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ABSTRACT
Characterization of crude oil remains a challenge for analytical chemists. With
the development of multi-dimensional chromatography and high-resolution mass
spectrometry, an impressive number of compounds can be identified in a single
sample. However, the large diversity in structure and abundance makes it difficult
to obtain full compound coverage. Sample preparation methods such as solid-phase
extraction and SARA-type separations are used to fractionate oil into compound
classes. However, the molecular diversity within each fraction is still highly complex.
Thus, in the routine analysis, only a small part of the chemical space is typically
characterized. Obtaining a more detailed composition of crude oil is important
for production, processing and environmental aspects. We have developed a high-
resolution fractionation method for isolation and preconcentration of trace aromatics,
including oxygenated and nitrogen-containing species. The method is based on semi-
preparative liquid chromatography. This yields high selectivity and efficiency with
separation based on aromaticity, ring size and connectivity. By the separation of the
more abundant aromatics, i.e., monoaromatics and naphthalenes, trace species were
isolated and enriched. This enabled the identification of features not detectable by
routine methods. We demonstrate the applicability by fractionation and subsequent
GC-MS analysis of 14 crude oils sourced from the North Sea. The number of tentatively
identified compounds increased by approximately 60 to 150% compared to solid-
phase extraction and GC× GC-MS. Furthermore, the method was used to successfully
identify an extended set of heteroatom-containing aromatics (e.g., amines, ketones).
The method is not intended to replace traditional sample preparation techniques or
multi-dimensional chromatography but acts as a complementary tool. An in-depth
comparison to routine characterization techniques is presented concerning advantages
and disadvantages.

Subjects Hyphenated Techniques, Mass Spectrometry, Sample Handling
Keywords Petroleomics, PAHs, GC-MS, Crude oil

INTRODUCTION
The use of petroleum as a feedstock for energy production is declining. However, certain
critical functions cannot safely be replaced by renewable energy (International Energy
Agency, IEA)(2021). Secondly, petroleum is a fundamental feedstock for the production
of a large number of chemical starting materials (Aftalion, 2001; Yadav, Yadav & Patankar,
2020). Therefore, reducing the environmental impact of oil production is an important
goal. This requires a better understanding of petroleum on the molecular level. Crude
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oil is a complex mixture of saturated and aromatic hydrocarbons with a smaller fraction
of heteroatom-containing compounds, i.e., the resins and asphaltenes. The molecular
distribution typically ranges from 16 to 1,000 amu (Marshall & Rodgers, 2008). The
number of unique compounds is extensive and more than 240,000 molecular species
have been resolved in a single sample (Krajewski, Rodgers & Marshall, 2017; Palacio Lozano
et al., 2019). Due to this complexity, a large portion of the petroleum chemical space is
structurally unknown.

We have previously looked at the resins fraction (i.e., polar heteroatom-containing
species) of North Sea oils (Sundberg & Feilberg, 2020). Herein, we extend our work with a
focus on aromatics. Within this fraction, the dominant species (in terms of abundance) are
monoaromatic followed by a smaller amount of polycyclic aromatic hydrocarbons (PAHs)
(Requejo et al., 1996; Wei et al., 2018). The PAHs class is dominated by smaller (2 to 3
rings) PAHs, with larger species (e.g., chrysene, coronene) being present at trace levels. It
also contains small amounts of heteroatomic-containing ring structures (Mössner & Wise,
1999; Zhang et al., 2018; Carvalho Dias et al., 2020). Due to their toxicity, PAHs have been
extensively studied (Lawal, 2017). A large focus has been on the 16 priority pollutants PAHs
defined by the US Environmental Protection Agency (Keith, 2015). However, this list is not
representative of crude oils which contain a more structurally diverse PAH set (Andersson
& Achten, 2015; Stout et al., 2015, p. 16). Low molecular weight PAHs are susceptible to
weathering, primarily by volatilization, whereas high molecular weight aromatics are more
resilient (John, Han & Clement, 2016). Therefore, these are useful targets for oil-oil and
oil-source correlation and spill identification and environmental monitoring (Pampanin
& Sydnes, 2017; Poulsen et al., 2018).

Comprehensive identification of the aromatics is challenging due to the large
concentration variance. Traditionally, petroleum analysis is based on pre-fractionation
using silica chromatography or solid-phase extraction (SPE) cartridges followed byGC-MSn

(Wang, Fingas & Li, 1994; Alzaga et al., 2004; Pillai et al., 2005; Gilgenast et al., 2011). SPE
is a low-efficiency separation technique, based on chemical selectivity. This allows crude
isolation of the aromatics fraction, but not separation of the compounds within it (Fig. 1).
Thus, an aromatic fraction obtained by SPE contains both the benzenes, naphthalenes
and larger rings. Here, a typical crude oil will have a high abundance of monoaromatics,
with diminishing concentrations with increasing ring size. The appropriate GC on-column
concentration of the naphthalenes typically results in the larger ring systems being below
the limit of detection (LOD). By increasing concentration to push trace aromatics above the
LOD, both the column and detector will be saturated by the more abundant compounds.
This leads to high background levels which affect quantitation and may obscure mass
spectra complicating structural identification of unknowns (Zhao et al., 2014;Wilton, Wise
& Robbat, 2017). Furthermore, the poor resolution of SPE often leads to an overlap between
the saturated and aromatic hydrocarbons, which interferes with subsequent analysis. Thus,
although SPE is efficient for routine applications, a large portion of the sample remains
undetected. Comprehensive multi-dimensional chromatography (GC × GC) is often
used as an alternative to simplify or remove the need for sample pre-fractionation (Nizio,
McGinitie & Harynuk, 2012; Jennerwein et al., 2014; Stilo et al., 2021). However, it does not
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Figure 1 Schematic of the three sample preparation and analytical strategies discussed in the paper showing the extent of fractionation possi-
ble.Grey boxes indicate the individual samples that are characterized by mass spectrometry.

Full-size DOI: 10.7717/peerjachem.12/fig-1

solve the issue with variable abundance and column/detector overload. Thus, a complete
qualitative and explorative oil analysis requires a more selective sample-prefractionation
method.

Herein, we present a high-performance liquid-chromatography (HPLC) method for
the automated high-resolution fractionation of crude oil using commercially available
columns. The method can resolve aromatics based on ring size and connectivity, i.e.,
fused and non-fused rings (e.g., naphthalene versus biphenyl). The fractions may be diluted
or concentrated, depending on the target, for subsequent analysis and can thus be used
to concentrate trace species. The method is easily modified to selectively collect only
fractions of interest, and the aromatics may be collected either as one or several fractions.
We demonstrate the method’s applicability by fractionation of fourteen crude oils with
subsequent GC-MS analysis. The method is compared to data obtained using SPE and GC
× GC-MS. We demonstrate how it’s especially suitable for the analysis and identification
of trace aromatics by the successful tentative identification of several compounds not
observed using comparable methods.

MATERIALS & METHODS
Chemicals and reagents
Chloroform, dichloromethane, n-hexane, deuterated standards and model compounds
(ethylbenzene, naphthalene, biphenyl, phenanthrene, 1-benzylnaphthalene and chrysene)
were purchased from Sigma Aldrich and used as received.

Samples
Fourteen crude oils sampled from producing fields in the Danish region of the North
Sea were obtained from Mærsk Oil (now Total E&P). The samples were received in metal
containers (jerrycans) and transferred to glass bottles upon arrival. The samples were stored
at room temperature protected from light.

Sample preparation
Solid-phase extraction
Crude oil (10 µL) was combined with 100 µL of a solution containing alkane internal
standards (decane-D22, hexadecane-D34 and eicosane-D42, 400 µg/mL in n-hexane), 50
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µL of PAH internal standards (naphthalene-D8, phenanthrene-D10, acenaphthene-D10,
chrysene-D12 and perylene-D12, 30µg/mL in n-hexane) and further diluted with n-hexane
(840 µL). A solid-phase extraction column (Phenomenex EPH Strata, 200 µm, 70 Å, 500
mg / three mL) was cleaned and conditioned by CH2Cl2 (3 × 1 mL) followed by n-hexane
(3 × 1 mL). 100 µL of oil solution was carefully applied to the column and was allowed to
settle for 5 min. Saturated hydrocarbons were eluted into one fraction with three portions
of n-hexane (3 × 600 µL). Aromatic hydrocarbons were eluted using dichloromethane
(1× 1,800 µL). The solvent level of each fraction was reduced to 500 µL under a gentle
stream of nitrogen without applied heating to avoid losses of volatile components.

Liquid chromatography fractionation
Fractionation of crude oil was carried out on a Dionex UltiMate 3000 HPLC equipped
with a DAD-3000 diode array, a RefractoMax RI-521 refractive index (RI) detector and
an AFC-3000 fraction collector. The system was fitted with one six-port/two-way and one
ten-port/two-way port to enable selective backflush of the primary column. A Thermo
Scientific Hypersil Gold NH2 (4.6 mm i.d., 3 µm, 150 mm) and a Hypersil Silica (4.6 mm
i.d., 3 µm, 150 mm) were connected in series. The sample manager was kept at 20 ◦C and
the column oven at 30 ◦C. The injection volume was 50 µL.

Samples were diluted at 1:2000 in n-hexane and stored at−20 ◦C for 24 h to precipitate
asphaltenes. The samples were centrifuged and an aliquot of themother liquor was carefully
transferred to an autosampler vial for analysis. Separation of saturates and aromatics was
achieved via isocratic n-hexane elution during which 30 s wide fractions were collected.
After elution of aromatics, the primary column was rinsed using a backflush gradient from
n-hexane to 1:1 2-propanol:chloroform. The collected fractions were diluted (saturates,
mono- and di-aromatics) or concentrated (tri-aromatics and larger) for analysis onGC-MS.
For enrichment experiments, consecutive fractionations (typically 3 to 6) were performed
with pooling of the eluents followed by solvent reduction under a gentle stream of N2 at
30 ◦C.

Analytical methods
GC-MS
GC-MS data were recorded using an Agilent 5977B GC-MSD as follows; 250 ◦C inlet,
320 ◦C transfer line, splitless injection (1 µL), Agilent DB-5MS (30 m, 0.25 mm i.d., 0.25
µm). The oven temperature gradient was programmed as follows; 50 (1 min. hold-time) -
320 ◦C (8 min hold-time, 10 ◦C/min.), helium carrier gas at 1.5 mL/min. in constant flow
mode.

GC × GC-MS data were recorded using an Agilent 7200B GC-QTOF equipped with a
Zoex ZX-2 thermal modulator (Zoex Corporation, Houston, TX, USA) as follows; 250 ◦C
inlet, 320 ◦C transfer line, splitless injection (1µL), Agilent DB-5MSUI (1D, 30m, 0.25mm
i.d., 0.25 µm df) and a Restek Rxi-17Sil MS (2D, 2 m, 0.18 mm i.d., 0.18 µm df) capillary
columns connected using a SilTite µ-union. The oven was temperature programmed as
follows; 50 (1 min hold-time) - 320 ◦C (3 ◦C/min.), helium carrier gas at one mL/min. in
constant flow mode. The modulation period was set to 6 s with a 400 ms hot-jet duration.
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Figure 2 Molecular structure of the model compounds used for the HPLCmethod development and validation.
Full-size DOI: 10.7717/peerjachem.12/fig-2

Data processing
Data were screened using Masshunter Qualitative Navigator (Agilent, B.08.00). Peak
detection and compound identification were performed using MassHunter Unknowns
Analysis (Agilent, B.09.00) and the NIST Standard Reference Database (1A v17,
Gaithersburg, MD, USA). Feature tables were exported as CSV files and imported into a
Jupyter Notebook for further processing using the Python scripting language. Duplicates
based on the CAS number were removed from the feature tables. All compounds containing
silica and halogens were removed. The double-bond equivalent values were calculated
for each compound and all features with a DBE of less than 4 were excluded. Finally,
experimental and literature retention indices (RI) were compared with flagging of all
compounds where the difference was larger than 50 units.

RESULTS AND DISCUSSION
Method development
The objective of the method was to (1) separate saturates and aromatics and (2) intra-class
separation of the aromatics with enrichment capabilities. A dual-column setup using
normal phase analytical LC-columns provided the required selectivity and efficiency.
The primary column (Thermo Scientific Hypersil Gold NH 2) acted as a retainer for polar
components, whereas a secondary pure silica-based column (Thermo Scientific Hypersil
Silica) was required for the separation of saturated and aromatic hydrocarbons. The
separation was optimized using six model compounds commonly found in crude oil
(Fig. 2). An isocratic n-hexane elution yielded separation of saturated and mono-aromatic
hydrocarbons, as well as separation of polycyclic aromatics based on ring size and
connectivity (Fig. 3).

The fraction collector was programmed to collect 30 s wide fractions based on the peak
widths of the model compounds. At this fraction width, we observed only a minor overlap
of fractions with co-elution of the most abundant components. A reduction of the fraction
width can be set if a higher peak purity is required. The cost is a slight loss of recovery.
After elution of the last aromatics as observed by UV/Vis, the flow path was selectively
reversed for the primary column. The column was then rinsed using a gradient from
100% n-hexane to 50:50 chloroform:2-propanol. This effectively removed the adsorbed
resins on the amide column. The fraction collector is within the flow path during all
stages of chromatography and the resins may therefore be isolated for further analysis
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Figure 3 HPLC-Chromatogram showing the elution order and separation of the model compounds
used for method development.

Full-size DOI: 10.7717/peerjachem.12/fig-3

(Sundberg & Feilberg, 2020). The final step is a re-equilibration of the whole system by a
return to isocratic n-hexane and flushing at an increased flow rate to remove the polar
solvents from the flow path. Improper re-equilibration resulted in a severe loss of retention
in subsequent fractionations due to the adsorption of 2-isopropanol on the silica phase.

Recovery values were calculated using the model compounds by comparison of peak
areas obtained on GC-MS from LC-fractions compared to direct analysis of the standards
(Table 1). Three analytes have recovery values slightly above 100%. This is likely due to a
discrepancy between programmed and real injection volume on the HPLC auto-sampler.
In contrast, the recovery is less than 90% for chrysene. For this compound, we observe peak
broadening due to the high capacity factor. As the fraction collection width is static during
the full run, the low recovery is attributed to the peak being wider than the collection
width. To evaluate the reproducibility of complex samples, a single oil was fractionated
three consecutive times. Each fraction was analyzed on GC-MS and the relative standard
deviation was determined from peak areas. 1,2,4-Trimethylbenzene, naphthalene and
phenanthrene gave 4.6,8.1 and 6.4% respectively. The results are similar to those obtained
using a model mixture. This shows that the method performs consistently in the presence
of a highly complex oil matrix. Furthermore, themethod successfully removes interferences
and yields a high signal-to-noise ratio for the target analytes in each fraction (Fig. 4).

Applicability in crude oil analyses
The applicability of the method was demonstrated by fractionation and analysis of 14 crude
oils. The oil samples were sourced from producing fields in the Danish region of the North
Sea. Crude oils from this region typically have an aromatics content of 25–30%, of which
the majority are BTEX-type monoaromatics (benzene, toluene, ethylbenzene, xylene) with
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Table 1 Recovery calculations based on integrated area as determined by GC-MS for pure model com-
pounds and those isolated using HPLC-fractionation.

Model compounds Area, STDGC-MS
(%RSD,N = 6)

Area, STD LC-GC-MS
(%RSD,N = 6)

Recovery (%)

Naphthalene 3344437 (1.0%) 3566196 (5.7%) 106.6
Biphenyl 1525309 (1.6%) 1627554 (2.1%) 106.7
Phenanthrene 1145132 (3.1%) 1162530 (4.7%) 101.5
1-Benzylnaphthalene 599597 (4.4%) 592272 (3.0%) 98.8
Chrysene 220091(5.1%) 195914 (2.8%) 89.0
Crude oil compounds Area, SPE-GC-MS

(%RSD,N = 3)*
Area,oil LC-GC-MS
(%RSD,N = 3)*

1,2,4-Trimethylbenzene 29538362 (17.6%) 12638320 (4.6%)
Naphthalene 20202722 (18.0%) 5153076 (8.1%)
Phenanthrene 9239818 (17.4%) 3478436 (6.4%)

Notes.
*The area difference is due to different dilution factors.

a continuous decrease in abundance with increasing ring size (Sundberg & Feilberg, 2020).
The primary fraction is the saturated hydrocarbons followed by the resins (up to 5%) with
only traces of asphaltenes. This is evident from the fractionation, where a typical dilution
factor of 50/20 had to be applied to the saturated and monoaromatic fractions respectively
(Table 2). The fractions containing larger aromatics were analyzed either undiluted or
concentrated by solvent reduction.

The first fraction contains the paraffins and naphthenes and is poorly retained on the
primary LC-column (Fig. 5). The second silica column is required to separate them from the
monoaromatics, which elute as the second fraction (Fig. 6). The third and fourth fractions
contain diaromatic species, with the latter non-fused ring systems (e.g., naphthalene
versus biphenyl). Fractions 5 and 6 contain the triaromatics (e.g., phenanthrene versus
1-phenylnaphthalene). Here, the abundance starts to diminish and the sixth fraction had
to be concentrated for subsequent GC-MS analysis. Fractions 7 and above contain larger
ring systems, e.g., chrysene, perylene. These fractions are less well-defined, likely because
compounds eluting within this retention range are fewer in number and present in trace
amounts. We also observed a slight loss of resolution, with minor overlap and cross-
contamination. This is a result of two things; (1) diffusion and peak broadening during the
liquid chromatography (2) collection of low abundance (undiluted/concentrated) fraction
after a high abundance (diluted) fraction. If higher purity peaks are required the fraction
collection width can be reduced. Attempts to concentrate fractions 9 and later were not
successful and the gas chromatograms were dominated by background contaminants likely
originating from the solvents, HPLC-tubing and glassware (e.g., siloxanes, surfactants).

Performance comparison with SPE-GC-MS and GC × GC-MS
Solid-phase extraction of crude oil into its saturated and aromatic fraction is a well-
established sample preparation method. The physical properties of SPE adsorbents (large
particle size, low mass loadings) result in limited separation power (Berrueta, Gallo &
Vicente, 1995; Buszewski & Szultka, 2012). Thus, the technique is mainly applicable for the
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Figure 4 Chromatogram showing the peak corresponding to phenanthrene obtained via SPE-
extractions (A) as compared to LC-fractionation (B). The sample was fractionated using each method in
triplicate to determine reproducibility. Signal intensity variance between (A) and (B) is due to different
dilution factors (on-column).

Full-size DOI: 10.7717/peerjachem.12/fig-4

crude separation of different compound classes. It does not provide sufficient resolution to
separate closely related compounds within subfractions. To compare our method to SPE
we fractionated each oil using a Phenomenex Strata EPH (200 µm, 70 Å, 500mg/three mL).
The cartridge contains a proprietary phase specifically developed to separate hydrocarbon
fractions (Countryman, Kelly & Garriques, 2005).
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Table 2 Summary description of the major constituents of each fraction.

Fraction Main composition Comment

1 Saturated hydrocarbons High concentration; diluted for GC-MS.
2 Mono-aromatics High concentration; diluted for GC-MS.
3 Di-aromatics Medium concentration; diluted for GC-MS.
4 Non-fused di-aromatics Medium concentration; diluted for GC-MS.
5 Tri-aromatics Low concentration; undiluted for GC-MS.
6 Non-fused tri-aromatics Trace concentrations; concentrated for GC-MS.
7 + 8 Misc. tetra-aromatics Trace concentrations; concentrated for GC-MS.

Figure 5 HPLC-Chromatogram (with UV response measured at 272 nm) of a representative crude oil
showing the approximate retention regions of the different aromatic classes.

Full-size DOI: 10.7717/peerjachem.12/fig-5

In terms of spectral quality, an approximately 10-fold reduction in background noise
is observed in the LC fractions as compared to SPE. A comparison of the extracted mass
spectra for the peak corresponding to 1,3-dimethylpyrene is presented in Fig. 7. Selected ion
monitoring can be used to reduce background interferences for target species but results
in loss of spectral detail for qualitative analysis. Furthermore, when using low-resolution
instruments, i.e., single quadrupole MS, there is a large risk of overlap in complex samples
(Rosenthal, 1982; (Davis & Giddings, 1983). The reduction in background noise improved
library matching, especially for analytes present at trace levels.

To evaluate identification performance, peak picking and library matching were carried
out using MassHunter Unknowns Analysis and the NIST mass spectral library. The match
factor limit was set to 700. The number of compounds was compared both on a sample-to-
sample basis and by merging all features from all samples (with duplicates removal based
on CAS number). A comparison of the merged compound tables of all samples shows that
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Figure 6 Offset overlay of the GC-MS chromatograms of fractions 2 to 5 obtained using the LCmethod of a representative sample. Typical
compounds in each fraction have been marked to demonstrate the separating power.

Full-size DOI: 10.7717/peerjachem.12/fig-6

Figure 7 (A) Chromatograms showing the peak of 1,3-dimethylpyrene (marked in blue) found in LC-
fraction 7 (black, pre-concentrated) and the aromatics fraction obtained via SPE (dotted red). (B) Mass
spectra mirror plot of the LC-fraction peak showcasing its purity.

Full-size DOI: 10.7717/peerjachem.12/fig-7
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Figure 8 Double bond equivalent (DBE) distribution table for assigned unique compounds obtained
from SPE-GC and LC-GCmethods. The Venn diagram shows the total amount of assigned compositions
obtained from SPE-GC-, LC-GC- and GC×GC-MS.

Full-size DOI: 10.7717/peerjachem.12/fig-8

using the LC-GC method we can identify 957 compared to 601 compounds using SPE.
This is an increase of 37.2%. To increase the match confidence, we applied a retention
index (RI) filter, only retaining compounds with a match within 100 units of the library
value. By doing so, we identified 426 compared to 300 (42% increase). This excludes all
compounds of which a library RI is not available (approximately 1% of our feature set).
However, a large portion of the compounds only have computationally approximated
retention indices and not experimentally determined values. Thus, all filtering and data
analyses should be carried out with care and manual intervention. The SPE fraction
contains approximately 190 unique compounds with 404 compounds overlapping both
analyses. Manual inspection reveals this list contains several petroleum-type compounds
and not predominantly background noise or contamination (e.g., plasticizers, column
contamination). One plausible source is errors occurring during the automatic processing
routines. Small differences in mass spectra (e.g., due to abundance or background level)
can lead to closely related library matches being given similar (but different) priority
(e.g., isomeric species). Figure 8 shows the DBE distributions of assigned compounds
uniquely observed from SPE-GC and LC-GC methods. Noticeably, the DBE distributions
are significantly different between the twomethods. The distribution of unique compounds
from SPE-GC is centered around low DBE 4 and 5 (e.g., monoaromatic), whereas unique
compounds from LC-GC are distributed more evenly at higher DBE values. This is
expected as the LC-GC method isolates and enriches high aromaticity fractions. These
findings showcase the ability of LC-GC as a high-resolution fractionation method for
crude oil.

For comparison to comprehensive multi-dimensional chromatography, the samples
were analyzed by our in-house routine GC × GC-MS method (i.e., solvent dilution,
filtration and analysis) (Fig. 9). The objective of the GC × GC method is not to maximize
feature ID but enable multi-class analysis/fingerprinting with minimal to no sample
preparation. Furthermore, the SPE-LC-GC and GC × GC analyses were carried out on
different instruments whichmakes direct comparison challenging. For GC×GC an Agilent
7200B QTOF high-resolution mass spectrometer was used. For SPE-LC-GC, an Agilent
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Figure 9 GC×GC-Chromatograms of fraction 5 obtained using the LC-method (A) compared
to whole oil analysis (B, i.e., no pre-fractionation). The LC-fraction has a high abundance of alkyl
phenanthrene isomers at or below the LOD seen in whole oil GC×GC-MS.

Full-size DOI: 10.7717/peerjachem.12/fig-9

5977B single quadrupole equipped with a High-Efficiency Source (HES) was used. TheHES
has both higher sensitivity and dynamic range. Secondly, for GC× GC, the dilution factor
was adjusted so that the analytes with the highest abundance were at detector saturation.
Here, we see that although GC×GC is not restricted in terms of peak capacity, it does fall
short in terms of dynamic range. After blob detection, library matching and filtering we
obtain 63 tentative hits in a single sample. With corresponding processing settings, we
identified 143 compounds by multi-fraction LC-GC-MS analysis of the same sample. This
is an increase of 127%. In terms of manual intervention, ease of use and time of analysis,
GC × GC is preferred compared to LC-GC-MS. However, the amount of data generated
using the latter is more comprehensive in our case.

A Venn diagramwas constructed to compare three methods (Fig. 8). The number within
each colored circle represents the number of assigned unique compounds for each method,
whereas numbers in overlapped zones represent the number of compounds that have been
co-assigned from corresponding methods. The amount of compositions obtained from
LCxGC (957) significantly surpasses GC × GC (181) and SPE-GC (601). We obtained
approximately 50% unique compounds with GC×GC and LC-GC and 32%with SPE-GC.
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Table 3 Comparison of the number of tentatively identified species in SPE-GC and GCGC versus LC-
GC. The calculations are based on merged data of all samples with the removal of duplicates. Unique indi-
cates compounds not identified in the compared methods.

Filter GC×GC
Tot.

GC×GC
Unique

SPE-GC
Tot.

SPE-GC
Unique

LC-GC
Tot.

LC-GC
Unique

No formula or R.I filter 181 98 601 191 957 535
No formula filter, R.I± 100 units 82 15 300 68 426 187
N,S,O ≥1, no R.I filter 80 79 311 151 517 357
N,S,O ≥1, R.I± 100 units 6 6 91 44 124 81

The Venn diagram also shows that co-assigned compounds of those three methods cover
a narrow range of overall chemical composition (59 co-assigned compounds) of crude
oil. Again, it is worth noting that there are differences in terms of dilution factor and
instrumental parameters for those methods. Therefore, the comparison is biased but still
relevant to evaluate the LC-GC method for trace components analysis.

CONCLUSIONS
We have developed a method for high-resolution fractionation of complex crude oil
matrices. By using sub-micron LC columns we obtained high efficiency and resolution
which allowed intra-class compound separation. This is in contrast with traditional
methods, e.g., SPE, which yields a single aromatics fraction. The method is especially
advantageous for the isolation of trace species. Multiple compounds not observed by
SPE-GC-MS were pre-concentrated yielding high abundance and spectral quality. The
increase in the number of tentatively identified peaks is thus a result of both reduced
co-elution and an increase in analyte signal-to-noise ratio.

By characterization of 14 crude oils, we extended the identification to a large number of
hydrocarbon and N,S,O-containing aromatics. Of the 517 uniquely identified compounds,
69% (357) contain either N,S,O (or a combination of) atoms (Table 3). The structures
of five representative compounds are presented in Fig. 10. Aromatic nitrogen and sulfur
compounds are detrimental in petroleum processing. Furthermore, they potentially have
biological activity and may pose an environmental and toxicological hazard (López García
et al., 2002; Anyanwu & Semple, 2015; Zhang et al., 2018; Vetere, Pröfrock & Schrader,
2021). Therefore, their characterization is an important pursuit. They are routinely
analyzed by direct infusion mass spectrometry that provides the molecular formula but
not connectivity (Guan, Marshall & Scheppele, 1996; Purcell et al., 2007b; Purcell et al.,
2007a; Corilo, Rowland & Rodgers, 2016). Thus, isolation and GC-MS analysis with library
matching provide valuable information on their presence in oil samples.

The relatively long fractionation time (60 min) and the number of fractions generated
lead to a full sample analysis time of 6 h (when characterizing the first 7 fractions using
GC-MS). Several steps require manual intervention, i.e., dilution and pre-concentration of
fractions and moving the samples from the LC to the GC. It would therefore be beneficial
to implement more automation, e.g., by using liquid handling robotics (ultimately with
direct hyphenation to the GC). We observed minor co-elution during the analysis of
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Figure 10 The molecular structures of five unique compounds identified in separate fractions (2 to 6)
obtained by using the LC-method.

Full-size DOI: 10.7717/peerjachem.12/fig-10

latter fractions. Combining the LC-fractionation with subsequent GC × GC analysis
would increase the power of the method further. However, it would require an intense
data processing workflow with high demands in computational power. Something that is
already challenging in comprehensive GC × GC studies (Reichenbach et al., 2019; Wilde et
al., 2020; Stefanuto, Smolinska & Focant, 2021).
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