2016; Kaiser,
Geffert & Mazik, 2019; Francesconi & Roelens, 2019; Davis, 2020).1 The second difference
compared to the protocol according to Vander Griend et al. is the evaluation of the models.
This proposed approach is based on the a posteriori evaluation of the models using various
statistical approaches while Vander Griend et al. use the root-mean-square error after the
optimisation of the parameters to evaluate the goodness of a model.

In this article, three different protocols are introduced which can be applied in
order to analyse the stoichiometries of species relevant in NMR titration experiments.
Furthermore, the proposed protocol may be independent of NMR titration experiments,
but an application to other curve-fitting problems has to be studied in detail, which is
out of the scope of this article. All proposed methods are implemented in the recently
presented program SupraFit (stable version 2) (Hübler, 2019; Hübler, 2022b) and are
accessible through an intuitive user interface. Exploiting the simulation functions in
SupraFit, the protocol can be tested for own problems. This article is organised as follows.
An introduction to Monte Carlo simulation and the statistical descriptors as well as
Cross Validation and the new protocol termed Reduction Analysis are given in ‘Methods
and Implementation’. The main aspects of the implementation in SupraFit are given as
well. After a short explanation of the data generation in ‘Data Generation’, the results
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are discussed in ‘Results’. In that context, four simulated NMR titrations of different
stoichiometries are each analysed using the available NMR titration models with a post-
fitting analysis using the statistical methods. The final statistical descriptors are calculated
from these results and discussed in detailed. The final aspects are summarised in ‘Summary
and Conclusion’. In that article simulated data sets are highlighted with underlines to
make them easily distinguishable from themodels fitted, which are highlighted using bold
text.

METHODS AND IMPLEMENTATION
Monte Carlo simulation (MC)
The usage of Monte Carlo simulation (MC) and Bootstrapping (BS) to estimate confidence
intervals using the percentile methods as proposed previously (Thordarson, 2011; Lowe,
Pfeffer & Thordarson, 2012) has already been presented in an earlier article (Hübler, 2022b).
Recently, Kazmierczak, Chew & Vander Griend (2022b) have analysed BS in context of
photometric titration experiments, including stock solution errors.

After performing MC or BS, the confidence interval does not contain information of
the distribution of individual obtained values for the parameters as only the percentile
is calculated (Efron, 1979). The dimension of the distribution e.g., the number of Monte
Carlo runs and the individual probability of any value to be obtained after a single run are
not taken into account. To include the number of Monte Carlo steps and the probability of
an individual parameter value, the histograms are further characterised using the standard
deviation (Eq. (5)) and the Shannon entropy (Eq. (6)).

σdist =

√√√√√ N∑
i
(xi−x)2

N −1
(5)

H (x)=−
∫

p(xi)ld(p(xi)) (6)

While the standard deviation is a common tool in every-days statistical judgement, the
Shannon entropy is more often used in pattern recognition and information theory (Bishop
& Nasrabadi, 2006). It is out of the scope of this article and SupraFit to deal with the various
aspects in pattern recognition, but themost important facts shall be summarised. If only one
possible result for a parameter is obtained, the probability p(x) is 1, resulting in an entropy
of 0. If however the possible results for a parameter are uniformly distributed across N
possible values, the entropy is maximum with−ln(1/N ). As consequence, the lower values
of the Shannon entropy indicate sharper peaks, while higher entropy indicate broader
peaks. In case of a normal distribution, the standard deviation and the Shannon entropy
are directly linked by Eq. (7) and the Shannon entropy gives no additional information.
However, for non-normally distributed random numbers (Bishop & Nasrabadi, 2006)
like in case of the distribution of the parameter values after Monte Carlo simulation in
connection with nonlinear regression, Eq. (7) is not true and the Shannon entropy accounts
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2In the current development version of
SupraFit this can be requested in the
settings.

for the distribution of the random numbers.

H (x)=
1
2
(1+ ln(2πσ 2)) (7)

As the Shannon entropy does not depend on the concrete values of the parameters (x)
itself but on the probability (px(x)), the Shannon entropy is dimensionless. The standard
deviation however has the dimension of the value. The comparison of the results of Monte
Carlo simulation with parameters of different dimensions is hence only meaningful if the
dimensionless Shannon entropy is used.

The discrete calculation of the Shannon entropy is given in Eq. (8), where B denotes the
number of bins and 1 the width of a single bin.

H (x)=−
B∑
i

p(xi)1ld(p(xi))− ld1 (8)

Since the Shannon entropy is in SupraFit calculated with the same number of bins for
each distribution individually, the width of a single bin depends on the distribution of
each parameter itself. For more compactly distributed values of a parameter, smaller bins
are obtained resulting in artificially increased entropy values. Hence the second term in
equation is omitted in the standard calculation and the Shannon entropy is calculated
according to Eq. (9) if not requested otherwise.2

H (x)=−
B∑
i

p(xi)1ld(p(xi)) (9)

Cross Validation (CV)
Cross Validation defines a resampling method (Efron, 1979), which usually is applied
to determine the ideal parameters or latent variables in multivariate statistics such as
PCA or PLS for example in QSAR studies (Gramatica, 2007). The parameters or latent
variables are judged according their predictive behaviour, which can in the simplest case
be determined as follows: Having a data set with N elements, in Leave-One-Out Cross
Validation (L1O-CV) N-1 data points are used to train a new model using a set of chosen
parameters or number of latent variables. The performance of the newly defined model
can be evaluated using the omitted data point which forms the test set. As there are N
independent possibilities to form a training set, N independent evaluations can be used to
judge the performance of the variables. Analogously, in Leave-Two-Out Cross Validation
(L2O-CV) pairs of two points configure the test set. The training set is composed of the
remaining N-2 data points, with N*(N-1) possible combinations. As the order is not
relevant, only N*(N-1)/2 combinations are unique.

In SupraFit, CV is not used in the described manner, which is to recalculate the test set
data points and estimate the performance of the variables on the base of statistical judgment.
Instead, it is implemented to judge the models if hypothetically fewer data points were
acquired. In the simplest approach (L1O-CV), each data point of the experimental data
set is left out once and the model is fitted. In the limit of only one tracked NMR signal or
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3If the maps were calculated individually
within separate threads, the threads or
maps had to be synchronised before the
fitting started. Otherwise the uniqueness of
the sequences is not ensured.

4Having a data set with 20 spectra and
leaving hypothetical 10 data points out,
S is 20!/2 ·10!= 184756, which can be
realised within a few minutes on a modern
eight core systems with hyper-threading
enabled. On the other hand, X = 5 and
N = 100 result in Smax = 7.5 ·107, which
might take several GB of RAM to simply
store the map, of which for example only
S= 104 replications are used at the end.

an ITC experiment, only single points can be left out. Having more than one NMR signal
analysed or several wavelength in case of photometric experiments, each point on the x
axis is assigned a vector of observed values, which will be simultaneously left out. However,
they will still be referred as data points within this context. As there are again N ways to
leave one point out, a distribution of N model parameters can be obtained. The analysis
of the distribution is performed in the same fashion as introduced in case of the Monte
Carlo simulation. Furthermore, L2O-CV as well as the generalisation Leave-X-Out Cross
Validation (with X < N) can be performed and analysed within SupraFit. In case of the
Leave-X-Out Cross Validation, the number of trials can be calculated using the general
formula for combinations (Eq. (10)).

Smax =
N !

X !(N −X)!
(10)

As advantage over the Monte Carlo Simulation, where an additional input parameter is
required and the results are not exactly reproducible, Cross Validation works without the
additional input and leads to reproducible results for the same combinations.

The individual parameter fitting procedures during Cross Validation are performed
as if there were Monte Carlo simulation, including the parallelisation. A benchmark on
the MC implementation with respect to the parallelisation was given previously (Hübler,
2022b). However some aspects of the data preparation, that is (a) the generation of the
map containing the pseudo-experimental data with left out points and (b) the selection
of the pseudo-experimental data, will be discussed in this context. In general, the valid
combination of points to be left out will be precalculated in order to maintain unique
calculation during parallel execution.3 In case of L1O and L2O, the number of parameter
fitting processes are N and N*(N-1)/2. Both can easily generated using a simple loop or
two nested loops, and if N < 100 routinely be evaluated in SupraFit. In case of more
points X to be left out and/or significantly larger amount of data points N acquired, the
number of possible combinations Smax easily reaches the limit of computational time
and resources.4 As consequence a random subset of the combinations has to be chosen
prior to the parameter fitting. In case of a greater number of N and the chosen value of
X, the preparation of all combinations Smax may take longer than the fitting of the subset
with S combinations itself. Therefore two approaches for the generation of the map are
implemented in SupraFit. (a) The whole map is calculated using nested loops. In case there
are fewer steps S than possible steps Smax requested, the individual pseudo-experimental
data sets are randomly chosen from the fully generated map using uniformly distributed
random numbers. (b) In the second approach, uniformly distributed random numbers
are used to generate S sequences (having the length X) of unique numbers which define
the points to be left out. Uniqueness of the sequences itself is ensured after sorting a newly
obtained one first and then comparing it to the previously generated sequences. A new
unique number within the sequences becomes more improbable as the sequence gets more
complete (1/X for the last number) and the uniqueness of the sequences becomes more
improbable as the number of already stored sequences increases. Therefore, this approach
becomes only more efficient compared to the nested loop precalculation if significantly
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fewer steps S than Smax are requested. Depending on the number S and the ratio of S and
Smax , SupraFit choses one approach in favour of the other, but each of the two algorithm
can be enforced from the user interface.

Reduction Analysis (RA)
During experimental design, the number of data points to be acquired and the ratio of
the initial concentration of the substances B and A to be analysed is of particular interest.
It has already been discussed by Thordarson, that for many systems ten points between
a ratio B0

A0
of 0 and 1.5 are most important, and additionally ten more up to a ratio of 50

should be acquired (Thordarson, 2011). SupraFit provides a new protocol called Reduction
Analysis (RA) which exploits possible redundancy if data points are included in the data set,
which itself do not change the model parameters. The fitted parameter of a 1:1 model on a
hypothetical experiment with 1:1 stoichiometry would not differ if fewer data points where
included during the fitting process, as long as more data points as essentially necessary for
an adequate determination for the 1:1 species are available. This approach is comparable
to the Mole-Ratio method : After the saturation point( B0A0

> 1) is reached, the observed
chemical shift changes less than in the range of (0< B0

A0
< 1). Limitation itself may arises

if the stability constants are low and saturation of the complex formation is not reached
within that threshold ratio, that is defined by the stoichiometry of the complexes. While
the condition of sufficiently stable complexes can not be expected a priory, the potential of
Reduction Analysis to indicate if model parameters are not appropriate will be discussed
within this article.

The automatic procedure is based on the step-wise reduction of the number of data
points beginning at the end. After each removal, the model is fitted to the remaining points
of the data set. The best-fit parameters θ̂ are stored and finally plotted as ‘‘function’’ of the
highest ratio, which is the ratio of the last available data point. Since titration should reach
at least the saturation point, all fitted parameter below the particular ratio are assumed
to differ significantly, even if the stoichiometric model is correct. To allow a rational
comparison of Reduction Analysis performed on different models, the standard deviation
of the parameters are calculated. Since every model needs a different ratio to be reached
during titration, the comparison of the naive standard deviation is not meaningful. Instead
the partial standard deviation σpt (Eq. (11)) is calculated, taken all data points above a
cut-off ratio into account. This cut-off is defined by the ‘‘highest necessary’’ saturation
point, therefore ensuring, that for all models the saturation point has been reached. In
SupraFit this cut-off is automatically set for NMR titration experiments according to the
tested models but may be changed to any value if necessary.

σpt =

√√√√√ N∑
i=k

(θ̂i− θ̂)2

N −k−1
(11)

with: N - last data point

k - first data point
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DATA GENERATION
To introduce theMonteCarlo approach and the resampling plans, the same simulatedNMR
titration as used previously (Hübler, 2022b) was taken. The concentration of component
A was set to [A]0 = 10−3 mol/L and component B was added up to a ratio B0

A0
of 3.98.

Additionally simulated data for a plain 1:1 model as well as of models with mixed 2:1/1:1
and 2:1/1:1/1:2 stoichiometries were used. The stability constants (lgK ) were chosen as
random numbers between 1 and 5. The upper limit of lgK = 5 in case of NMR titration
was discussed by Thordarson previously (Thordarson, 2011). In photometric titration
experiments, the sensing limit of the stability constants using global analysis was identified
to be K [A]0< 1000, which is satisfied by the chosen conditions (Kazmierczak et al., 2019).
On top of the ideal titration curve of seven tracked NMR signals in a range between 0 and
8 ppm, random numbers with σMC = 0.001 were added to the chemical shifts to account
for experimental noise; errors in stock concentrations were not included explicitly. The
simulated data sets are included in the Zenodo archive (Hübler, 2022a). Each simulated
data set was analysed with the four available models as follows: The best-fit parameters were
obtained from nonlinear regression and then post-processed usingMonte Carlo simulation
with 2,000 and 10,000 steps, Cross Validation (X = 1, 2, 3, 4 and 5) and Reduction Analysis.
In case of the L5O-CV, the default of 10,000 individual replications were randomly chosen
from the 15,505 possible combinations. The results of the statistical post-processing were
then used to estimate standard deviation and Shannon entropy values characterising the
histograms and the partial standard deviation in case of the Reduction Analysis. Simulated
data were preferred over experimental data to ensure that the underlying model is well
defined. As a result, the various fitted models and therefore the statistical descriptors can
then be judged according their performance to identify the original model.

RESULTS
Data set with 1:1/1:2 stoichiometry
Monte Carlo Simulation
Exemplary results of the Monte Carlo simulation (with S= 2000, σmc= SEy) of all four
models on top of the 1:1/1:2 data set are given in Figs. 1 and 2. The plots show both,
all parameters and stability constants only. The factor analysis of the chemical shifts
using Sivvu.org reveals three factors (Fig. S20B), indicating that three species contribute
to observed signals. This is in agreement with the original model, however no further
information about the stoichiometry of the species can be deduced using the analysis.

Following the ‘‘visual inspection,’’ the comparison of the histograms already gives an
estimation of the quality of the used models. Since the 1:1/1:2 model recovers the original
parameters, the results of the Monte Carlo simulations on top of the best-fit parameters
of the corresponding 1:1/1:2 model are considered as ideal results, having appropriate
distributions of the parameters and therefore standard deviation and Shannon entropy
values indicating well estimated model parameters. The histogram of each parameter
shows a narrow distribution (Fig. 1), which is also true for the simpler 1:1 model. The MC
simulation results of the 2:1/1:1 model give rather broad distributions (Fig. 2a), and since
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Figure 1 Histogram like charts after performingMonte Carlo simulation on top of the best-fit
1:1 model (A, B) and the best-fit 1:1/1:2 model (C, D) fitted to the simulated titration curve with
1:1/1:2 stoichiometry . The charts in (A) and (C) show all model parameters, the dimensionless stability
constants as log10 and chemical shifts in ppm, which is the standard way to plot Monte Carlo simulation
histograms in SupraFit. The charts (B) and (D) show only the stability constant, with the corresponding
parameter name above the curve. Apart form the incorrectly estimated value of lg K11 in the 1:1 model, the
distribution of the ‘‘observed’’ stability constants and chemical shifts are narrow and do not indicate an
inappropriate model.

Full-size DOI: 10.7717/peerjachem.23/fig-1

all parameter are plotted at once, they overlap. Neglecting chemical shifts and visualising
only the stability constants, the histograms reveal a broader distribution of the lg K21 and
a narrower distribution of the lg K11 values (Fig. 2B). The values of the stability constant
remain physical meaningful between one and three. The histogram of the most complex
model show only broadly distributed parameters, and focusing on the stability constants
only, lg K21 ranges from −7.5 to 3.0 being clearly non-physical. The correct parameter
appear to be narrowly distributed. Hence, from pure ‘‘visual inspection’’ the 1:1/1:2 model
and 1:1 model with both having narrower distributed parameters appear to behave much
better than the 2:1/1:1 and 2:1/1:1/1:2 model with broader distributed parameters.

However, the ‘‘visual inspection’’ is rather biased and need strictly comparable charts
(scaling, resolution, etc.). A more unbiased way utilises statistical descriptors derived from
the distribution of the parameters itself. In case of the stability constants, these statistical
descriptors—the confidence intervals and the values for the Shannon entropy and standard
deviation—are given for all four tested models in Table 1. As stated above, the results from
the 1:1/1:2 model are taken as reference. The results of the remaining models will then be
compared to the reference result.
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Figure 2 Histogram like charts after performingMonte Carlo simulation on top of the best-fit
2:1/1:1 model (A, B) and the best-fit 2:1/1:1/1:2 model (C, D) fitted to the simulated titration curve
with 1:1/1:2 stoichiometry. The charts (A) and (C) show all model parameters, the dimensionless
stability constants as log10 and chemical shifts [ppm], while the charts (B) and (D) show only the stability
constants. The distribution of the individual parameters—especially the distribution of the chemical
shifts—is broad. Hiding the chemical shifts, the distribution of the appropriate stability constants is
revealed to be comparable narrow, in particular the distribution of lg K11 in the 2:1/1:1 model. The
distribution of the lg K11 gets worse changing the 2:1/1:1 model to the more complex 2:1/1:1/1:2 model.

Full-size DOI: 10.7717/peerjachem.23/fig-2

Table 1 Stability constants of the four tested models, the 95% confidence intervals obtained from
Monte Carlo simulations including the median, σdist andH (x) calculated from the distribution of the
parameters, partitioned into 30 bins.

parameter θ̂ 1θ+
1θ− [θ− θ+] σdist H (x)

1:1/1:2 model; SSE= 0.0001; SEy = 0.0011
lgK11 3.81 +0.04−0.04 3.77 3.85 0.0188 0.0523
lgK12 2.11 +0.04−0.05 2.06 2.15 0.0242 0.0640

1:1 model; SSE = 0.0365; SEy= 0.0171
lgK11 3.10 +0.07−0.07 3.03 3.17 0.0344 0.0837

2:1/1:1/1:2 model; SSE= 0.0001; SEy = 0.0011
lgK21 1.99 +0.51−4.53 −2.54 2.50 1.6933 1.4813
lgK11 3.81 +0.06−0.06 3.75 3.87 0.0294 0.0796
lgK12 2.04 +0.09−0.10 1.94 2.14 0.0496 0.1164

2:1/1:1 model; SSE= 0.0018; SEy = 0.0039
lgK21 1.69 +0.49−0.50 1.18 2.18 0.2637 0.4507
lgK11 2.67 +0.09−0.12 2.55 2.76 0.0505 0.1336
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All parameters are unsymmetrically distributed around the best-fit values, which is
in agreement with the general findings by Motulsky and Christopoulos (Motulsky &
Christopoulos, 2003). A detailed analysis in case of stability constants has later been done by
Thordarson (Thordarson, 2011) and Vander Griend (Kazmierczak, Chew & Vander Griend,
2022b). In the 1:1 model, the confidence limits for lg K11 are a nearly twice the limits of lg
K11 in the 1:1/1:2 model. Furthermore, the standard deviation and Shannon entropy for lg
K11 are higher in the pure 1:1 model. According to the descriptors, the correct parameters
in the 2:1/1:1/1:2 model behave slightly worse than in the 1:1/1:2 model, but the confidence
interval as well as σdist and H(x) are in the same order of magnitude. On the other hand,
for the parameter lg K21 the simulation lead to the widest confidence interval and the
worst values of σdist and H(x). The parameter lg K11 in the 2:1/1:1 model is connected
to a value of the Shannon entropy between one obtained in case of the pure 1:1 and the
mixed 2:1/1:1/1:2 model, but with simultaneously having the worst values of σdist and
largest confidence interval. In contrast to lg K21 in the 2:1/1:1/1:2 model, the statistical
outcome in the 2:1/1:1 model is much better: a tighter confidence interval and smaller
values of σdist and H(x) were obtained. As lg K11 and lg K12 are sufficient to recover the
simulated titration curve, lg K21 can freely accept any value with only slightly improving
the resulting SSE . If the parameters linked to the chemical shift were not included in charts,
from pure inspection of the stability constant without comparing to other models, the
2:1/1:1 model could still be acceptable, with the unknown source of broader confidence
interval maybe rooted in experimental circumstances. Taking all parameters into account
(Figs. 2A and 2C), it is without comparing to other models clear, that the 2:1/1:1 and the
2:1/1:1/1:2 model are unsuited for the data set since some of the individual parameter take
even negative values. On the other hand using this judgment, the 1:1 model describes the
data sufficiently well.

Figure 3 shows the Shannon entropy (H(x)) and the standard deviation (σdist ) of the
Monte Carlo simulations with 2000 steps compared to simulations with 10000 steps.
The qualitative behaviour of both descriptors is identical for the tested models: The
lowest obtained values are assigned to the parameters of the 1:1/1:2 model. According
to the individual values of descriptors characterising the stability constants, lg K21 is
inappropriate while lg K11 and lg K12 are adequate to obtained well fitted models.

The former analysis indicates, that in order to ensure the qualitative behaviour of
the statistical parameters, the number of steps S in Monte Carlo simulations is of less
importance. However, for each model the according σMC value obtained after fitting was
used, which is the default input for the Monte Carlo simulation. Hence the different
outcome of the Monte Carlo simulation could be traced back to the different σMC values.
In a subsequent analysis, the input standard deviation σMC was then varied as follows:
Monte Carlo simulations of each best-fit model were repeated with all possible SEy value
obtained from the best-fit parameters of the four models. The results, visualised as bar
charts in Fig. 4, show the dependency of the Shannon entropy from the input standard
deviation for each model. In Fig. 4, results depicted with the letter A were obtained using
SEy from the 1:1 model (SEy = 0.01708) and with the letter B SEy from the 2:1/1:1 model

Hübler (2022), PeerJ Analytical Chemistry, DOI 10.7717/peerj-achem.23 12/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-achem.23


Figure 3 Calculated Shannon entropy (H(x)) and standard deviation (σdist ) of the individual stability
constants after Monte Carlo simulations with S steps. The lowest values were obtained for the 1:1/1:2
model.

Full-size DOI: 10.7717/peerjachem.23/fig-3

(SEy = 0.003889) was used. The results depicted with C are linked to the 1:1/1:2 model
(SEy = 0.00106) and with D to the 2:1/1:1/1:2 model (SEy = 0.00108).

The 1:1 model with the fewest parameters exhibits the worst fit, which is indicated
by the highest value of SSE and SEy (compare Table 1). Hence the individual values
of the descriptors obtained from Monte Carlo simulation with input A indicate worse
performance than in case of the input B to D, which are connected to lower values of SEy .
The bar charts in Fig. 4 show clearly lower values of H(x) in case the input SEy was taken
from a more complex model. Furthermore, the entropy falls below the values obtained
using correct 1:1/1:2 model when the lower SEy from the 2:1/1:1/1:2 model is applied.
The SEy value from the 1:1/1:2 model (C) is the second-best result, therefore using the
SEy value obtained from the fit of the 1:1 model (A) or 2:1/1:1 model (B) worsen the results
of the Monte Carlo simulations clearly. As the SEy obtained from the 2:1/1:1/1:2 model
(D) is the lowest, the best σdist and H (x) results are obtained using this input. In the same
manner, the resulting entropy gets lower when the Monte Carlo simulations of the 2:1/1:1

Hübler (2022), PeerJ Analytical Chemistry, DOI 10.7717/peerj-achem.23 13/31

https://peerj.com
https://doi.org/10.7717/peerjachem.23/fig-3
http://dx.doi.org/10.7717/peerj-achem.23


(a) 1:1 model

A B C D

0.02

0.04

0.06

0.08

H
(x
)

lgK11

(b) 2:1/1:1 model

A B C D

0.20

0.40

0.60

0.80

H
(x
)

lgK11 lgK21

(c) 1:1/1:2 model

A B C D

0.20

0.40

0.60

0.80

H
(x
)

lgK11 lgK12

(d) 2:1/1:1/1:2 model

A B C D

1.00

2.00

3.00

H
(x
)

lgK11 lgK21 lgK12

Figure 4 Comparison of different Shannon entropy values. Each bar in the charts corresponds a Monte
Carlo simulation with σMC according to the assigned letter. The letter is typed bold if σMC = SEy coming
from the original model. The SEy input for the calculations are (A) SEy = 0.01708, (B) SEy = 0.00388, (C)
SEy = 0.00106, (D) SEy = 0.00108.

Full-size DOI: 10.7717/peerjachem.23/fig-4

model are performed with SEy input from 1:1/1:2 or 2:1/1:1/1:2 model (Fig. 4B). On the
other hand, the Shannon entropy increases if the SEy value from the 1:1 model is applied.
Common for all calculations is the bad performance of lg K21 in all models regardless of
the input SEy . On the other hand, the entropy values of the correct parameters lg K11 and
lg K12 decrease systematically upon lowering the SEy .

As alternative to the input of a standard deviation to simulate experimental error,
Bootstrapping (BS) can be applied. During BS the residuals after fitting are randomly
added to the best-fit titration curve to recover the original error. The Shannon entropy for
each stability constants after applying Bootstrapping (S= 2000) to eachmodel are visualised
in Fig. 5. As observed previously, the Shannon entropy indicates lg K21 as inappropriate
stability constant and furthermore the 1:1/1:2 model as the best fitting model.

The application of Monte Carlo simulation after obtaining the best-fit model shows that
not only the most probable model should be tested - more information arise from explicit
wrong and overfitted models, as in the 2:1/1:1/1:2 sample. The correct model parameter
show lower H(x) and σdist values, while the incorrect parameters in the complex model are
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Figure 5 Calculated Shannon entropy after Bootstrapping with S= 2000.
Full-size DOI: 10.7717/peerjachem.23/fig-5

linked to higher values of the descriptors. On the other hand, Monte Carlo Simulation did
not indicate that the 1:1 model is not appropriate.

Cross validation
Leave-X-Out Cross Validation (LXO-CV) analysis with X = 1−5 was performed and the
Shannon entropy and the standard deviation of the histograms obtained for each stability
constants were calculated. The Shannon entropy for each LXO-CV run for all stability
constants are given in Fig. 6. Individual values obtained per model and parameter follow
the trend already obtained in the Monte Carlo simulation. The entropy for the correct
parameters (lg K11 and lg K12) tend to be lower than in case of the incorrect stability
constant lg K21. Furthermore lg K11 is lowest in the 1:1/1:2 model, followed by the 1:1
model. All this results are obtained with no supplementary input given in contrast to the
Monte Carlo Simulation, where a SEy has to be defined.

The concrete values for H(x) indicate that upon using higher order Cross Validation—
leaving more data points out—the entropy and the standard deviation increase.
Noteworthy, regardless of the type of the Cross Validation, the statistical descriptors
obtained for the model parameters indicate best performance for both lg K11 and lg K12.

Reduction analysis
Reduction analysis was performed on all tested models with the results shown in Fig. 7.
Upon continuously removing the very last data point from the data sets in case of the 1:1
model (Fig. 7A), lg K11 constantly increases until a ratio of [B]0

[A]0
= 1.8. The best-fit value
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Figure 6 (A–E) Shannon entropy of the histograms obtained for the distribution of the individual sta-
bility constants after several Cross Validation calculation for each model.

Full-size DOI: 10.7717/peerjachem.23/fig-6

of lg K11 goes up to 3.2. Afterwards, having only data points below a ratio of 1.8 included,
the best-fit value of the stability constants decreases. In contrast to that, the individual
parameters in the 1:1/1:2 model do not show such trend above a [B]0

[A]0
ratio of 2.0. However,
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Figure 7 Results of the Reduction Analysis for each tested model. The solid lines indicate the optimised
parameters if the titration was only performed up to the ratio according to the current x value. The dot-
ted lines indicate the optimised parameters after complete titration. In the chart (A) (1:1 model), the de-
viation from the fitted value upon removing the last data point can be observed. Although scaled differ-
ently, the optimised parameters of the 1:1/1:2 model remain constant above a ratio of 2.0 (B). The analysis
shown in (C) and (D) with wrong models indicate more deviation of the refitted parameter compared to
the originally optimised one, except for lg K11 in the 2:1/1:1/1:2 model, which behaves similar to lg K11 in
the 1:1/1:2 model.

Full-size DOI: 10.7717/peerjachem.23/fig-7

using only data points below that ratio, the fitted parameters differ from the originally
fitted values. According to that analysis, for correct description of a 1:1/1:2 model at least a
ratio of 2.0 is mandatory, which is in line with previous rule-of-thumbs for theMole-Ratio
method. In contrast to the 1:1/1:2 model, the trend in the stability constants of the 2:1/1:1
model show more deviations from the best-fit value upon removing the last data points.
The values for lg K11 in the 2:1/1:1/1:2 remain nearly the same above a ratio of 2.0, but
differ more below that ratio.

The rationalisation of Reduction Analysis is accomplished using the above introduced
partial standard deviation σpt (Eq. (11)) where different cut-off values were applied. As
cut-off values both a ratio of 1.8 and 2.0 were chosen. The results are represented as bar
charts in Fig. 8. Although the values of σpt allow rational comparison of reduction analysis,
empiricism is mandatory. As the 1:1/1:2 model should recover the simulated data best, the
resulting values for σpt are again considered as ideal or reference results. Starting with lg
K11 and a cut-off ratio of 2.0, the corresponding σpt decreases from 0.04037 in the 1:1model
to 0.00724 in the 1:1/1:2 model. In the 2:1/1:1/1:2 model, σpt reaches 0.02700 in case of lg
K11. In the 2:1/1:1 model, the partial standard deviation for lg K11 exhibits to highest value
(0.29115). In analogy, σpt for lg K12 increases from 0.03485 about a factor of seven changing
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Figure 8 (A–C) The comparison of the individual σpt values shows the good performance of the 1:1/1:2
model. In the 2:1/1:1/1:2 model, even the correct lg K12, that is connected to acceptable results in the
Monte Carlo simulation, has higher σpt values compared to those obtained for the correct model. The
analysis applied to incorrect parameter lead to larger σpt values in general.

Full-size DOI: 10.7717/peerjachem.23/fig-8

the model from 1:1/1:2 to 2:1/1:1/1:2 (0.25491), while σpt for lg K21 increases from 0.25578
by a factor of 1.8 to 0.45884. Removing the cut-off, all partial standard deviations get worse
and the differences between the models become less clear. Comparing the different sets of
σpt for both cut-off ratios (1.8 and 2.0) no qualitatively differences can be observed. Slightly
lower σpt values are obtained for the correct model with the higher cut-off ratio, which
is comprehensible since having the lower cut-off ratio, data points are included, at which
the saturation concentration for 1:2 complex has not been reached yet. The trend in the
partial standard deviations is similar to the trend of Monte Carlo results, where the lowest
values of H(x) and σdist are obtained for the correct model. Differences occur in the 2:1/1:1
model, where as result of the Monte Carlo simulation both the entropy and σdist of the
parameter lg K11 are lower than of the parameter lg K21 while using the reduction analysis,
the resulting σpt is higher for lg K11. Remarkable is the ‘‘visual’’ detection of the insufficient
1:1 model as the removal of data points lead to an increase of the best-fit parameter, each
below and above the optimal ratio of 1.0. Even in the 2:1/1:1/1:2 model lg K11 exhibits a
more constant behaviour.

Data set with 1:1 stoichiometry
In analogy to the data set based on 1:1/1:2 model, a simulated NMR titration with an
underlying 1:1 model was generated and tested using Monte Carlo simulations, Cross
Validation and Reduction Analysis. The main results, covering the Shannon entropy of
the distribution of individual parameters as well as the partial standard deviation are
shown in Fig. 9. A summary of all results is presented in the supplementary material (Figs.
S1–S5). The matrix decomposition analysis reveals two factors, which is in agreement
with two species contributing to the observed signals (Fig. S20A). Extreme outliers were
obtained during both Monte Carlo simulations on top of the best-fit 2:1/1:1 model. Since
the Shannon entropy is calculated using 30 bins to partition the histogram and due to the
presence of the outliers which enlarge the bins, a reasonable H(x) value for lg K11 was not
obtained. The standard deviation is independent of the partition of the histogram, therefore
reasonable results can be obtained regardless the distribution. While the combination of
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Figure 9 Calculated statistical descriptors for four models (A–D) obtained after Monte Carlo simu-
lation, Leave-3-Out Cross Validation and Reduction Analysis performed on a simulated NMR titra-
tion with a 1:1 model. Due to the presence of extreme outliers after Monte Carlo simulation on top of the
best-fit 2:1/1:1 model, the Shannon entropy could not be calculated for lg K11 in (A).

Full-size DOI: 10.7717/peerjachem.23/fig-9

the 2:1/1:1 model and Monte Carlo simulations lead to distribution with high standard
deviation, the obtained individual parameters after Cross Validation don’t exhibit that
pattern. According to the obtained statistical descriptors for each parameter, the 1:1 model
describes the simulated titration data best. However, the parameter lg K11, which performs
very well in the 1:1 model, performs badly if more complex models are analysed using
Monte Carlo simulation or Cross Validation.

Data set with 2:1/1:1 stoichiometry
The collection of the statistical descriptors obtained for analysis of the simulated data set
with 2:1/1:1 model are compiled in Fig. 10. A summary of all results is presented in the
supplementary material (Figs. S11–S15). The factor analysis indicating two species (Fig.
S20C) is not in agreement with the original model using three species contributing to
the observed shifts. In contrast to the 1:1 model, where only one parameter was correct,
in the current example both, lg K21 and lg K11, are mandatory to describe the data.
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According to the results visualised in Fig. 10, the descriptors indicating the performance
of the parameter of the 2:1/1:1 model are better (lower) than in the 2:1/1:1/1:2 model.
Furthermore the descriptors indicate that lg K11 performs in the 2:1/1:1 model better
than in the 1:1/1:2 model. However, in contrast to the previously discussed data of a
simulated 1:1/1:2 experiment, the values of the descriptors are in general higher, although
the absolute values are of limited meaning. The differences of the descriptors for lg K11 in
either the applied 1:1 or the 2:1/1:1 model are not as clear as between the applied 1:1 and
the applied 1:1/1:2 model. In case of H(x) for lg K11 after MC with 2000 steps, the entropy
drops from 0.08374 (1:1 model) to 0.05235 (1:1/1:2 model) by a factor 0.63 in the simulated
1:1/1:2 titration and from 0.25172 (1:1 model) to 0.22620 (2:1/1:1 model) by a factor of
0.90 in the simulated 2:1/1:1 titration data set. Using the L3O-CV results, the difference is
clearer. The entropy drops from 0.50499 (1:1 model) to 0.17749 (2:1/1:1 model) by factor
0.35 in case of the 2:1/1:1 titration. The change of the entropy in the 1:1/1:2 titration is by a
factor of 0.68, from 0.04696 (1:1 model) to 0.03214 (1:1/1:2 model) respectively. However,
the results in Fig. 10 indicate that the 1:1/1:2 model performs worse than the 2:1/1:1 or
1:1 model, therefore only 1:1 model could be considered as alternative model. Comparing
this results with results obtained for the pure 1:1 model, lg K11 performs clearly worse if a
2:1/1:1 model is fitted to a 1:1 data set. Following this pattern, the statistical post-process
did not fail to detect 2:1/1:1 stoichiometry correctly, although the results are not as clear
as in case of the 1:1/1:2 model.

Data set with 2:1/1:1/1:2 stoichiometry
In contrast to the correct detection of the appropriate models in the previous discussion,
the individual parameters obtained for the stability constants don’t reflect lg K21 as suitable
parameter (Fig. 11). A summary of all results is presented in the supplementary material
(Figs. S16–S20). According to the factor analysis, three species contribute to the observed
signals (Fig. S20D), which is not in agreement with the data set. In both models, 2:1/1:1 and
2:1/1:1/1:2, the statistical descriptors for lg K21 show higher values than the descriptors of
lg K11 and lg K12. Although the identification of the correct stoichiometric model was not
possible with the statistical post-processing, this can be rooted back to the simulated data.
The titration data was simulated with lgK21= 1.85, lgK11= 3.60 and lgK12= 2.40, where
only the stability constants lg K11 and lg K12 were recovered correctly (3.61 and 2.42). The
stability constants lg K21 was estimated to be 0.21, indicating no 2:1 stoichiometry at all.
The correct estimation of 2:1 stoichiometry is somewhat difficult, as the concentration of
the 2:1 species is lower than for the other species. Therefore the influence of this complex
to the overall observed signal is of less importance.

Averaged statistical descriptors
Averaged statistical descriptors for the stability constants calculated for each model and
for each parameter are illustrated in Figs. 12 and 13. The chart in Fig. 12 shows the average
of the descriptors like H(x) and σdist obtained for all parameters within a single model.
For example the blue bar represents the average of the descriptors for all parameters of
the 1:1 model, which is lg K11. The orange bars represent the average of the descriptors
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Figure 10 Calculated statistical descriptors for four models (A–D) obtained after Monte Carlo simu-
lation, Leave-3-Out Cross Validation and Reduction Analysis performed on a simulated NMR titration
with a 2:1/1:1 model.

Full-size DOI: 10.7717/peerjachem.23/fig-10

for lg K11 and lg K12, which are the stability constants in case of the 1:1/1:2 model. As
each bar represents the average values of the descriptors for each applied model, the
general quality of the fit using a specialmodel on top of the data set is easily deduced. The
model fitted best to the simulated 1:1 systems is the original 1:1 model, where however
the average descriptor is obtained for only one stability constant. The average partial
standard deviation in case of the other tested models is higher, with the highest value
obtained for the 1:1/1:2 model. According to the average σpt , the 1:1/1:2 system is best
described by the 1:1/1:2 model and worst by the 2:1/1:1 model. A similar agreement
between the true simulated model and lowest averaged descriptors was obtained in
case of the 2:1/1:1 model, however the difference of the σpt value compared to the 1:1
model is very small. Using the average descriptors for σpt , the 2:1/1:1/1:2 model was
not identified as the correct one. Better results were obtained fitting a 1:1 and 1:1/1:2
model to the simulated data with 2:1/1:1/1:2 stoichiometry, which is in accordance with
results discussed in Section ‘Data set with 2:1/1:1/1:2 stoichiometry’. Results obtained with
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Figure 11 Calculated statistical descriptors for four models (A–D) obtained after Monte Carlo simu-
lation, Leave-3-Out Cross Validation and Reduction Analysis performed on a simulated NMR titration
with a 2:1/1:1/1:2 model.

Full-size DOI: 10.7717/peerjachem.23/fig-11

Reduction Analysis were comparably recovered using Cross Validation and calculated
Shannon entropy and standard deviation of the distribution. Comparing the averaged σpt
values with the averaged Shannon entropy, the difference is similarly small in case of the 1:1
and 2:1/1:1 model applied to the 2:1/1:1 data set (Figs. 12A and 12B). In contrast, using
σdist to characterise the distributions of stability constants the standard deviation obtained
for both, the 1:1 and 2:1/1:1 model differ more clearly (Fig. 12C). The results with the
remaining CV and MC calculations can be found in the supporting information. Apart
from the mixed 2:1/1:1/1:2 model, post-processing after RA, CV and MC identifies the
correct models by assigning them the lowest value of the averaged descriptors compared
to the remaining models. The absolute values of these descriptors have not been identified
as meaningful on its own.

Similar to the average descriptors obtained for each model individually, the average
can be calculated for the all parameters, e.g., stability constants. In Fig. 13A, the blue bar
represents the average of four σpt values obtained for the stability constant lg K11 from
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Figure 12 (A–C)Model-wise average of the statistical descriptors calculated for each model using the
model parameters for a given simulated titration experiment. In case of the fitted 1:1/1:2 model on top
of the simulated 2:1/1:1 experiment, a value σdist around 11 was obtained.

Full-size DOI: 10.7717/peerjachem.23/fig-12

Figure 13 (A–C) Parameter-wise average of the statistical descriptors calculated for each parameter of
all models applied to a given simulated titration experiment.

Full-size DOI: 10.7717/peerjachem.23/fig-13

the 1:1, the 2:1/1:1, the 1:1/1:2 and the 2:1/1:1/1:2 model. The green bar represents the
average of all lg K21 stability constants, however obtained for fewer models. The remaining
average descriptors are obtained in a similar fashion for all stability constants of all data
sets. It is obvious from the charts in Fig. 13 that apart from the 2:1/1:1/1:2 model, the most
appropriate stability constants in general have lower average values compared to those
which are inappropriate. This is true for RA aswell as L3O-CVusing both descriptors.While
this recovers the expectation derived by the previous discussion, there is a fundamental
shortcoming in this context. In contrast to the average descriptors for each model, focusing
on the stability constants or the other model parameters, an a priori knowledge of the
number of model parameters is mandatory. Given the result in Fig. 13A for the 1:1 model,
the difference between σpt for lg K11 and lg K21 is much lower than compared to σpt for
lg K12. On the other hand, in case of the 1:1/1:2 model, the difference between lg K12 and
lg K21 is much lower than in the simulated 1:1 model. And the difference between the σpt
values for the correct stability constants lg K11 and lg K12 (1:1/1:2 model) is comparable to
the difference between the correct lg K11 and the inappropriate lg K21(1:1 model). Some
differences become clearer if the CV results were analysed. However, if both, the number of
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appropriate parameters and the parameter itself, are unknown, the parameter-wise average
of the descriptors is not meaningful.

Based on the results for both strategies to calculated average descriptors, the meaningful
approach is to average over all parameters for a given single model and not to average over
all identical parameters for all models. However, both strategies are applied automatically
upon comparing the results of the statistical post-processing for appliedmodels in SupraFit.

SUMMARY AND CONCLUSION
The application of Monte Carlo simulations, Cross Validation and Reduction Analysis to
identify appropriate model parameters (e.g., stability constants) and models in the analysis
of NMR titration experiments was presented. Four different NMR titration experiments
on the base of the models implemented in SupraFit (of 1:1, 2:1/1:1, 1:1/1:2 and 2:1/1:1/1:2
stoichiometry) were simulated. Each of the simulated models was analysed using the four
available models and the best-fit results were further processed using statistical approaches.
In the study, only the stability constants were discussed as they are the global parameters.
The parameters linked to chemical shifts were not included as they represent only local
parameter in a global fit analysis.

The visual inspection of the statistical results reveals for the histograms after MC
and CV differently shaped distributions of the model parameters. Parameters coinciding
with the stability constants that were used in order to generate the simulated data are
associated with a narrower gaussian-like distribution of the possible parameters. Stability
constants that were not part of the original model are connected with both, a broader
and a non gaussian-like distribution, having sometimes several maxima. The breadth of
the distribution is in agreement with the change in the confidence interval, that can be
calculated based on the percentile method. To the best of the authors knowledge, the
combination of Cross Validation and the percentile method has not been proposed as
protocol to calculate confidence intervals.

Reduction analysis results are represented as function of the model parameter from the
current ratio of the initial concentration of the components B and A ( B0A0

), or in general
from the last included input data point. In case of the correct model, the appropriate model
parameters don’t vary from the best-fit value in the same magnitude as the inappropriate
model parameters upon removing the last data point. However, once a threshold is reached
the difference to the best-fit value increases as well. In case of the NMR titration, this
threshold coincides with the saturation point.

The rational non-visual comparison of the analysis is further done using statistical
descriptors. The histograms representing the distribution of the individual stability
constants resulting from Monte Carlo simulations and Cross Validation are the base
for calculation of the Shannon entropy H(x) and the standard deviation σdist . The results
of the Reduction Analysis are simplified by the descriptor σpt which represents the
deviation of any model parameter from its best-fit value above a threshold. The statistical
descriptors were compared for (a) each stability constants individually, (b) averaged for all
parameter in a tested model (model-wise) and (c) averaged over all identical parameters
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covering all models (parameter-wise). The individual comparison of the stability constants
was comprehensively discussed in case of the 1:1/1:2 model, showing clearly that the
lowest value of the descriptors was obtained for lg K11 followed by lg K12. It was further
observed, that lower values of that descriptor were obtained in Monte Carlo simulation
if the input standard deviation was decreased. An analogous decrease of the values for lg
K21 in conjunction of Monte Carlo simulation with various σMC values was not observed.
Furthermore, the individual values for σdist and H(x) were higher than for lg K11 and lg
K12.

Monte Carlo simulation with different standard deviation as well as Bootstrapping and
Cross Validation with different strategies to leave data points out result in distribution
of the stability constants that indicate lg K11 and lg K12 as appropriate parameters, and
therefore the original stoichiometry was recovered correctly. In the same fashion, Reduction
Analyses result in σpt values that for both threshold, 1.8 and 2.0, indicate both lg K11 and
lg K12 as appropriate model parameters. Thresholds according to lower ratio would not be
sufficient as the ideal saturation point in case of the 1:2 stoichiometry is 2.0.

Both strategies, parameter-wise and model-wise average descriptors coincide with the
above outlined results indicating the 1:1/1:2 model as the best. The discussed protocol,
including the averaged parameters, identified the 1:1 and 2:1/1:1 stoichiometry in the
simulated data as well, however the descriptors associated with lg K21 or the 2:1/1:1
model indicate worse performance compared to lg K12 or the 1:1/1:2 model. This protocol
however failed in the test case for a simulated 2:1/1:1/1:2 NMR titration. In case of the
parameter-wise averaged descriptors, failure is intrinsic as from the three available model
parameters the three best have to be picked. On the other hand, using the model-wise
average parameters, the 2:1/1:1/1:2 model is best described by a 1:1/1:2 model. However,
this case is no contradiction as the best-fit 2:1/1:1/1:2 model results in a lg K21 value
below 1. On the basis of the simulated experiment, no meaningful stability constant for
a 2:1 species could be assigned, which therefore was correctly supported by the statistical
post-processing.

While the outlined protocols indicate the potential to detect correct models and
model parameters, the first shortcoming was identified in the correct detection of the
2:1/1:1/1:2 model. Another, more general, shortcoming arises as only one data set per
model was tested. In case of the first deficit, it is however not clear if a model with as many
parameters as occurring in the 2:1/1:1/1:2 model can be justified based on the available data
points or if more data points have to be acquired. If there is however a strong evidence for
a mixed 2:1/1:1/1:2 model which is not supported from results of the discussed protocols,
the experimental set up may be changed. SupraFit provides an user interface, which help
to plan the experimental set up, furthermore Vander Griend (Kazmierczak et al., 2019)
provided a detailed study on the limits of the sensitivity with respect to the determination
of stability constants.

Future research will therefore focus on how the experimental design has to alter
in general, e.g., include data points in various concentration regime, to then correctly
estimate the more complex model. The failure to correctly detect the 2:1/1:1/1:2 model
may coincide with the second shortcoming, that only one simulated data set was tested
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during the proposed protocol. In case of another simulated titration experiment with
2:1/1:1/1:2 stoichiometry and reasonable best-fit binding constants for all species, the
detection may not necessarily fail. Hence, the simulation framework in SupraFit will be
extended and as a result, a large set of simulations can be performed and the limits of the
proposed protocol can be analysed in more detail. This will also include the sensitivity
with respect to the number of NMR signals included and the absolute change of the NMR
shifts observed. Furthermore, with the recently implemented models that may have any
possible species AaBb, the protocol will then be tested with more species available. The
extension of the simulation framework will also include adding noise to the independent
data, hence the influence of concentration errors in stock solution can be accounted for.
The application of the protocols or at least parts of them to ITC experiments is as well a
topic of future research. It is, however, assumed that the current status of the protocol,
that can be used with the stable version 2.0 of SupraFit, will already help to improve the
analysis and interpretation of NMR titration and underpin the potential of the statistical
approaches which account for models which are nonlinear in the parameters.
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