
Submitted 1 May 2020
Accepted 27 August 2020
Published 25 September 2020

Corresponding authors
Narissara Suratannon,
mayzped@gmail.com
Wanwipa Vongsangnak,
fsciwpv@ku.ac.th

Academic editor
Mikhail Gelfand

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj.9988

Copyright
2020 Kingkaw et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Analysis of the infant gut microbiome
reveals metabolic functional roles
associated with healthy infants and
infants with atopic dermatitis using
metaproteomics
Amornthep Kingkaw1, Massalin Nakphaichit2, Narissara Suratannon3,
Sunee Nitisinprasert2, Chantha Wongoutong4, Pantipa Chatchatee3,
Sucheewin Krobthong5, Sawanya Charoenlappanit6, Sittiruk Roytrakul6 and
Wanwipa Vongsangnak1,7

1Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
2Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
3Pediatric Allergy & Clinical Immunology Research Unit, Division of Allergy and Immunology, Department
of Pediatrics, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital,
The Thai Red Cross Society, Bangkok, Thailand

4Department of Statistics, Faculty of Science, Kasetsart University, Bangkok, Thailand
5Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology,
National Science and Technology Development Agency, Pathum Thani, Thailand

6 Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and
Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand

7Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok,
Thailand

ABSTRACT
The infant gut microbiome consists of a complex and diverse microbial community.
Comprehensive taxonomic and metabolic functional knowledge about microbial
communities supports medical and biological applications, such as fecal diagnostics.
Among the omics approaches available for the investigation of microbial communities,
metaproteomics-based analysis is a very powerful approach; under this method, the
activity ofmicrobial communities is explored by investigating protein expressionwithin
a sample. Through use of metaproteomics, this study aimed to investigate themicrobial
community composition of the infant gut to identify different key proteins playing
metabolic functional roles in the microbiome of healthy infants and infants with atopic
dermatitis in aThai population-based birth cohort.Here, 18 fecal sampleswere analyzed
by liquid chromatography-tandem mass spectrometry to conduct taxonomic, func-
tional, and pathway-based protein annotation. Accordingly, 49,973 annotated proteins
out of 68,232 total proteins were investigated in gutmicrobiome samples and compared
between the healthy and atopic dermatitis groups. Through differentially expressed
proteins (DEPs) analysis, 130 significant DEPs were identified between the healthy and
atopic dermatitis groups. Among these DEPs, eight significant proteins were uniquely
expressed in the atopic dermatitis group. For instance, triosephosphate isomerase
(TPI) in Bifidobacteriaceae in the genus Alloscardovia and demethylmenaquinone
methyltransferase (DMM) in Bacteroides were shown to potentially play metabolic
functional roles related to disease. PPI network analysis revealed seven reporter proteins
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showing metabolic alterations between the healthy and disease groups associated with
the biosynthesis of ubiquinone and other quinones as well as the energy supply. This
study serves as a scaffold for microbial community-wide metabolic functional studies
of the infant gut microbiome in relation to allergic disease.

Subjects Bioinformatics, Genomics, Microbiology, Taxonomy, Allergy and Clinical Immunology
Keywords Atopic dermatitis, Gut microbiome, Infants, Metabolic function, Metaproteomics,
Bioinformatics

INTRODUCTION
The microbiome plays an essential role in human immune maturation by mediating
host immune responses, starting from the first month of life (Cianci et al., 2018).
Simultaneously, host and environmental factors can influence microbial colonization
and functions. The establishment of the microbiome begins at birth, after which the
microbiome increases in diversity and stability over the first three years of life (Fouhy et al.,
2012; Lozupone et al., 2012). Several bacterial taxa, such as Bifidobacterium and Bacteroides,
predominantly colonize healthy infants who are born via vaginal delivery or breastfed (Jost
et al., 2012), while in babies born via cesarean section, a different bacterial composition
is established (Azad et al., 2013; Dominguez-Bello et al., 2010). Gut microbial dysbiosis is
known to be associated with chronic inflammatory disorders, such as allergy (Zhao, Ho
& Bunyavanich, 2019), inflammatory bowel disease (Macfarlane et al., 2009), and cancer
(Gopalakrishnan et al., 2018).

Atopic dermatitis is the most common chronic inflammatory skin condition that usually
starts in early childhood. It is the first allergic manifestation of a process known as the
atopic march, a progression from atopic dermatitis to other allergic diseases, such as
allergic rhinitis and asthma. The complex pathophysiology of atopic dermatitis includes
immune dysregulation and skin barrier defects. Because signaling molecules produced by
the microbiome can shape host mucosal and systemic immune responses, gut dysbiosis is
expected to play important roles in the mechanisms underlying atopic dermatitis (Sugita &
Akdis, 2020; Tanaka & Nakayama, 2017). Both genetic and environmental factorsmodulate
gut microbiome colonization and function and influence the risk of the development of
atopic dermatitis. Considering that genetics, dietary habits and living environments in
Southeast Asia are different from those in other regions of the world, studies fromWestern
countries are not directly applicable to Thai population.

Gut microbiomics often involves a 16S rRNA gene sequencing approach to provide
information about gut microbial diversity. However, this approach critically depends
on the optimization of the DNA extraction method and the choice of primers for
amplifying the specific regions of 16S rRNA genes prior to sequence analysis (Walker
et al., 2015). Subsequent whole-genome shotgun sequencing has been a key driving force
in providing information about total gut microbial diversity. Nevertheless, this method
is costly and time-consuming in terms of genome assembly, annotation and analysis
of the microbiome. To overcome this challenge, metaproteomics has recently emerged
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as an alternative approach; metaproteomics can identify and quantify proteins from
microbial communities at a large scale and thus provide direct insight into these microbial
communities at the molecular level (Kleiner, 2019). Recently, there have been a number
of studies on metaproteomic approaches for investigating the infant gut microbiome to
identify taxonomic differences associated with several factors, such as age, sex, the mode
of delivery and different treatments (Cortes et al., 2019). Moreover, metaproteomic studies
have been used to investigate microbial communities associated with human diseases,
such as inflammatory bowel disease (Zhang et al., 2018), chronic kidney disease (Zybailov
et al., 2019) and Crohn’s disease (Blakeley-Ruiz et al., 2019). However, metaproteomic
approaches have not been previously used for investigating the microbial community and
function of the human microbiome in allergic disease.

This study therefore aimed to investigate the microbial community composition of the
infant gut to identify key proteins playing metabolic functional roles in the microbiome
of healthy infants and infants with atopic dermatitis in a Thai population-based birth
cohort using a metaproteomic approach. Metaproteomic data were initially obtained from
the gut microbiome of Thai infants by protein extraction from stool samples followed by
LC-MS/MS-based protein identification. Thereafter, the data were processed with different
bioinformatics tools and databases for protein quantitation and annotation. The obtained
proteins were further classified into functional categories. To identify proteins that were
uniquely expressed in healthy infants or infants with atopic dermatitis, the significant
differentially expressed proteins (DEPs), metabolic functional roles, functional categories
and taxonomic differences between healthy infants and infants with atopic dermatitis were
then considered. To further identify reporter proteins associated with metabolic alterations
between the healthy and disease groups, a PPI network was constructed and then integrated
with a list of DEPs identified between the healthy and atopic dermatitis groups.

This study serves as a scaffold for microbial community-wide metabolic functional
studies of the infant gut microbiome in relation to allergic disease. Our work provides the
first metaproteomic data from a population-based birth cohort in a developing Southeast
Asian country.

MATERIALS AND METHODS
Fecal sample collection and preparation
Fecal samples were collected from 18 infants who participated in a population-based allergy
birth cohort study at King Chulalongkorn Memorial Hospital, Bangkok, Thailand. These
infants included 11 healthy controls and 7 patients with atopic dermatitis. Atopic dermatitis
was diagnosed by a pediatric allergist according to the criteria of the American Academy of
Dermatology (Eichenfield et al., 2017). The study was approved by the Ethics Committee
of King Chulalongkorn Memorial Hospital, Bangkok, Thailand, under approval reference
number 358/58. Written informed consent was obtained from the parents or guardians of
the participants. Information on gestational age, sex, age (months), the mode of delivery,
and the type of infant feeding (breastfed and formula fed) are presented in Table 1. The
stool samples were collected from 9–12 months of age and frozen at −80 ◦C until analysis.

Kingkaw et al. (2020), PeerJ, DOI 10.7717/peerj.9988 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.9988


Table 1 Thai infant fecal sample features.

Subject ID H
01

H
02

H
03

H
04

H
05

H
06

H
07

H
08

H
09

H
10

H
11

AD
01

AD
02

AD
03

AD
04

AD
05

AD
06

AD
07

Gestational
age (week)

38 39 39 39 40 39 38 38 37 38 40 39 38 38 38 37 38 38

Gender F F M M M M F M M M F M F F F M M M
Age (months) 12 9 12 9 9 12 9 12 12 12 12 9 9 12 12 9 12 9
Delivery Mode V CS V V V CS CS CS CS V V V CS V V V CS V
Feeding Mode Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix Mix

Notes.
Group: H, healthy; AD, atopic dermatitis; Gender: M, male; F, female; Delivery mode: V, vaginal, CS, Cesarean-section; Feeding Mode: Mix, breastfed and formula fed.
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Sample preparation was conducted as previously described by Losuwannarak et al. (2019)).
Briefly, frozen fecal samples were reconstituted in 50 mM phosphate buffer pH 7.0 and
then vortexed well. After centrifugation for 10 min at 12,000 rpm to remove debris and
some large particles (Chassaing et al., 2012), the solubilized protein remaining in the clear
supernatant was collected. Total soluble protein was measured with a Lowry assay (File S1)
using bovine serum albumin as a standard (Lowry et al., 1951). In 5 µg protein samples,
disulfide bonds were reduced using 5mMdithiothreitol in 10mM ammonium bicarbonate
at 60 ◦C for 1 h, followed by the alkylation of sulfhydryl groups by 15 mM iodoacetamide in
10 mM ammonium bicarbonate for 45 min in the dark at room temperature. For digestion,
the protein samples were mixed with sequencing-grade trypsin (ratio of 1:20) (Promega,
Germany) and incubated at 37 ◦C overnight. Prior to liquid chromatography-tandemmass
spectrometry (LC-MS/MS) analysis, the digested protein (tryptic peptide) samples were
dried and protonated with 0.1% formic acid before injection into the LC-MS/MS system.

Liquid chromatography-tandem mass spectrometry
LC-MS/MS was conducted as previously described in Losuwannarak et al. (2019).
Specifically, the tryptic peptide samples (100 ng) were injected in triplicates into an
UltimateTM 3000 Nano/Capillary LC System (Thermo Scientific) coupled to a Hybrid
quadrupole Q-TOF impact IITM (Bruker Daltonics) equipped with a Nano-captive spray
ionization (CSI) source. Here, peptides were enriched on a µ-Precolumn 300 µm i.d. X
five mm C18 PepMapTM 100, 5 µm, 100 Å (Thermo Scientific) and separated on a 75 µm
I.D. × 15 cm and packed with AcclaimTM PepMapTM RSLC C18, 2 µm, 100 Å, nanoViper
(Thermo Scientific). A mobile phase of solvent X (0.1% formic acid) and solvent Y (80%
acetonitrile and 0.1% formic acid) were applied on the analytical column. A linear gradient
of 5–55% solvent Y was used to elute the peptides at a constant flow rate of 0.30 µl/min
for 30 min. Electrospray ionization was performed at 1.6 kV using the CaptiveSpray. Mass
spectra (MS) and MS/MS spectra were achieved in the positive-ion mode over the range
(m/z) 150–2,200 (Compass 1.9 software, Bruker Daltonics).

Quantification and identification of proteins using bioinformatics
tools and databases
For the quantification of proteins, MaxQuant (version 1.6.6.0) was used to quantify
individual samples, and their MS/MS spectra were matched to the UniProt bacterial
database by using the Andromeda search engine (Tyanova, Temu & Cox, 2016a). Label-
free quantitation with MaxQuant settings was performed, which included (1) a maximum
of two missed cleavages, (2) mass tolerance of 0.6 Daltons for the main search, (3)
trypsin as the digestion enzyme, (4) carbamidomethylation of cysteine residues as a fixed
modification, and (5) oxidation of methionine and acetylation of the protein N-terminus
as variable modifications. Notably, peptides with a minimum of 7 amino acids and
at least one unique peptide were required for protein identification. The protein false
discovery rate (FDR) was set at 1% and estimated from the reverse searches of sequences.
The maximal number of modifications per peptide was set to 5. For searches in FASTA
files, a protein database of 10 candidate bacterial families selected from earlier reports
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of gut microbiome data from Thailand (Kisuse et al., 2018; La-ongkham et al., 2015),
which included Bacteroidaceae, Bifidobacteriaceae Enterococcaceae, Enterobacteriaceae,
Erysipelotrichaceae, Lachnospiraceae, Lactobacillaceae, Prevotellaceae, Streptococcaceae and
Veillonellaceae, was downloaded from UniProt. Database with potential contaminants
included in MaxQuant was automatically added. The MaxQuant ProteinGroups.txt file
was subsequently obtained in conjunction with the use of Perseus software (version 1.6.6.0)
for importing peptide sequences into the metaproteome dataset (Tyanova et al., 2016b).
Exact peptides for which a unique protein sequence was matched to a single bacterial
strain were classified as bacterial strain-specific sequences for taxonomic classification
(Heyer et al., 2017; Karlsson et al., 2012). The remaining peptides for which a unique
protein sequence was not matched to a single bacterial strain were discarded. The protein
sequences assigned with protein IDs with known/putative functions from the UniProt
bacterial database were denoted as annotated proteins. In contrast, the protein sequences
assigned an ID corresponding to a hypothetical protein/uncharacterized protein were
designated as unannotated proteins. Maximum peptide intensities were log2 transformed
in Microsoft Excel, providing the protein expression levels (PELs) for DEPs analysis. The
raw MS/MS spectra data, protein sequences, and PELs of the healthy and atopic dermatitis
groups and the outlier observations from all samples were deposited in the Figshare data
repository (figshare.com/s/1f8040674ef62c6d610c).

Comparative microbial community composition and differentially
expressed proteins analysis
To compare the microbial community composition according to the 10 selected bacterial
families between the healthy and atopic dermatitis groups, the relative abundance of the
microbial families was plotted using the ggplot2 package (Wickham, 2009) in R (version
3.5.3) (http://www.R-project.org). The Wilcoxon rank-sum test and multiple testing via
false discovery rate (FDR) correction were performed to identify statistically significant
differences (adjusted p-value < 0.05) in 10 selected bacterial families between the healthy
and atopic dermatitis groups. Notably, the Wilcoxon rank-sum test was selected in this
study because it is a nonparametric test that compare medians between two groups of
independent samples. To identify targets of interest of bacterial families, an additional
hierarchical clustering using the complete linkage method with Euclidean distance by the
hclust function in the R stats package (version 3.5.3) (R Core Team, 2018) was applied
to group similar patterns across 10 selected bacterial families in the healthy and atopic
dermatitis groups. A Z -score >0.5 was set as a threshold, which was calculated by the total
protein expression levels at the bacterial family level for selecting targets of interest among
bacterial families (Yang et al., 2015). For further statistical analysis, Fisher’s exact test and
FDR correction were also used for the analysis of each type of categorical data, such as
subfunctional categories from the KEGG database (Kanehisa et al., 2004), across bacterial
families between the healthy and atopic dermatitis groups.

In the DEPs analysis between the healthy and atopic dermatitis groups, the Wilcoxon
rank-sum test and FDR correction were also used to identify significant proteins (adjusted
p-value < 0.05). For the metabolic functional annotation of DEPs, the KEGG database
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was also used. To identify proteins playing metabolic functional roles that were uniquely
expressed in the healthy infants or the infants with atopic dermatitis, a list of the significant
proteins obtained from the DEPs analysis between the healthy and atopic dermatitis groups
was then searched by using the jvenn viewer (Bardou et al., 2014).

Identification of reporter proteins through protein–protein interaction
network construction
Reporter feature analysis (Oliveira, Patil & Nielsen, 2008) was applied to identify reporter
proteins. This is a hypothesis-driven method for the analysis of omics data. It combines the
topology of the PPI network with the DEPs data between the healthy and atopic dermatitis
groups and allows the identification of the reporter proteins around which DEPs changes
are significantly concentrated. The applied reporter features algorithm was based on the
constructed PPI network for the microbiome. To explore the PPI network constructed for
themicrobiome, the PPIs of Escherichia coliK12 extracted from the BioGRID database were
used as a template and searched against all possible proteins identified frommetaproteomic
data using BLASTP under the assumption of the best match of protein homologs and
interologs of microbiome shared with the E. coli K12 interaction set (Jonsson et al., 2006).
To visualize the PPI network constructed for the microbiome, Cytoscape (version 3.7.2)
was then used.

RESULTS
Assessment of metaproteomic data from healthy Thai infants and
Thai infants with atopic dermatitis
The metaproteomic data from the 18 Thai infant gut microbiomes resulted in the
identification of 142,665 independent mass spectral counts (i.e., 85,430 spectral counts
for 11 healthy samples and 57,235 spectral counts for 7 atopic dermatitis samples). After
division to the number of samples in each group, the spectral counts per sample are
presented between the healthy (7,767 spectral counts) and atopic dermatitis (8,177 spectral
counts) groups in Table 2. Based on the Wilcoxon rank-sum test, the spectral counts
per sample were comparable between the healthy and atopic dermatitis groups (File S2).
According to all of the spectral counts assigned to the protein sequences on the basis of the
spectral library and proteomic resources (Li et al., 2013), a greater number of total protein
sequences with annotations were identified in the healthy samples (38,237 sequences) than
in the atopic dermatitis samples (27,980 sequences). After considering the unique protein
sequences, 49,973 annotated proteins out of 68,232 total proteins were selected for further
analysis. To explore the taxonomy, functions, and pathways of the gut microbiome between
the healthy and atopic dermatitis groups, a well-characterized cohort of Thai infants with
ages of 9–12 months exhibiting the same feeding mode (breastfed or formula fed) and
delivery mode was initially considered, as shown in Table 1. The results are described in
the following section.
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Table 2 Assigned spectral counts and unique protein sequences.

Source Protein annotation Total spectral countsb

(Spectral counts per sample)
Total protein
sequencesb

Unique
protein
sequences

H AD H AD

Annotated proteins1 62,302 (5,664) 41,725 (5,961) 38,237 27,980 49,973
Bacteria

Unannotated proteins 23,128 (2,103) 15,510 (2,216) 14,080 10,273 18,259
Total 85,430 (7,767) 57,235 (8,177) 52,317 38,253 68,232

Notes.
H, healthy; AD, atopic dermatitis.

aAnnotated protein is based on a protein ID with assigned function from Uniprot database.
bSpectral counts are the number of spectra assigned to protein sequence.

Identification of microbial community composition profiles
between healthy Thai infants and Thai infants with atopic dermatitis
To identify the microbial community composition profiles between the healthy and atopic
dermatitis groups, a total of 68,232 proteins from the assessed metaproteomic data were
analyzed at the bacterial family level. The relative abundance of the 10 selected bacterial
families (see Materials and Methods) in the microbial community composition profiles
was identified as shown in Fig. 1. The results were comparable between the healthy and
atopic dermatitis groups across the 10 bacterial families. Using the Wilcoxon rank-sum
test and FDR correction, we found non-significant differences in the bacterial families
between the healthy and atopic dermatitis groups. This result shows that the patterns of the
bacterial community composition in the infants were similar between the healthy and atopic
dermatitis groups of our study at the ages of 9–12 months. Considering the high relative
protein expression (Z -score > 0.5) observed in the majority of the samples from the healthy
and atopic dermatitis groups across these 10 bacterial families, we interestingly found that
the top five families were the same in healthy and atopic dermatitis groups, including
Enterococcaceae, Prevotellaceae, Streptococcaceae, Erysipelotrichaceae, and Lactobacillaceae,
as illustrated in Fig. 2 and Files S3–S5.

Assignment of metabolic functions of the gut microbiome between
healthy Thai infants and Thai infants with atopic dermatitis
All possible proteins (i.e., 49,973 annotated proteins out of 68,232 total proteins from the
assessed metaproteomic data) were functionally assigned according to the KEGG database
(Kanehisa et al., 2004). Six functional categories (i.e., metabolism, genetic information
processing, environmental information processing, cellular processes, human diseases and
organismal systems) were classified as shown in Fig. 3 and File S6. Metabolism was the
largest functional category among these categories. The number of proteins with assigned
metabolic functions included in the metabolism category was higher in the healthy samples
(7,449 proteins) than in the atopic dermatitis samples (5,447 proteins). It is worth noting
that a number of proteins assigned metabolic functions depended on the total accessible
protein sequences from the healthy or atopic dermatitis samples (Table 2) available in the
KEGG database as well as the number of samples in each group.
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Figure 1 Relative abundance of 10 bacterial families in the healthy and atopic dermatitis groups. Each
bar represents the average relative abundance of each bacterial family. Abbreviations: H, healthy; AD,
atopic dermatitis.

Full-size DOI: 10.7717/peerj.9988/fig-1

Figure 2 Relative protein expression of 10 bacterial families in the healthy and atopic dermatitis
groups. A heatmap was generated by using the ggplot2 package (Wickham, 2009) implemented in
(R Core Team, 2019) for visualization. Abbreviations: H, healthy; AD, atopic dermatitis.

Full-size DOI: 10.7717/peerj.9988/fig-2

The proteins with assigned metabolic functions involved in the metabolism category
were subcategorized, and the results are shown in Fig. 4 and File S7. Intriguingly, the
numbers of proteins involved in carbohydrate metabolism (2,146 proteins), amino acid
metabolism (943 proteins), nucleotide metabolism (631 proteins), the metabolism of
cofactors and vitamins (580 proteins), glycan biosynthesis and metabolism (359 proteins),
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Figure 3 Comparative distribution of the main functional categories of metaproteome data between
the (A) healthy and (B) atopic dermatitis groups based on the KEGG database. .

Full-size DOI: 10.7717/peerj.9988/fig-3

Figure 4 Comparison of the numbers of functionally assigned proteins between the healthy and atopic
dermatitis groups across different metabolic functional categories based on the KEGG database. The
horizontal bar chart shows the number of proteins devoted to different metabolic functional categories.
Each color shows the group of proteins identified in each bacterial family level.

Full-size DOI: 10.7717/peerj.9988/fig-4

energy metabolism (307 proteins), lipid metabolism (291 proteins), the metabolism of
terpenoids and polyketides (138 proteins), xenobiotic biodegradation and metabolism
(36 proteins), and the biosynthesis of other secondary metabolites (16 proteins) were
found to be lower in the atopic dermatitis group than in the healthy group (Fig. 4).
The greatest numbers of proteins were related to carbohydrate metabolism in both the
healthy and atopic dermatitis groups. After the application of Fisher’s exact test and FDR
correction across the bacterial families in each subfunctional category, the results showed
a non-significant difference in protein numbers between the healthy and atopic dermatitis
groups (File S8). Further DEPs analysis is described in the next section.
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Analysis of differentially expressed proteins of the gut microbiome
between the healthy and atopic dermatitis groups of Thai infants
A total of 49,973 annotated proteins from the assessedmetaproteomic data were included in
theDEPs analysis with theWilcoxon rank-sum test and FDR correction. Focusing on the list
of DEPs, 130 significant proteins were identified under an adjusted p-value <0.05 (File S9).
Among these proteins, we observed two proteins of interest involved in metabolism:
ornithine carbamoyltransferase (EC: 2.1.3.3), involved in arginine biosynthesis, from
Streptococcaceae; and dihydroorotate dehydrogenase B (NAD+) (EC: 1.3.1.14), involved in
pyrimidine metabolism, from Lactobacillaceae. The comparison of the PEL data revealed
much higher PELs in the atopic dermatitis group than in the healthy group. These results
suggest that the two identified proteins may be potential candidates for showing disease
associations (Ohnishi et al., 2017; Wozel, Vitéz & Pfeiffer, 2006). To further identify proteins
that were uniquely expressed in healthy infants or infants with atopic dermatitis, a list of
the 130 significant proteins was searched by using the jvenn viewer (Bardou et al., 2014)
(File S9). As expected, we found that 8 significant proteins were uniquely expressed in the
majority of the samples from the atopic dermatitis group and showed no expression in all
samples from the healthy group. Interestingly, these proteins were involved in metabolism,
specifically carbohydratemetabolism (4 proteins), themetabolismof cofactors and vitamins
(1 protein), amino acid metabolism (1 protein), nucleotide metabolism (1 protein), and
xenobiotic biodegradation and metabolism (1 protein). The results are listed in Table 3.
However, no proteins involved in metabolism were uniquely expressed in the majority of
the samples from the healthy group while showing zero expression in all samples from the
atopic dermatitis group.

Regarding the proteins involved in carbohydrate metabolism that were uniquely
expressed in the samples from the atopic dermatitis group, very promisingly we identified
triosephosphate isomerase (TPI) (PEL of 15.73, EC: 5.3.1.1) in Alloscardovia omnicolens
F0580 from Bifidobacteriaceae. As shown in Table 3, we observed that other proteins
that were uniquely expressed in samples from the atopic dermatitis group were involved
in carbohydrate metabolism, such as 6-phospho-beta-glucosidase (PEL of 13.35, EC:
3.2.1.86) in Erysipelotrichaceae bacterium, fructose-bisphosphate aldolase (PEL of 14.24,
EC: 4.1.2.13) in Erysipelotrichaceae bacterium AM17-60 from Erysipelotrichaceae, and
beta-xylosidase (PEL of 13.53, EC: 3.2.1.37) in Prevotella sp. tc2-28 from Prevotellaceae.

Considering the metabolism of cofactors and vitamins, we very intriguingly identified
demethylmenaquinone methyltransferase (DMM) as protein that was uniquely expressed
(PEL of 13.16, EC: 2.1.1.163) in samples from the atopic dermatitis group identified in
Bacteroides sp. CAG: 714. For the other remaining functional categories, the proteins
that were uniquely expressed in samples from the atopic dermatitis group included
asparagine synthase (glutamine hydrolysis) (PEL of 13.34, EC: 6.3.5.4) in Lactobacillus
ginsenosidimutans, uridine kinase (PEL of 13.47, EC: 2.7.1.48) in Lactobacillus mellis from
Lactobacillaceae, and glyoxalase (PEL of 14.37, EC: 4.4.1.5) in Lactococcus lactis from
Streptococcaceae. As mentioned above, these identified microbial communities were shown
to be potential components of the infant gut microbiome that could play metabolic
functional roles with a profound effect on human health/disease in our cohort studies.
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Table 3 List of eight proteins uniquely expressed in atopic dermatitis samples.

Protein IDs Protein names Bacteria Families Sub-functional categories PELsa

R6ZSA4 Demethylmenaquinone methyltransferase
(EC: 2.1.1.163)

Bacteroides sp. CAG:714 Bacteroidaceae Metabolism of cofactors
and vitamins

13.16

A0A0H4QFW8 Asparagine synthase
(glutamine-hydrolysing)
(EC: 6.3.5.4)

Lactobacillus ginsenosidimutans Lactobacillaceae Amino acid metabolism 13.34

U1SDZ8 Triosephosphate isomerase
(EC: 5.3.1.1)

Alloscardovia omnicolens F0580 Bifidobacteriaceae Carbohydrate metabolism 15.73

A0A3D2W7G8 6-phospho-beta-glucosidase
(EC: 3.2.1.86)

Erysipelotrichaceae bacterium Erysipelotrichaceae Carbohydrate metabolism 13.35

A0A3R6L4H6 Fructose-bisphosphate aldolase
(EC: 4.1.2.13)

Erysipelotrichaceae
bacterium AM17-60

Erysipelotrichaceae Carbohydrate metabolism 14.24

A0A1H3YY32 Beta-xylosidase
(EC: 3.2.1.37)

Prevotella sp. tc2-28 Prevotellaceae Carbohydrate metabolism 13.53

A0A0F4KSW8 Uridine kinase
(EC: 2.7.1.48)

Lactobacillus mellis Lactobacillaceae Nucleotide metabolism 13.47

A0A2A9IP29 Glyoxalase (EC: 4.4.1.5) Lactococcus lactis Streptococcaceae Xenobiotics biodegradation
and metabolism

14.37

Notes.
aMedian values of PELs are presented.
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Identification of reporter proteins underlying metabolic alterations
between the healthy and atopic dermatitis groups of Thai infants
To identify reporter proteins underlying the metabolic alterations between the healthy
and atopic dermatitis groups, the reporter features algorithm was applied. Here, the
reporter features algorithm was based on the constructed PPI network for the microbiome,
integrated with a list the DEPs between the healthy and atopic dermatitis groups (see
Materials and Methods). The E. coli K12 PPI template (4,062 proteins and 184,017
interactions) across all possible protein lists (49,973 annotated proteins) from the assessed
metaproteomic data was searched, and a PPI network involving 3,995 proteins with 77,391
interactions was then constructed. After applying the reporter features algorithm with
specific thresholds (Z -score ≥ 3.00), we identified the top 15 reporter proteins through
PPI network analysis (File S10). Among these proteins, 7 reporter proteins were mainly
related to metabolic functions of interest. As illustrated in Fig. 5, DMM was the most
significant protein (Z -score of 6.931) in the subnetwork. This result clearly suggests
that DMM potentially plays an important role in the metabolic alterations between
the healthy and atopic dermatitis groups. Other reporter proteins were also identified
in the subnetwork, which were associated with DMM in the biosynthesis pathways of
ubiquinone and other quinones, such as 1,4-dihydroxy-2-naphthoyl-CoA hydrolase (EC:
3.1.2.28) and 4-hydroxy-3-polyprenylbenzoate decarboxylase (EC: 4.1.1.98). Moreover, we
identified reporter proteins involved in the energy supply in the subnetwork (e.g., related to
NADH and ATP production), such as F-type H+-transporting ATPase subunit delta (EC:
7.1.2.2), 6-phosphofructokinase (EC: 2.7.1.11), formate dehydrogenase subunit gamma
(EC: 1.17.1.9), and long-chain-fatty-acid-[acyl-carrier-protein] ligase (EC: 6.2.1.20).
Accordingly, the biosynthesis of ubiquinone and other quinones as well as the energy
supply to the gut bacteria might influence host physiology and health.

DISCUSSION
This study shows the prospective benefits of metaproteomics-based analysis in research
on the human gut microbiome. Based on our metaproteomics analysis, we revealed the
complex nature of the microbiome taxa by identifying microbial community composition
profiles and related key proteins involved in the metabolic functions of healthy Thai infants
and Thai infants with atopic dermatitis. In the direct comparison of the taxonomy and
high relative protein expression between the healthy and atopic dermatitis groups across
10 selected bacterial families (Figs. 1 and 2), the results clearly identified five families
abounded in both the healthy and atopic dermatitis groups, including Enterococcaceae,
Prevotellaceae, Streptococcaceae, Erysipelotrichaceae, and Lactobacillaceae. Considering the
similar characteristics of the subjects in the cohort e.g., showing the same feeding patterns
(Table 1), these five bacterial families might present critical activities involved in host
physiology and/or host disease. In addition to the taxonomic information provided through
metaproteomics analysis, a quantitative overview was generated at the metabolic function
level. In DEPs analysis, the identification of significant proteins involved in metabolism
that were uniquely expressed in samples from the atopic dermatitis group was of particular
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Figure 5 Reporter protein subnetwork involving ubiquinone and other quinone biosynthesis as well
as energy supply.Node and edge represent protein and its interaction visualized by Cytoscape (version
3.7.2). A circle with red color represents reporter protein. A circle with blue color represents neighbor-
ing protein. A red edge means interactions between reporter proteins involved in ubiquinone and other
quinone biosynthesis and other neighboring proteins. A green edge means interactions between reporter
proteins involved in energy supply and other neighboring proteins. A grey edge means interactions be-
tween neighboring proteins.

Full-size DOI: 10.7717/peerj.9988/fig-5

interest. Among 8 significant proteins, very promisingly we found that TPI was identified
in A. omnicolens F0580. Considering the observed high PEL (Table 3), TPI might be related
to allergic reactions, as supported by Yang et al. (2017). In addition, A. omnicolens is a
member of the Bifidobacteriaceae family and Alloscardovia genus. It normally inhabits
the gastrointestinal tract of humans, and an earlier report indicated that A. omnicolens is
associated with infectious disease (Mahlen & Clarridge, 2009). However, this species has
been infrequently isolated from human clinical specimens because it is catalase and oxidase
negative and has the morphology of short irregularly shaped rods (Mahlen & Clarridge,
2009). Unexpectedly, our metaproteomic study identified A. omnicolens F0580 together
with TPI as being related to metabolic function among the gut bacterial community. Taken
together, these results suggest that A. omnicolens F0580 might be considered a potential
contributing pathogen (Mahlen & Clarridge, 2009). Of particular interest, considering
the metabolism of cofactors and vitamins, we observed DMM as a protein that was
uniquely expressed in samples from the atopic dermatitis group, which was identified in
Bacteroides sp. CAG: 714. In general, Bacteroides sp. are inhabitants of the human gut
presenting mutualistic benefits to humans because of their ability to prevent pathogens
from colonizing the gut. However, when the relative abundance of Bacteroidaceae was
reduced, low PELs were found in the human gut in both the healthy and atopic dermatitis
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groups, as supported by Figs. 1 and 2, respectively, making the gut a more favorable
environment for pathogenic bacteria, potentially resulting in gut dysbiosis and secondary
infection. Further concerning metabolic functions identified in samples from the atopic
dermatitis group, DMM is involved in the final step of menaquinone biosynthesis, in which
it catalyzes methylation of demethylmenaquinone using S-adenosylmethionine, resulting
in the formation of menaquinone. Taken together, the results suggest that Bacteroides sp.
CAG: 714 in the human gut could produce menaquinone, which may be an alternative
source of vitamin K in patients (Ramotar et al., 1984). Some bacteria in the human gut can
meet their energy needs through the use of menaquinone, which represents an essential
point of vulnerability in the electron transport chain for the synthesis of adequate amounts
of ATP (Sukheja et al., 2017). This suggests that the relationship between menaquinone
and the gut microbiota (Karl et al., 2015) might play important roles in the mechanism of
atopic dermatitis. Following the identification of reporter proteins underlying metabolic
alterations between the healthy and atopic dermatitis groups, 7 reporter proteins were
found to show metabolic alterations between the healthy and disease groups. Notably,
DMMwas shown to be the most significant protein. This result clearly supports a potential
important role of DMM in metabolic alterations between the healthy and atopic dermatitis
groups. In addition, we found that other reporter proteins were involved in the energy
supply, indicating that the energetic contribution of the gut bacteria might influence host
physiology and health. An energetic imbalance between the gut microbiota and the host
could be a possible risk factor for allergic diseases, such as atopic dermatitis.

The present study supports metaproteomics as a potentially valuable approach for use in
routine medical diagnostics, such as human feces analysis. The success of metaproteomic
studies of the human gut microbiome depends on different aspects of the experimental
design and the available bioinformatics resources, such as the cohort design, sample
sizes, spectral libraries, proteomic resources, and bioinformatics databases and tools. A
great challenge in facilitating microbiome analysis is to integrate metaproteomics as a
complementary approach to other meta-omics techniques (e.g., metagenomics) with the
aim of achieving a comprehensive understanding of human and microbiome interactions
in relation to health and disease (Morowitz et al., 2011; Sharon et al., 2013; Petriz & Franco,
2017).

CONCLUSIONS
Metaproteomics-based analysis reveals the taxonomy, function, and metabolic pathways
of the gut microbiome. Through metaproteomics, we may monitor the gut microbiome
and assess its impact on health and allergic disease.
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