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ABSTRACT
Produced water is the largest by-product of oil and gas production. At off-shore
installations, the produced water is typically reinjected or discharged into the sea.
The water contains a complex mixture of dispersed and dissolved oil, solids and
inorganic ions. A better understanding of its composition is fundamental to
(1) improve environmental impact assessment tools and (2) develop more efficient
water treatment technologies. The objective of the study was to screen produced
water sampled from a producing field in the Danish region of the North Sea to
identify any containing organic compounds. The samples were taken at a test
separator and represent an unfiltered picture of the composition before cleaning
procedures. The analytes were isolated by liquid-liquid extraction and derivatized
using a silylation reagent to increase the volatility of oxygenated compounds.
The final extracts were analyzed by comprehensive multi-dimensional gas
chromatography coupled to a high-resolution mass spectrometer. A non-target
processing workflow was implemented to extract features and quantify the
confidence of library matches by correlation to retention indices and the presence of
molecular ions. Approximately 120 unique compounds were identified across nine
samples. Of those, 15 were present in all samples. The main types of compounds are
aliphatic and aromatic carboxylic acids with a small fraction of hydrocarbons.
The findings have implications for developing improved environmental impact
assessment tools and water remediation technologies.

Subjects Hyphenated Techniques, Mass Spectrometry, Separation Science
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INTRODUCTION
Produced water is by volume the largest byproduct in oil and gas production.
For reservoirs on the Danish continental shelf, where production is often supported by
water flooding, the volume of produced water typically exceeds the volume of oil
(The Danish Energy Agency, 2014). This water contains a complex mixture of inorganic
and organic compounds. Implementation of offshore water management strategies is
challenging due to the large volumes and practical limitations on infrastructure. Current
procedures consist of cleaning of the produced water, followed by discharge into the sea
or reinjection in producing or disposal wells (Lyngbaek & Blidegn, 1991; Røe & Johnsen,
1996; Røe Utvik, 1999; Durell et al., 2004). For discharge, the OSPAR Convention, which
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was set in to force in 1998, sets a limit of 30 mg of dispersed oil per liter of water as an
annual average (OSPAR Commission, 2001). There is currently no limit on the dissolved
compounds. Furtthermore, detailed knowledge on their structure and abundance is
lacking.

In simplified terms, produced water can be seen as the product of aqueous extraction of
crude oil by mixing within the reservoir and during production. In reality, the process is
complex and the composition is highly dependent on reservoir properties, field history
and water injection strategies (Bergfors, Schovsbo & Feilberg, 2020). For example,
studies have shown that salinity influences to the organic content, likely caused by a
salting-out effect (Barth, Borgund & Riis, 1990; Barth, 1991; Barth & Riis, 1992; Endo,
Pfennigsdorff & Goss, 2012; Dudek et al., 2020). At the producing platform, a gravitational
separation of oil, water and gas is carried out. The resulting water phase contains
dissolved and dispersed oil droplets. The latter is largely removed by physical methods,
i.e. separators, hydrocyclones and gas flotation tanks/degassers implemented in series on
the platform, typically resulting in levels below 10 mg/L at the discharge point (Meldrum,
1988; Saththasivam, Loganathan & Sarp, 2016; Durdevic & Yang, 2018). In contrast,
the removal of dissolved organics requires chemical treatment, e.g. degradation via
advanced oxidation processes (AOPs) (Jiménez et al., 2019; Lin et al., 2020; Liu et al.,
2021). This is challenging to implement on offshore installations due to safety and the
requirement of low residency times. Furthermore, the current generation of AOPs are
mainly based on Fenton’s reagent which produces toxic chlorinated byproducts when
applied to saline water (Kiwi, Lopez & Nadtochenko, 2000;De Laat & Le, 2006; Sirtori et al.,
2012). The goal of produced water management is not necessarily zero discharge but zero
harmful discharge. Improved knowledge of its composition is thus not only beneficial to
develop environmental impact assessment tools. The information may also be used to
develop improved and targeted treatment methods, i.e specific removal of harmful
components, and not total organic content. This has the potential to increase efficiency
and reduce the cost of water management strategies.

Ultimately, the toxicity of the produced water is a complex function based on the
structure and concentration of both the dispersed and dissolved oil components
(Strømgren et al., 1995; Bakke, Klungsøyr & Sanni, 2013; Niu et al., 2016; Lofthus et al.,
2018). Furthermore, inorganic species such as heavy metals should be taken into
consideration. We argue that to fully understand the effect of organic compounds in
produced water discharge, we must (1) carry out full structural characterization studies
and (2) differentiate between dispersed and dissolved species and (3) develop methods to
integrate the data into environmental impact assessment tools. Although numerous
compounds in produced water have been identified as part of ongoing water quality
studies, a large part of the chemical space remains unknown. Recent advances in analytical
technology (i.e. multi-dimensional chromatography, high-resolution mass spectrometry)
have allowed more in-depth studies of the organic composition (Samanipour et al.,
2019, 2020; Sørensen et al., 2019; Dudek et al., 2020). However, these studies mainly focus
on general classes of naphthenic acids and are based on formula calculations of exact
masses without further structural elucidations. Sørensen et al. (2019) described a
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non-target screening study but did not provide details beyond compound classes
(i.e. phenols vs. naphthalenes). Thus, a large knowledge gap in the identity of dispersed and
dissolved organics still exists.

To narrow this gap we have carried out a non-target screening study. The objective was
not to evaluate the efficiency of implemented cleaning procedures but to obtain an
“unfiltered” picture of the water composition immediately after production. Several
samples were obtained from the test separator of a producing platform in the Danish
North Sea. The organics were extracted by liquid-liquid extraction (LLE) using
dichloromethane (DCM). The extracts were derivatized to increase the volatility of
oxygenated compounds and analyzed using comprehensive multidimensional gas
chromatography (GC×GC) coupled with a high-resolution quadrupole-time of flight
mass spectrometer (MS). One advantage of using GC-MS as compared to liquid-
chromatography (LC)-MS is the possibility of identification by spectral matching using
commercially available libraries. In contrast, LC-MS is significantly dependent on
user-generated libraries based on reference compounds as the ionization efficiency is more
dependent on experimental conditions (Schymanski et al., 2015). Approximately 1,500
compounds were detected per sample, with 120 unique compounds tentatively identified
across all samples. To increase the confidence of library matches, a data processing
workflow that implemented retention indices and accurate mass matching was
implemented. The data were analyzed to obtain a broad knowledge of the types of
compounds present, their relative abundance as well as common compounds present
across all samples.

MATERIALS & METHODS
Chemicals and reagents
Benzoic acid, phenol, cycolhexanecarboxylic acid, octanoic acid, dichloromethane
(LiChroSolv, Merck, Darmstadt, Germany), n-hexane (SupraSolv for gas chromatography
MS, Merck, Darmstadt, Germany), magnesium sulfate (ReagentPlus, Redi-Dri,
Sigma–Aldrich, St. Louis, MO, USA), N,O-bis(trimethylsilyl)trifluoroacetamide
containing 1% of trimethylchlorosilane (BSTFA+TMCS, Supelco, Bellefonte, PA, USA)
were used as received. Deuterated internal standards (naphthalene-d8, acenaphthene-d10,
phenanthrene-d10, chrysene-d12, Supelco analytical standards) were used to monitor
retention time shifts. 1D retention index calibration was performed using a linear C7 to
C30 saturated alkanes mixture (Supelco, TraceCERT, Sigma–Aldrich, St. Louis, MO,
USA). High purity water was obtained from a Milli-Q Advantage A10 unit. All chemicals
and reagents were used as received.

Sampling and sample preparation
Produced water samples were donated by Mærsk Oil & Gas (now Total E&P). The samples
were acquired from a producing field (water-injected) located in the Danish region of the
North Sea. The sampling campaign took place between June 2018 and February 2019.
The samples were taken at irregular intervals with no replicates. Water samples were
collected at the test separator on the production platform following protocols established
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by the operator. The test separator is a simple gravity-based three-phase separator where
the water settles below the oil and can be sampled. No cleaning or further processing of
the samples was carried out at the platforms. The samples were received in plastic
bottles (1 L), aliquoted (500 mL), and immediately treated with dilute hydrochloric acid
(18%, one mL per 100 mL sample) for a final pH < 2. Nine samples from the received
batch were selected for analysis. The samples were selected due to the absence of dispersed
oil droplets as evaluated by visual inspection (using microscope). The samples were stored
in the dark at 4 �C until extraction and analysis.

Three aliquots (50 mL) of each produced water sample were extracted using separate
glassware. The aliquots were filtered through a 0.45 µm PTFE-filter to remove solids and
particles. Each 50 mL aliquot was extracted with DCM (50 mL). The organic phase was
washed with saturated aqueous sodium chloride (50 mL) and carefully removed in vacuo.
The residue was reconstituted in n-hexane (1.5 mL) and dried over MgSO4. An aliquot
(1,000 µL) of the sample was transferred to a two mL vial, combined with deuterated
internal standards (for monitoring of retention time stability), combined with BSTFA
+TMCS (50 µL) and incubated at 70 �C for 30 min, whereafter, it was allowed to return to
room temperature. The derivatized sample was further diluted 10-fold with n-hexane and
immediately analyzed on the GC×GC-MS.

Extraction recovery and reproducibility
A model produced water containing five representative model compounds (benzoic acid,
phenol, 2-naphthoic acid, cyclohexanecarboxylic acid, and octanoic acid, each at 5 ppm,
total organics 25 ppm) in synthetic formation water (see Supplemental Information) was
prepared to establish variability in the sample preparation protocol and instrumental
analysis. The concentration of total organics was chosen to emulate typical levels
encountered at production platforms. The model water was extracted four times in two
batches following an identical procedure as for the produced water samples. Three
procedural blanks were prepared to establish background levels and experimental sources
of contamination.

GC×GC-MS analyses
GC×GC-MS data were acquired using an Agilent 7890B GC coupled to a 7200B QTOF
high-resolution mass spectrometer (Agilent Technologies, Palo Alto, CA, USA).
The system was equipped with a Zoex ZX-2 thermal modulator (Zoex Corporation,
Houston, TX, USA). The separation was achieved using a combination of an Agilent
DB-5MS UI (1D, 30 m, 0.25 mm i.d., 0.25 µm df) and a Restek Rxi-17Sil MS (2D, 2 m,
0.18 mm i.d., 0.18 µm df) capillary columns connected using a SilTite µ-union. The oven
was temperature programmed as follows; 1 min hold-time at 50 �C, ramp to 320 �C, 3 �C
min−1 in constant flow mode (1 mL/min). The modulation period was set to 3 s with a
400 ms hot-jet duration. The MS transfer line was held at 280 �C. The MS acquired
spectra in electron ionization mode (70 eV) with a mass range of 45–500 and an
acquisition speed of 50 Hz. The instrument was operated in its 2 GHz sampling rate mode
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to increase the dynamic range. Automatic mass calibration was performed for every 5th

sample (approximately 7.5 h).

Data processing
Baseline correction (Reichenbach et al., 2003), peak detection and library search were
performed using GC Image v2.8.3 (Zoex, Houston, TX, USA). Mass spectra were matched
against the NISTMass Spectral Library (National Institute of Standards and Technology, 2017
edition; NIST v17, Software Version: 2.3) with a minimummatch factor of 700. All compound
tables were exported as comma-separated texts for external processing. A data processing
workflow was implemented in Python (Python Software Foundation. Python Language
Reference, version 3.7.4. Available at http://www.python.org). The script is available as
Supplemental Information deposited in a Zenodo repository (DOI 10.5281/zenodo.4009045).

RESULTS
Sample preparation and analyses
Previous studies on dissolved organics in oilfield produced water have employed LLE or
solid-phase extraction (SPE) (Thomas et al., 2009; Kovalchik et al., 2017; Barros et al.,
2018; Samanipour et al., 2019). For produced water, LLE using DCM has been shown to
have a similar recovery as SPE (Samanipour et al., 2019). The main difference was observed
in the size distribution, where larger species tend to have a higher recovery using SPE
due to their low solubility in DCM. LLE is non-discriminative in comparison to SPE which
is used to fractionate compound classes based on adsorption characteristics. Thus, it
allowed us to extract the broad range of organics present in produced water. Furthermore,
the Norwegian Oil and Gas specialist network recommends LLE for the quantification
of phenols in produced water (Norwegian Oil & Gas, 2012). Thus, it would allow us to ‘see’
what is missing using routine targeted analyses. Approximately 30 samples were received
as part of the campaign.

The water samples had varying levels of oil, likely due to the sampling and status of the
test separator. Samples that contained a clear separate layer of oil, including smaller
amounts, were excluded from the study to minimize the risk of contamination (Fig. 1).
Optical inspection of these samples showed that they contained large amounts of dispersed
oil droplets, even when sampling below the oil layer (Fig. 2). After exclusion, nine
samples were chosen to be included in the study with extraction and characterization.
All samples were filtered through a 0.45 µm PTFE-filter to remove insoluble material and
particles. A small aliquot (50 mL) of each sample was extracted in triplicate using an
equivalent volume of DCM.

The dissolved components of produced water were largely expected to be oxygenated
organics, i.e. alcohols (mainly phenols) and acids. To increase the volatility of the
aforementioned compounds, the samples were silylated. After removal of the solvent in-
vacuo, each sample was reconstituted in 1.5 mL of n-hexane. A one mL aliquot of the
reconstituted extract was treated with BSTFA-TMCS and incubated at 70 �C for 30 min.
After derivatization, the samples were further diluted 10-fold, meaning that the samples
ultimately were concentrated approximately 3-fold (from 50 mL to 15 mL). The final

Bergfors et al. (2021), PeerJ Analytical Chemistry, DOI 10.7717/peerj-achem.11 5/17

http://www.python.org
http://dx.doi.org/10.7717/peerj-achem.11#supplemental-information
https://dx.doi.org/10.5281/zenodo.4009045
http://dx.doi.org/10.7717/peerj-achem.11
https://peerj.com/analytical-chemistry


concentration factor was chosen as a compromise between the detection of trace
compounds and avoiding column and detector overload. Due to the large concentration
range of our analytes, it would be beneficial to run each sample at multiple dilution factors.
However, due to the long run time (90 min) and the number of extraction replicates
(3) this was not feasible due to time constraints. It is important to remember that this
strategy has two effects; (1) high concentration compounds may overload the detector with
spectral skewing and poor library match as result, and (2) trace-compounds may be diluted
to a level below the limit of detection.

Three procedural blanks were extracted and analyzed to determine background levels
and potential sources of contamination. Minor amounts of fatty acids were detected in

Figure 1 Four representative samples showing the varying oil content. Photo of four samples after
decanting into glass bottles. Only visually clear samples were used in the study (two leftmost), while
samples containing oil were excluded (two rightmost). The latter typically contained dispersed oil dro-
plets in the aqueous phase as seen by optical microscopy (Fig. 2).

Full-size DOI: 10.7717/peerj-achem.11/fig-1

Figure 2 Optical microscope image (10× magnification) of two different produced water samples.
The image shows the lack (A) or presence (B) of dispersed oil in the aqueous phase. Samples contain-
ing dispersed oil were excluded from the study. Full-size DOI: 10.7717/peerj-achem.11/fig-2
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addition to a series of polysiloxanes (discrete peaks, not common column bleed).
The source of the latter could not be identified but as it lacked retention in the 2D it did not
interfere with our analytes of interest. To establish recovery and repeatability, a model
produced water was prepared by spiking four organic acids and phenol into synthetic
formation water (see Experimental section and Supplemental Data). All model compounds
were detected in one or more produced water samples. The model water was extracted
in four replicates. The recovery values were calculated based on peak volumes in
comparison to those obtained by analyzing pure stock solutions (Table 1). The recovery
varied from 36% for benzoic acid up to 90% for phenol. Considering the multi-step sample
extraction, including a derivatization reaction, this was deemed acceptable. The relative
standard deviation of the peak volumes (measured after baseline correction using the GC
Image package) of model compounds as detected in a representative produced water
sample varied from 2% to 23% (calculated from three extraction replicates).

Chromatography
Crude oil is an ultracomplex mixture of saturated and aromatic hydrocarbons with a
smaller fraction of N,S,O-containing compounds (Marshall & Rodgers, 2004; Hsu et al.,
2011; Palacio Lozano et al., 2020). This complexity will be reduced but reflected in the
produced water. Based on previous studies of Danish oils we know that the dominant
oxygenated species belong to the O1 and O2 classes with a large diversity in aromaticity
(Sundberg & Feilberg, 2020). Thus, the compositional variation in the produced water was
assumed to be dominated by carbon number and level of saturation. Ultimately, the boiling
point range was assumed to be larger than the variation in saturated versus aromatic
structures. Therefore, we choose to use a non-polar column in the 1D (providing the
highest separation power) with a shorter medium polarity column in the 2D. Conventional
polar columns are based on polyethyleneglycol (PEG) chemistry and are incompatible
with silylation reagents. Therefore, we choose to use a 50%-phenyl-type column where
aromaticity is the largest factor affecting retention. By using this column combination, the

Table 1 Extraction recovery and retention time deviations for model and detected compounds.

Model compound Recovery (%) %RSD, model water %RSD, standard %RSD, real-life sample*

Phenol 89.6 23.1 8.9 23.3

Cyclohexanecarboxylic acid 63.8 13.1 5.7 1.8

Benzoic acid 35.9 24.7 1.9 11.3

Octanoic acid 55.0 9.6 4.4 4.2

2-Naphthoic acid 88.4 9.8 3.0 5.2

Internal standard Avg. RT I (min.) Avg. RT II (sec.) RT I %RSD RT II %RSD

Naphthalene-D8 19.399 1.860 0.0004 0.8576

Acenaphthene-D8 32.199 2.236 0.0002 0.6218

Phenanthrene 43.399 2.671 0.0002 0.5178

Notes:
* Peak volume values were extracted from a representative sample where the compound had been identified.
Recovery values are calculated as (peak volumemodel water/peak volumestandard) × 100 (n = 4 for model water and standard, 3 for real-life sample). Retention time deviations
were calculated based on the retention of internal standards across all samples (n = 27).
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retention in both dimensions will increase with aromaticity. For example, cyclohexane
acetic acid has a retention of 17.2 min/0.84 s in 1D/2D as compared to 24.6 min/1.33 s for
benzeneacetic acid (measured as the corresponding trimethylsilyl esters). In contrast,
alkylation of a core aromatic or saturated structure will only affect retention in the 1D.
For example, phenol and its alkylated homologs (methyl, ethyl and propyl) have 1D
retention times of 13.4, 16.9, 19.9 and 23.3 min, respectively, where the retention in 2D is
within 0.89 to 0.95 s. By investigation of a typical chromatogram, two things become
obvious; (1) the desired separation of saturates, mono- and diaromatics is achieved
and (2) a large portion of the 2D space is relatively uncopied due to the small
number of polycyclic species where the majority of aromatics are benzene derivatives.
A representative chromatogram with selected analytes marked is presented in Fig. 3.

A 3 �C min−1 temperature gradient was found to be the optimal compromise between
peak width, resolution and run time. At this rate, the typical peak width was 10 s in the
first dimension. Thus, using a modulation period of 3 s allowed us to obtain the
recommended minimum of three modulations per peak (Murphy, Schure & Foley, 1998).
Due to instrumental complexity and long run times, retention time shifts are commonly
observed both in inter-sample and inter-batch runs. Deuterated PAH standards were
used to monitor retention times over time. The 1D/2D retention time variability is
presented in Table 1. Both 1D and 2D were shown to be stable over the whole analyses run,
covering 27 seven injections (nine samples with three extraction replicates) and 7 days.

Non-target screening and compound identification
Approximately 1,500 compounds were detected in each sample. A data processing
workflow was implemented to sort, organize and score the data. A schematic

Figure 3 Example 2D chromatogram showing the distribution of peaks with a heavy saturation of
compounds between 0.5 and 1.5 s in the 2D. Five representative compounds have been annotated in
the chromatogram. The annotation corresponds to; (a) Cyclopentylcarboxylic acid, TMS derivative
(b) Octanoic acid, TMS derivative (c) 1-Methylnaphthalene (d) Benzoic acid, 3-methyl-, trimethylsilyl
ester (e) 2-Ethyl-1-decanol, TMS derivative. Full-size DOI: 10.7717/peerj-achem.11/fig-3
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representation is presented in Fig. 4. The associated files are available as Supplemental
Information. The detected features were matched against the NIST EI Mass Spectral
Library (2017; NIST v17, Software Version: 2.3). All compounds with a match factor below
700 were removed. To increase the annotation confidence, two additional factors were
included; retention index (Kovats) and the presence of the molecular ion. To quantify the
identification confidence the following scoring rules were implemented:

1. A match factor above 800 gives a score of 10 points.

2. A match factor between 700 and 800 gives a score of 5 points.

3. A retention index match within 50 units gives a score of 5 points.

4. The detection of the molecular ion within 20 ppm mass accuracy gives a score of 5
points.

A total score of above 10 was (i.e. match factor of a minimum of 700 and either a
retention index and or molecular ion match) was classified as a probable match, whereas a
total score below 10 was classified as a tentatively identified structure (Schymanski et al.,
2014). To reduce experimental errors, only features that were present in all three replicates
were included in the final table of compounds. Furthermore, all duplicate compounds
were removed. This is a crude step that inherently removes, for example, isomeric species
which would not be differentiated using automatic library search. However, for our
purpose the identification of isomers is not an inherent goal. The aim of the study was to
identify the presence of broad compound-class types and dominant species. The correct
identification of isomeric species or species with highly similar fragmentation patterns
requires manual intervention and is beyond the scope of this study.

The workflow reduced the number of features from approximately (1) 1,500 detected to
(2) 200 library hits with match factor > 700, to (3) 50–70 when with duplicates based on
name were removed. Ultimately, the merging of inter-sample features resulted in

Figure 4 Schematic of the data processing workflow. Graphic description of how the data processing
workflow scores tentatively identified features for added confidence. The scoring was implemented in a
Python script and is available as Supplemental Data. Full-size DOI: 10.7717/peerj-achem.11/fig-4
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Table 2 A list of compounds that were detected in a minimum of six of nine samples.

Compound MS-ready name* Formula Mol.
weight

XlogP SMILES Classification #Samples

(±)-2-Phenylpropanoic Acid,
trimethylsilyl ester

2-phenylpropanoic acid C9H10O2 150.17 1.9 CC(C1=CC=CC=C1)C
(=O)O

Aromatic acid 9

1-Naphthoic acid, TMS
derivative

naphthalene-1-
carboxylic acid

C11H8O2 172.18 3.1 C1=CC=C2C(=C1)
C=CC=C2C(=O)O

Aromatic acid 9

3,4-Dimethylbenzoic acid,
TMS derivative

3,4-dimethylbenzoic
acid

C9H10O2 150.17 2.7 CC1=C(C=C(C=C1)C(=O)
O)C

Aromatic acid 9

Trimethylsilyl 2,3-
dimethylbenzoate

2,3-dimethylbenzoic
acid

C9H10O2 150.17 2.8 CC1=C(C(=CC=C1)C(=O)
O)C

Aromatic acid 9

Trimethylsilyl 4-
propylbenzoate

4-propylbenzoic acid C10H12O2 164.2 3.4 CCCC1=CC=C(C=C1)C
(=O)O

Aromatic acid 9

4-tert-Butylphenol, TMS
derivative

4-tert-butylphenol C10H14O 150.22 3.3 CC(C)(C)C1=CC=C
(C=C1)O

Aromatic alcohol 9

3-Methyl-1-
cyclohexanecarboxylic acid,
trimethylsilyl ester
(stereoisomer 2)

3-methylcyclohexane-
1-carboxylic acid

C8H14O2 142.2 2.1 CC1CCCC(C1)C(=O)O Saturated acid 9

3-Methylbutanoic acid, TMS
derivative

3-methylbutanoic acid C5H10O2 102.13 1.2 CC(C)CC(=O)O Saturated acid 9

Cyclohexaneacetic acid, TMS
derivative

2-cyclohexylacetic acid C8H14O2 142.2 2.5 C1CCC(CC1)CC(=O)O Saturated acid 9

Cyclohexanecarboxylic acid,
TMS derivative

cyclohexanecarboxylic
acid

C7H12O2 128.17 1.9 C1CCC(CC1)C(=O)O Saturated acid 9

Cyclopentylcarboxylic acid,
TMS derivative

cyclopentanecarboxylic
acid

C6H10O2 114.14 1.3 C1CCC(C1)C(=O)O Saturated acid 9

Heptanoic acid, TMS
derivative

heptanoic acid C7H14O2 130.18 2.5 CCCCCCC(=O)O Saturated acid 9

Nonanoic acid, TMS
derivative

nonanoic acid C9H18O2 158.24 3.5 CCCCCCCCC(=O)O Saturated acid 9

Octanoic acid, TMS derivative octanoic acid C8H16O2 144.21 3 CCCCCCCC(=O)O Saturated acid 9

1-Hexadecanol, TMS
derivative

hexadecan-1-ol C16H34O 242.44 7.3 CCCCCCCCCCCCCCCCO Saturated alcohol 9

Benzenepropanoic acid, TMS
derivative

3-phenylpropanoic acid C9H10O2 150.17 1.8 C1=CC=C(C=C1)CCC
(=O)O

Aromatic acid 8

m-Toluic acid, TMS derivative 3-methylbenzoic acid C8H8O2 136.15 2.4 CC1=CC(=CC=C1)C(=O)
O

Aromatic acid 8

2,4-Di-tert-butylphenol 2,4-ditert-butylphenol C14H22O 206.32 4.9 CC(C)(C)C1=CC(=C
(C=C1)O)C(C)(C)C

Aromatic alcohol 8

3-Ethylphenol, TMS
derivative

3-ethylphenol C8H10O 122.16 2.4 CCC1=CC(=CC=C1)O Aromatic alcohol 8

4-Isopropylphenol, TMS
derivative

4-propan-2-ylphenol C9H12O 136.19 2.9 CC(C)C1=CC=C(C=C1)O Aromatic alcohol 8

o-Cresol, TMS derivative 2-methylphenol C7H8O 108.14 2 CC1=CC=CC=C1O Aromatic alcohol 8

2-Methylbutanoic acid, TMS
derivative

2-methylbutanoic acid C5H10O2 102.13 1.2 CCC(C)C(=O)O Saturated acid 8

3-Methylvaleric acid, TMS 3-methylpentanoic acid C6H12O2 116.16 1.6 CCC(C)CC(=O)O Saturated acid 8

2-Octanol, TMS derivative octan-2-ol C8H18O 130.23 2.9 CCCCCCC(C)O Saturated alcohol 8

Bergfors et al. (2021), PeerJ Analytical Chemistry, DOI 10.7717/peerj-achem.11 10/17

http://dx.doi.org/10.7717/peerj-achem.11
https://peerj.com/analytical-chemistry


120 unique hits across all samples. Of those, 42 had the maximum score of 20 (i.e. match
factor > 800, molecular ion detected and retention index within 50 units). Near all (87%)
identified compounds are oxygen-containing, with amines, sulfides and hydrocarbons
being the remaining constituents. Only 15 compounds (after removal of internal standards
and background species) were present in all samples (Table 2).

DISCUSSION
A few papers have previously described non-target screening of produced water, primarily
from the Norwegian continental shelf. Sørensen et al. described the characterization of
unpurified DCM extracts with comparisons to the polar and non-polar fractions as
isolated by SPE (Sørensen et al., 2019). In their study, a high concentration of hydrocarbons
including naphthalenes and linear alkanes was detected in the produced water. This is in
contrast to our study, where only a few hydrocarbons, in relative trace amounts, were
observed as measured by extracted ion chromatograms of known species. The aqueous
solubility of saturated hydrocarbons is low. However, BTEX-type (benzene, toluene
and xylene) compounds have relatively high solubility but were still not identified.

Table 2 (continued)

Compound MS-ready name* Formula Mol.
weight

XlogP SMILES Classification #Samples

Benzeneacetic acid, TMS
derivative

2-phenylacetic acid C8H8O2 136.15 1.4 C1=CC=C(C=C1)CC(=O)
O

Aromatic acid 7

Benzenebutanoic acid, TMS
derivative

4-phenylbutanoic acid C10H12O2 164.2 2.4 C1=CC=C(C=C1)CCCC
(=O)O

Aromatic acid 7

m-Cresol, TMS derivative 3-methylphenol C7H8O 108.14 2 CC1=CC(=CC=C1)O Aromatic alcohol 7

2-Hydroxy-4-
methylquinoline,
trimethylsilyl ether

4-methyl-1H-quinolin-
2-one

C10H9NO 159.18 1.2 CC1=CC(=O)
NC2=CC=CC=C12

Aromatic amine/
alcohol

7

4-Methylvaleric acid, TMS
derivative

4-methylpentanoic acid C6H12O2 116.16 1.4 CC(C)CCC(=O)O Saturated acid 7

2-Ethylphenol, TMS
derivative

2-ethylphenol C8H10O 122.16 2.5 CCC1=CC=CC=C1O Aromatic alcohol 6

4-Trimethylsilylphenol phenol C6H6O 94.11 1.5 C1=CC=C(C=C1)O Aromatic alcohol 6

Benzoic acid, 4-ethoxy-, ethyl
ester

ethyl 4-ethoxybenzoate C11H14O3 194.23 3.2 CCOC1=CC=C(C=C1)C
(=O)OCC

Aromatic ester 6

Naphthalene, 1,7-dimethyl- 1,7-
dimethylnaphthalene

C12H12 156.22 4.4 CC1=CC2=C
(C=CC=C2C=C1)C

Aromatic
hydrocarbon

6

3-Methyl-1-
cyclohexanecarboxylic acid,
trimethylsilyl ester
(stereoisomer 1)

3-methylcyclohexane-
1-carboxylic acid

C8H14O2 142.2 2.1 CC1CCCC(C1)C(=O)O Saturated acid 6

Pentanoic acid, TMS
derivative

pentanoic acid C5H10O2 102.13 1.4 CCCCC(=O)O Saturated acid 6

2-(1-Adamantyl)ethanol,
TMS derivative

2-(1-adamantyl)ethanol C12H20O 180.29 3.4 C1C2CC3CC1CC(C2)(C3)
CCO

Saturated alcohol 6

Notes:
* The MS-ready name corresponds to the non-derivatized parent compound. Calculated XlogP values were obtained from the PubChem database.
# Samples correspond to the number of samples in which the compound was detected.
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Furthermore, hydrocarbons could be present in the water phase as dispersed oil droplets.
We observed that the presence of such droplets in a water sample is heavily dependent on
the oil-water ratio and that optical inspection using a microscope was required for
their detection. Oil droplets were not observed in the samples included in our study which
we believe explain why only small amounts of hydrocarbons were detected. A second
explaination could be losses during sample transport and storage, either via volatilization/
diffusion through the plastic container or microbial degradation. However, this cannot be
validated without further sampling with more control of the process.

Only a small fraction of the detected compounds were identified with an acceptable
confidence level. A total of 36 unique compounds (across all samples) received the
maximum identification score, i.e. a match factor >800, retention index match and
detection of the molecular ion. The match factor had the most severe impact on feature
reduction. Lowering the match factor limit to >600 increased the number of tentatively
identified features by approximately 40% (compared to match factor >700). A manual
evaluation showed that although several hits were chemically reasonable based on
structure and retention index, the lower limit also led to multiple apparent false positives.
Added confidence to questionable identities could be obtained by a corroborative study
using soft ionization techniques, i.e. chemical ionization or low voltage electron ionization,
where the molecular ion is better observed for non-aromatic species.

Looking at the obtained data, two conclusions were made; (1) samples were dominated
by oxygenated organics, and (2) sample-to-sample variation was large, both in terms of
composition and relative abundance. Oxygenated hydrocarbons form during diagenesis
but may also be the result of microbial and or chemical processes during oil production
(Aitken, Jones & Larter, 2004; Head, Gray & Larter, 2014; Pannekens et al., 2019).
The oxygenation leads to high partitioning into the aqueous phase during oil-water

Figure 5 The molecular structures of six representative compounds. The structures were obtained
from the subset of compounds detected in a minimum of six out of nine samples. LogP/XLogP values
were obtained from the PubChem database. The reported retention times are of the corresponding
trimethylsilyl derivatives. Full-size DOI: 10.7717/peerj-achem.11/fig-5
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separation, and these compounds will likely require attention when developing successful
water management technologies. Approximately 50% of the compounds were aromatic,
primarily benzene-derivatives with few naphthalenes present. The molecular structure of
six representative compounds are presented in Fig. 5. Some of the identified compounds
are suspected residual production chemicals, e.g. hexadecanol which does not occur
naturally in crude oil. Even when comparing two samples that were sampled from the
same well and only three days apart, the difference was substantial. As we lack more
detailed information on the sampling step, it is difficult to conclude where these differences
stem from. The intra-sample variation can be an effect of sampling and oil-to-water ratio
in the test separator. The level of dispersed and or layered oil in samples will likely
influence the aggregation and solubility of organics in the aqueous phase. A more
controlled sampling campaign is required to identify the source of variability.

CONCLUSIONS
The composition of produced water is highly complex with several unknowns. Our study
aimed to narrow this gap by a broad identification of dissolved organics. The implemented
identification workflow excluded approximately 95% of the detected compounds
(1,000–1,500 per sample), resulting in 50–80 tentatively identified compounds per sample.
This demonstrates both the power and pitfalls of non-target screening; more than 100
compounds were identified with an acceptable level of confidence, and more than 1,000
compounds remain unknown. To our knowledge, this is the most comprehensive list of
identified compounds in produced water that has been publicly published. However, being
a screening study, quantification was not carried out for any compounds. As this is an
important factor for environmental assessment, the obtained compound lists should be
used to develop targeted methods to look at absolute concentrations. Furthermore, it
would be beneficial to reduce the number of unknowns by using complementary
techniques (e.g. HPLC-MS and other soft ionization methods), improved custom libraries
and in-silico mass spectral prediction.

When performing environmental impact assessments, both structure and concentration
have to be taken into consideration (Tang et al., 2019). A large part of the detected
compounds are present at trace levels. Their concentration will be further reduced at
discharge to sea where a rapid dilution to a large body of water occurs. However, potential
cocktail effects where the combined effect of a series of micro-pollutants is harmful but
not the single species should be accounted for (Di Poi et al., 2018). Here, it would be
highly beneficial to link non-target screening studies with toxicological measurements.
Ultimately, we hope that our study contributes a small piece of the puzzle, and a stepping
stone towards further studies to uncover the full picture.
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