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20 Abstract

21 We analyzed the radiolarian assemblages of 59 surface sediment samples collected from the 
22 Yellow Sea and East China Sea of the northwestern Pacific. In the study region, the Kuroshio 
23 Current and its derivative branches exerted a crucial impact on radiolarian composition and 
24 distribution. Radiolarians in the Yellow Sea shelf showed a quite low abundance, as no tests 
25 were found in 15 of 25 Yellow Sea samples. Radiolarians in the East China Sea shelf could be 
26 divided into three regional groups, including the East China Sea north region group, the East 
27 China Sea middle region group, and the East China Sea south region group. The results of the 
28 redundancy analysis suggested that the Sea Surface Temperature and Sea Surface Salinity were 
29 primary environmental variables explaining species-environment relationship. The gradients of 
30 temperature, salinity, and species diversity reflect the powerful influence of the Kuroshio Current 
31 in the study area.

32 Introduction

33 Polycystine Radiolaria (hereafter Radiolaria), with a high diversity of 1192 Cenozoic fossil to 
34 Recent species, are a crucial group of marine planktonic protists (Lazarus et al., 2015; Suzuki, 
35 2016). Living Radiolaria are widely distributed throughout the shallow-to-open oceans (Lombari 
36 & Boden, 1985; Wang, 2012), and a proportion of their siliceous skeletons settle on the seafloor 
37 after death (Takahashi, 1981; Yasudomi et al., 2014). The distribution of Radiolaria in a given 
38 region is associated with the pattern of water mass, such as temperature, salinity and nutrients 

39 (Abelmann & Nimmergut, 2005; Anderson, 1983; Hernández‐Almeida et al., 2017). 
40 The East China Sea (ECS) and Yellow Sea (YS) are marginal seas of the northwestern Pacific 
41 (Xu et al., 2011). The two regions are divided by the line connecting the northern tip of the 
42 mouth of the Changjiang and the southern tip of the Jeju Island (Jun, 2014). Hydrographic 
43 conditions of the shelf area of both the ECS and YS, where the depth is generally less than 100 
44 meters, vary remarkably with the season (Qi, 2014). Generally, the annual sea surface 
45 temperature (SST) and sea surface salinity (SSS) show a decreasing trend from the southeast to 
46 northwest in study area (Fig. 1).
47 The Kuroshio Current originates from the Philippine Sea, flows through the ECS, and afterwards 
48 forms the Kuroshio Extension (Hsueh, 2000; Qiu, 2001). The Kuroshio Current and its derivative 
49 branch-the Taiwan Warm Current (TWC), form the main circulation systems in the ECS shelf 
50 area, while the Yellow Sea Warm Current, one derivative branch of the Kuroshio Current, 
51 dominates in the YS shelf area (Hsueh, 2000; Tomczak & Godfrey, 2001).
52 In the ECS shelf region’s summer (Fig. 2A), the Kuroshio subsurface water gradually upwells 
53 northwestward from east of Taiwan, and finally reaches 30.5°N off the Changjiang estuary along 
54 ~60 m isobaths, forming the Nearshore Kuroshio Branch Current (Yang et al., 2012; Yang et al., 
55 2011). Meanwhile, the TWC is formed by the mixing of the Taiwan Strait Warm Current and 
56 Kuroshio Surface Water (Qi, 2014). In winter (Fig. 2B), the Kuroshio Surface Water shows 
57 relatively intense intrusion as part of the Kuroshio Surface Water northwestward reaches 
58 continental shelf area across 100 m isobaths (Zhao & Liu, 2015). At this point, the TWC is 
59 mainly fed from the Kuroshio Current northeast of Taiwan (Qi, 2014).
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60 In the YS shelf region’s summer (Fig. 2A), the Yellow Sea Cold Water Mass, characterized by 
61 low temperature, occupies the central low-lying area mostly below the 50 m isobaths while the 
62 Yellow Sea Warm Current shows little influence (Guan, 1963). In winter (Fig. 2B), the impact of 
63 the Yellow Sea Warm Current on shelf region is enhanced, while the Yellow Sea Cold Water 
64 Mass disappears (Weng et al., 1988). The continuous water circulation in the YS is mainly 
65 comprised of the Yellow Sea Warm Current and the China Coastal Current (UNEP, 2005).
66 The radiolarian assemblages in surface sediments have been investigated in the ECS whereas 
67 there are few reports in the YS. These reports cover the ECS including the Okinawa Trough 
68 (Chang et al., 2003; Cheng & Ju, 1998; Wang & Chen, 1996) and continental shelf region 
69 extensively (Chen & Wang, 1982; Tan & Chen, 1999; Tan & Su, 1982). They summarize the 
70 distribution patterns of the dominant species and the environmental conditions that affect the 
71 composition of radiolarian fauna in the ECS in their excellent taxonomic works. On the basis of 
72 these valuable works, we rigorously investigate the relationships between radiolarians and 
73 environmental variables. In addition, to which the ECS and YS are influenced by the Kuroshio 
74 Current and its derivative branch are specially focused in this study. The radiolarian data 
75 collected from 59 surface sediment samples are associated with environmental variables of the 
76 upper water to explore the principal variables explaining radiolarian species composition. The 
77 influences of the Kuroshio Current and its derivative branch on radiolarian assemblages in the 
78 study area are also considerably discussed.

79 Materials & Methods

80 Sample collection and treatment

81 The surface sediments were collected at 59 sites (Fig. 3A) in the Yellow Sea and East China Sea 
82 using a box corer. The sediment samples in the study area were divided into four groups 
83 geographically and were labeled the Yellow Sea region (YSR) samples, the ECS north region 
84 (ECSNR) samples, the ECS middle region (ECSMR) samples, and the ECS south region 
85 (ECSSR) samples. The samples were prepared using the method described by Chen et al. (2008). 
86 30% hydrogen peroxide and 10% hydrochloric acid were added to each dry sample to remove 
87 organic component and the calcium tests, respectively. Then the treated sample was sieved with 
88 a 50 μm sieve and dried in an oven. After flotation in carbon tetrachloride, the cleaned residue 
89 was sealed with Canada balsam for radiolarian identification and quantification under a light 
90 microscope with a magnification of 200X or 400X. To reduce counting uncertainty, 
91 Dictyocoryne profunda Ehrenberg, Dictyocoryne truncatum (Ehrenberg), Dictyocoryne 

92 bandaicum (Harting) were combined as Dictyocoryne group. Photographs of some radiolarians 
93 encountered in this study are exhibited in Figure 4.
94 Environmental data

95 Grain size analysis of the surface sediments was conducted with a Laser Diffraction Particle Size 
96 Analyzer (Cilas 1190, CILAS, Orleans, Loiret, France). The data were used to categorise grain 
97 size classes as clay (1-4 μm), silt (4-63 μm) and sand (63-500 μm), and to determine different 
98 sediment types according to the Folk classification (Folk, Andrews & Lewis, 1970). In addition, 
99 the mean grain size was calculated for each site.
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100 The values of annual temperature (SST), salinity (SSS), oxygen, phosphate, nitrate, and silicate 
101 of sea surface with a 0.5° resolution for the period of 1930 to 2009 were derived from the 
102 CARS2009 dataset (Ridgway, Dunn & Wilkin, 2002). The sea surface chlorophyll-a and 
103 particulate organic carbon with a 9 km resolution for the period of 1997 to 2010 were obtained 
104 from https://oceancolor.gsfc.nasa.gov/l3/. The values of the environmental variables mentioned 
105 above for each surface sediment site were estimated by linear interpolation. These values, 
106 together with depth, are shown in Supplementary material Table 1.
107 Statistical processing

108 The minimum number of specimens counted in each sample is customarily 300. However, low 
109 radiolarian concentrations are frequent in the shelf type sediments comprised mainly of 
110 terrigenous sources (Chen et al., 2008). Given small sediment samples, it was difficult to find 
111 300 tests in some sites. According to Fatela & Taborda (2002), counting 100 tests allows less 
112 than 5% probability of losing those species with a proportion of 3%. Balanced between the 
113 insufficient samples and the accuracy of the statistical analysis, the threshold number of 
114 radiolarians was adjusted to 100 (Fatela & Taborda, 2002; Rogers, 2016). Based on this 
115 threshold, 24 samples (Fig. 3B) were retained for detailed statistical analysis. Seven of 24 
116 samples had less than 300 tests, containing six ECSNR samples and one ECSSR sample. The 
117 proportion of each dominant species in the ECSNR group was higher than 3%, guaranteeing a 
118 reliable interpretation of species proportions. 
119 We calculated the absolute abundance (tests.(100g)-1) and the diversity indices, including the 
120 species number (S), Shannon-Wiener's index (H' (loge)). To ensure a creditable estimate of 
121 diversity indices, which may be biased by different counting numbers, the specimens of 
122 radiolarians in each sample was randomly subsampled and normalized to the equal size of 100 
123 tests by using rrarefy() function in vegan package in R program. For each site, S and H’ of 
124 sample containing all tests and subsample containing 100 tests were calculated.
125 Relative abundance (%) of each radiolarian taxon was also calculated. Then the hierarchical 
126 cluster analysis with group-average linking was applied to analyze the variations of radiolarian 
127 assemblage among different regions. The percentage data of the relative abundance was 
128 transformed by square root for normalize the dataset. Afterwards, triangular resemblance matrix 
129 was constructed based on the Bray-Curtis similarity (Clarke & Warwick, 2001). Analysis of 
130 similarity (ANOSIM) was employed to determine the differences among different assemblages. 
131 Similarity percentage procedure (SIMPER) analysis was used to identify the species that 
132 contributed most to the similarities among radiolarian assemblages.
133 Detrended correspondence analysis (DCA) was applied to determine the character of the species 
134 data. The gradient length of the first DCA axis was 1.773 < 3, suggesting that redundancy 
135 analysis (RDA, linear ordination method) was more suitable than Canonical correspondence 
136 analysis (CCA, unimodal ordination method) (Lepš & Šmilauer, 2003). RDA was used to 
137 evaluate the relationship between environmental variables and radiolarian assemblages identified 
138 by SIMPER analysis. The species abundance data was square root transformed before analysis to 
139 reduce the effect of extremely high values (Ter Braak & Smilauer, 2002). Variance inflation 
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140 factors (VIF) was calculated to screen the environmental variables with VIF > 5 (Lomax & 
141 Hahs-Vaughn, 2013). Sand percentage, mean grain size, chlorophyll-a, silicate, particulate 
142 organic carbon, oxygen, depth, nitrate, and silt percentage were removed from the RDA model 
143 step by step, in order to avoid collinearity (Naimi et al., 2014). Finally, four variables, SST, SSS, 
144 clay percentage, and phosphate, were employed in the RDA. The significant environmental 
145 variables were determined by automatic forward selection with Monte Carlo tests (999 
146 permutations). Station DH 8-5 was excluded from the RDA model for lack of environmental 
147 data.
148 Correlation analysis was employed to investigate the relationship between the dominant 
149 radiolarian taxa and significant environmental variables.
150 The diversity indices calculation, cluster analysis, ANOSIM, and SIMPER were performed by 
151 PRIMER 6.0. Correlation analysis was performed by SPSS 20. DCA and RDA were conducted 
152 by CANOCO 4.5. 

153 Results

154 A total of 137 radiolarian taxa were identified from the surface sediments of study area, 
155 including 75 genera, 14 families, and 3 orders The raw radiolarian counting data is shown in 
156 Supplementary material Table 2. Approximately 91.0% of the species belonged to Spumellaria, 
157 accounting for the vast majority of the radiolarian fauna. Nassellaria and Collodaria accounted 
158 for 8.4% and 0.6%, respectively. Pyloniidae definitely dominated in the species composition as it 
159 occupied approximately 61%, followed by Spongodiscidae 18%, and Coccodiscidae 8% (Fig. 
160 5A).
161 Radiolarian abundance in surface sediments varied greatly in study area (Fig. 5B), showing a 
162 tendency of ECSMR (2776 tests.(100g)-1) > ECSSR (1776 tests.(100g)-1) > ECSNR (500 
163 tests.(100g)-1) > YSR (8 tests.(100g)-1). The distribution pattern of species number (Fig. 5C) was 
164 similar to that of the abundance, exhibiting a trend of ECSMR (38 species) > ECSSR (35species) 
165 > ECSNR (16 species) > YSR (1 species). The top 9 species taxa, accounting for 79.6% of the 
166 total assemblages in the study area, were as follows: Tetrapyle octacantha group Mueller 
167 (55.6%), Didymocyrtis tetrathalamus (Haeckel) (7.5%), Dictyocoryne group (3.7%), Spongaster 

168 tetras Ehrenberg (2.5%), Stylodictya multispina Haeckel (2.2%), Spongodiscus resurgens 

169 Ehrenberg (2.2%), Zygocircus piscicaudatus Popofsky (2.1%), Phorticium pylonium Haeckel 
170 (2.0%), and Euchitonia furcata Ehrenberg (1.8%).
171 The radiolarian assemblages in the YS shelf area

172 In general, radiolarians showed a quite low abundance value in the YS, as no tests were found in 
173 15 samples (Fig. 5). For the remaining 10 samples, only 49 tests were originally counted, 
174 belonging to 21 species taxa. The radiolarian abundance for 25 samples of the YS ranged from 0 
175 tests.(100g)-1 to 91 tests.(100g)-1, and species number ranged from 0 to 12. Based on the 
176 abundance data, T. octacantha (17.4%), Spongodiscus sp. (10.9%), Didymocyrtis tetrathalamus 

177 (9.1%), Acrosphaera spinosa (6.1%), and P. pylonium (6.1%) were the top 5 abundant species 
178 taxa in the YS, occupying a proportion of 49.7% of the total assemblages.
179 Selected stations in the ECS shelf area with radiolarian tests ≥ 100
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180 According to Table 1, among three regions, there exists a significant difference in radiolarian 
181 abundance (ANOVA, p = 0.001). Diversity indices, including S and H’, displayed an overall 
182 ranking of ECSSR > ECSMR > ECSNR both in samples (S, Kruskal-Wallis Test, p = 0.000; H’, 
183 ANOVA, p = 0.000) and subsamples (Ssub, ANOVA, p = 0.000; H’sub, ANOVA, p = 0.000).
184 Cluster analysis based on the relative abundance classified all but one site into three regional 
185 groups at the 60% Bray-Curtis similarity level, including the ECSNR group, ECSMR group and 
186 ECSSR group (Fig. 6). The significant differences among the three groups were examined by 
187 ANOSIM (Global R = 0.769, p = 0.001).
188 The dominant species in each regional group were identified by SIMPER analysis with a cut-off 
189 of 50% (Table 2). Tetrapyle octacantha, Didymocyrtis tetrathalamus, and Spongodiscus 

190 resurgens dominated in the ECSNR group, with contribution of 41.70%, 9.79%, and 8.89%, 
191 respectively. The radiolarian taxa, including T. octacantha, Didymocyrtis tetrathalamus, 
192 Dictyocoryne group, Stylodictya multispina, and Spongodiscus resurgens, contributed most to 
193 the ECSMR group. The dominant species in the ECSSR group were composed of T. octacantha, 
194 Didymocyrtis tetrathalamus, Dictyocoryne group, Spongaster tetras, Z. piscicaudatus, P. 

195 pylonium, Stylodictya multispina, and E. furcata.
196 It was indicated by the RDA that the first two axes explained 39.9% (RDA1 30.0%, RDA2 
197 9.9%) of the species variance, and 86.5% of the species-environment relation variance (Table 
198 3A). Forward selection with Monte Carlo test (999 Permutation) revealed that SST and SSS were 
199 the most significant environmental variables associated with radiolarian composition (Table 3B). 
200 The RDA plot showed a clear distribution pattern of regional samples (Fig. 7A). The ECSNR 
201 samples generally occupied the left part of the ordination, showing a feature of comparatively 
202 lower SST and an extensive fitness to SSS. The ECSMR samples were mostly located in the 
203 middle part, suggesting an adaption to higher values of SST and SSS than the ECSNR samples. 
204 The ECSSR samples distributed mainly at right part, characterized by the higher value of SST 
205 and SSS.
206 The dominant species identified by the SIMPER analysis (Table 2) were displayed in the RDA 
207 plot (Fig. 7B). Species taxa, including Spongaster tetras, Dictyocoryne group and P. pylonium, 
208 were related to higher SST, while showed little relationship with SSS. Zygocircus piscicaudatus, 
209 E. furcata, and Stylodictya multispina displayed a preference of higher SST and lower SSS. 
210 Didymocyrtis tetrathalamus was positively related to SST and SSS. Tetrapyle octacantha 
211 showed a better fitness to higher SSS and lower SST. Additionally, Spongodiscus resurgens was 
212 negatively associated with SST and SSS.

213 Discussion

214 Generally, the number of the radiolarian tests in continental shelf sediments of the ECS and YS 
215 is several orders of magnitude lower than that of the adjacent Okinawa trough (Chang et al., 
216 2003; Cheng & Ju, 1998). First, due to the continental runoff input, coastal area water is featured 
217 of lower temperature and salinity, resulting in lower number of living radiolarians (Chen & 
218 Wang, 1982; Matsuzaki, Itaki & Kimoto, 2016; Tan & Su, 1982). Also, deposition rate in study 
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219 area is considerably high as 0.1–0.8 cm/yr in the YS, and 0.1–3 cm/yr in the ECS (Dong, 2011), 
220 which greatly masks the concentration of radiolarian skeleton in sediments (Chang et al., 2003).
221 The radiolarian assemblages in the YS shelf area

222 Based on our results, though radiolarian assemblages varied greatly between the YS and ECS, 
223 there are some common species as all of the 21 radiolarian species in the YS can be found in the 
224 ECS, that is, no endemic species were observed in the YS. The top 5 species taxa, except 
225 Spongodiscus sp., were reported as typical warm species (Chang et al., 2003; Chen et al., 2008; 
226 Matsuzaki & Itaki, 2017), suggesting a warm-water origin of radiolarians in the YS. 
227 As a semi-enclosed marginal sea mostly shallower than 80 m, YS is influenced by a continuous 
228 circulation, primarily comprised by the Yellow Sea Warm Current and China Coastal Current 
229 (UNEP, 2005). The mean values of SST and SSS in the YS are 15°C and 32psu, respectively 
230 (Fig. 1), making it quite difficult for radiolarians to survive and proliferate. For the surface 
231 sediments in the YS in our study, only a small number of radiolarians were detected at the 
232 margin of the YS shelf area, whereas no radiolarians were detected in the 15 sites within the 
233 range of the central YS (Fig. 5B). For the planktonic samples in the southern YS, low radiolarian 
234 stocks were also reported previously (Tan & Chen, 1999). Sporadic radiolarians were merely 
235 documented in winter, with radiolarian stocks less than 200 tests.m-3 (Tan & Chen, 1999). We 
236 thus infer the radiolarians in the YS (Fig. 5) were probably introduced by the Yellow Sea Warm 
237 Current, and transported by the China Coastal Current. The question whether the absence of 
238 radiolarians in the central YS is controlled by the Yellow Sea Cold Water Mass remains unclear 
239 and needs future investigations.
240 Selected stations in the ECS shelf area with radiolarian tests ≥ 100

241 In the ECS, the gradients of SST and SSS are controlled by the interaction of the Kuroshio 
242 branch current, TWC and Changjiang Diluted Water (Yang et al., 2012). SST and SSS both 
243 show an increase from north to south, corresponding well with the overall distribution of 
244 radiolarians (Fig. 1, Fig. 5).
245 Revealed by the RDA, SST was the most significant environmental variable related to the 
246 radiolarian composition, followed by SSS (Table 3B). SST is generally regarded as having an 
247 extremely important role in controlling the composition and distribution of radiolarians 

248 (Boltovskoy & Correa, 2017; Hernández‐Almeida et al., 2017; Ikenoue et al., 2015). According 
249 to Matsuzaki, Itaki & Tada (2019), the species diversity in the northern ECS was higher during 
250 interglacial period than during glacial period. For a long time, the relationship between 
251 radiolarian assemblages and SST is used to construct past changes in hydrographic conditions 
252 (Matsuzaki & Itaki, 2017). In this study, SST showed a significant correlation with abundance, 
253 species number, and H’ (Table 4), suggesting that higher SST may often correspond to higher 
254 diversity. 
255 SSS was also crucial for explaining species-environment correlations in the ECS shelf area. At 
256 the offshore Western Australia, salinity is strongly significant in determining radiolarian species 

257 distributions (Rogers, 2016). Hernández‐Almeida et al. (2017) and Liu et al. (2017a) stated that 
258 the composition and distribution pattern of the radiolarian fauna in the western Pacific responds 

PeerJ reviewing PDF | (2019:12:44305:1:1:NEW 31 Jul 2020)

Manuscript to be reviewed

UJohn
Cross-Out

UJohn
Cross-Out

UJohn
Inserted Text
at

UJohn
Inserted Text
al

UJohn
Cross-Out

UJohn
Inserted Text
composed of 

UJohn
Cross-Out

UJohn
Inserted Text
W

UJohn
Cross-Out

UJohn
Cross-Out

UJohn
Inserted Text
As r

UJohn
Cross-Out

UJohn
Inserted Text
has been 



259 mainly to SST and SSS. Gupta (2002) found that the relative abundance of Pyloniidae exhibits a 
260 positive correlation with salinity. In this study SSS was positively correlated to abundance and 
261 species number (Table 4), possibly suggesting a positive influence of SSS on radiolarian 
262 diversity. 
263 The radiolarian assemblages of the ECSSR group were influenced by the Kuroshio Current and 
264 TWC, while the TWC predominated. The surface water of the TWC is mainly characterised by 
265 high temperature (23-29°C) and salinity (33.3-34.2psu) (Weng & Wang, 1988). Some of the 
266 TWC waters are supplemented from the South China Sea (Liu et al., 2017b), where radiolarians 
267 show high diversity (Chen et al., 2008; Liu et al., 2017a; Zhang et al., 2009). The dominant 
268 species in the ECSSR group included T. octacantha, Didymocyrtis tetrathalamus, Dictyocoryne 
269 group, Spongaster tetras, Z. piscicaudatus, P. pylonium, Stylodictya multispina, and E. furcata 
270 (Table 2, Fig. 8). These species taxa are reported as typical indicators of the Kuroshio Current 
271 (Chang et al., 2003; Gallagher et al., 2015; Liu et al., 2017a; Matsuzaki et al., 2016). The 
272 relatively high abundance of these taxa in the study area reflected the influence of the warm 
273 Kuroshio and TWC waters. Moreover, moderate percentage (0.91%) of Pterocorys campanula 
274 Haeckel was detected in the ECSSR group, in contrast with the ECSMR group (0.14%) and 
275 ECSNR group (0.06%). Members of Pterocorys are shallow-water dwellers, as reported by 
276 Matsuzaki, Itaki & Sugisaki (2019). Pterocorys campanula frequently occurs and dominates in 
277 the South China Sea, whereas there are no reports of the dominance of P. campanula in the 
278 sediment samples of the ECS (Chen & Tan, 1996; Chen et al., 2008; Hu et al., 2015; Liu et al., 
279 2017a). The high abundance of this taxon in the ECSSR group further demonstrates our 
280 conclusion that radiolarian assemblages of the ECSSR group were brought by the Kuroshio 
281 Current and TWC with the TWC playing the main role.
282 The ECSMR group was influenced by the Kuroshio Current, TWC, and Changjiang Diluted 
283 Water. The dominant species in the ECSMR included T. octacantha, Didymocyrtis 

284 tetrathalamus, Dictyocoryne group, Stylodictya multispina and Spongodiscus resurgens (Table 
285 2). The dominant species of the ECSMR group showed great overlap with the ECSSR group, 
286 which, in some degrees, suggests a similarity between the two groups, as both are influenced by 
287 the Kuroshio Current and TWC. On the other hand, the lower percentages of Didymocyrtis 

288 tetrathalamus, Dictyocoryne group, and Stylodictya multispina indicated part of the impact by 
289 the Changjiang Diluted Water, which is characterized by lower SST (Fig. 8).
290 Tetrapyle octacantha, Didymocyrtis tetrathalamus, and Spongodiscus resurgens were dominant 
291 species of the ECSNR group, which was primarily impacted by the Changjiang Diluted Water 
292 and Kuroshio Current. Compared to the ECSMR and ECSSR group, the ECSNR group occupied 
293 higher latitude which means a lower SST, while the large input of Changjiang Diluted Water 
294 decreased SSS (Fig. 1). This combination of lower SST and SSS probably hindered the 
295 radiolarian diversity of the ECSNR (Table 1). 
296 The radiolarian assemblages in the shallower sea, i.e., the shelf sea area of the ECS, displayed 
297 distinctly different patterns from those in the open ocean. Tetrapyle octacantha occurred in the 
298 extraordinarily high proportion of 59% in the study area (Fig. 8), much higher than ever reported 
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299 in adjacent areas with deeper waters (Chang et al., 2003; Cheng & Ju, 1998; Liu et al., 2017a; 
300 Wang & Chen, 1996). Tetrapyle octacantha, as the most abundant taxon in the subtropical area 
301 (Boltovskoy, 1989), shows a high tolerance to temperature (Ishitani et al., 2008). This taxon has 
302 been reported to be associated with water from the ECS shelf area (Chang et al., 2003; Itaki, 
303 Kimoto & Hasegawa, 2010). Zhang et al. (2009) found that T. octacantha frequency was 
304 negatively correlated with SST, and Welling & Pisias (1998) concluded that T. octacantha 
305 dominated during the cold tongue period. In our study, T. octacantha was negatively related to 
306 SST according to the results of the RDA (Fig. 7B), tending to confirm the previous studies. We 
307 thus infer that T. octacantha is possibly more resistant to local severe temperature and, so, 
308 reaches comparatively high abundance in the shelf area. Therefore, T. octacantha can serve as an 
309 indicator that depicts the degree of mixture between the colder shelf water and warm Kuroshio 
310 water. The response of T. octacantha to SSS was unclear, though it showed positive relationship 
311 with SSS in the RDA plot (Fig. 7B). Here a special station with the highest Shannon-Wiener's 
312 index (3.2 in both original sample and subsample) was noticed, namely the station 3000-1 (Fig. 
313 3), which is located at the Changjiang estuary. In our study, it had the lowest value of salinity 
314 (26.6psu) and the lowest percentage of T. octacantha (14.8%). After removed 3000-1, no 
315 significant correlation existed between SSS and the relative abundance of T. octacantha (n = 22, 
316 r = -0.027, p = 0.906). Spongodiscus resurgens, with an upper sub-surface maximum, was 
317 generally considered to be cold water species (Suzuki & Not, 2015) and related to productive 
318 nutrient-rich water (Itaki, Minoshima & Kawahata, 2009; Matsuzaki & Itaki, 2017). The ECSNR 
319 group was primarily controlled by the colder Changjiang Diluted Water, and thus had the highest 
320 percentage of T. octacantha and Spongodiscus resurgens among three regions.

321 Conclusions

322 We analyzed radiolarian assemblages collected from the YS and ECS shelf area, where the 
323 Kuroshio Current and its derivative branches, including the TWC and Yellow Sea Warm 
324 Current, exerts great effect.
325 (1) The radiolarian abundance in the YS was quite low, and no radiolarians were detected in 15 
326 of 25 YS sites. 
327 (2) The radiolarian abundance and diversity in the ECS, which is controlled by the Kuroshio 
328 warm water, was much higher. Based on the cluster analysis, the radiolarian assemblages in the 
329 ECS could be divided into three regional groups, namely the ECSNR group, ECSMR group and 
330 ECSSR group.
331 a. The ECSNR group was chiefly impacted by the Changjiang Diluted Water and Kuroshio 
332 Current, with dominant species of T. octacantha, Didymocyrtis tetrathalamus, and Spongodiscus 

333 resurgens.
334 b. The ECSMR group was controlled by the Kuroshio Current, TWC and Changjiang Diluted 
335 Water. Species contributed most to this group included T. octacantha, Didymocyrtis 

336 tetrathalamus, Dictyocoryne group, Stylodictya multispina, and Spongodiscus resurgens.
337 c. The ECSSR group was affected by the Kuroshio Current and TWC, in which the TWC 
338 occupies major status. The dominant species in this group were composed of T. octacantha, 
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339 Didymocyrtis tetrathalamus, Dictyocoryne group, Spongaster tetras, Z. piscicaudatus, P. 

340 pylonium, Stylodictya multispina, and Euchitonia furcata.

341 (3) The RDA results showed that SST and SSS were main environmental variables that 
342 influenced the radiolarian composition in the ECS shelf.
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Figure 1
The mean annual sea surface temperature (SST, A) and sea surface salinity (SSS, B) in
the shelf area of the ECS and YS.

Solid line indicates the boundary between the ECS and YS.
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Figure 2
The circulation system of the study area in summer (A) and winter (B) (redrawn after
Yang et al. (2012) and Pi (2016)).

Abbreviations: KBC – Kuroshio Branch Current, OKBC – Offshore Kuroshio Branch Current,
NKBC – Nearshore Kuroshio Branch Current, KSW – Kuroshio Surface Water, TWC – Taiwan
Warm Current, CCC – China Coastal Current, CDW – Changjiang Diluted Water, YSCWM –
Yellow Sea Cold Water Mass, YSWC – Yellow Sea Warm Current, TC – Tsushima Current.
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Figure 3
The location of the total surface sediment samples in the ECS and YS shelf area (A), and
simplified 24 samples with a threshold of 100 tests (B).
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Figure 4
Some radiolarians encountered in this study.

A. Dictyocoryne group; B. Didymocyrtis tetrathalamus (Haeckel); C. Phorticium pylonium

Haeckel; D. Spongaster tetras Ehrenberg; E. Spongodiscus resurgens Ehrenberg; F.
Stylodictya multispina Haeckel; G-H, Tetrapyle octacantha group Mueller; I-J, Zygocircus

piscicaudatus Popofsky; K. Flustrella polygonia (Popofsky); L. Sethodiscus macrococcus

Haeckel; M. Hexacontium pachydermum Jorgensen; N, Amphibrachium sponguroides

Haeckel; O, Collosphaera sp.; P-Q, Pseudocubus obeliscus Haeckel; R, Acanthocorys

castanoides Tan & Tchang; S, Peromelissa spinosissima Tan & Tchang; T, Peridium sp.; U.
Cycladophora bicornis (Popofsky); V. Helotholus histricosa Jorgensen; W. Phormospyris

stabilis stabilis (Goll); X. Lithopera bacca Ehrenberg; Y. Lipmanella dictyoceras (Haeckel).
Scale bar = 50 μm.
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Figure 5
Total relative abundance (A), absolute abundance (B), and species number (C) of the
radiolarians in the surface sediments.
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Figure 6
Cluster analysis of radiolarian assemblages in the ECSNR, ECSMR and ECSSR.

The dotted line represents 60% similarity level.
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Figure 7
The redundancy analysis (RDA) ordination: (A) samples, (B) species.

Species codes: DicGro – Dictyocoryne group, DidTet – Didymocyrtis tetrathalamus, EucFur

–Euchitonia furcata, PhoPyl – Phorticium pylonium, SpoTet – Spongaster tetras, SpoRes –
Spongodiscus resurgens, StyMul – Stylodictya multispina, TetOct – Tetrapyle octacantha,
ZygPis – Zygocircus piscicaudatus (in alphabetical order).
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Figure 8
Distribution of the dominant radiolarian species, SST, and SSS in the ECSNR, ECSMR,
ECSSR.
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Table 1(on next page)

The average values and standard errors (mean ± SE) of abundance and diversity
indices in different regions (ECSNR, ECSMR, ECSSR).

Different lowercase a, b and c indicate significant differences among regional groups.

Abbreviations: N, Abundance (tests.(100g)-1); S, species number; H’ (loge) , Shannon-Wiener's

index; Ssub, species number of subsamples; H'sub (loge) , Shannon-Wiener's index of

subsamples.

PeerJ reviewing PDF | (2019:12:44305:1:1:NEW 31 Jul 2020)

Manuscript to be reviewed



Diversity index ECSNR (n = 9 ) ECSMR (n = 7) ECSSR (n = 7)

N 811 ± 121a 2776 ± 463b 2729 ± 770c

S 21 ± 1a 38 ±1b 48 ± 5b

H' 1.35 ± 0.10a 1.61 ± 0.13b 2.65 ± 0.08c

Ssub 11 ± 1a 16 ±1b 26 ± 2c

H'sub 1.22 ± 0.11a 1.35 ± 0.13b 2.43 ± 0.10c

1
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Table 2(on next page)

Average relative abundance, contribution (%) and cumulative contribution (%) of the
radiolarian fauna contributing to the similarity within each group. A cut-off at 50%
similarity was employed.
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Species Av.Abund. Contrib % Cum %

ECSNR group Average similarity: 64.65%

Tetrapyle octacantha group Mueller 69.67 41.70 41.70

Didymocyrtis tetrathalamus (Haeckel) 5.65 9.79 51.49

Spongodiscus resurgens Ehrenberg 4.81 8.89 60.38

ECSMR group Average similarity: 66.17%

Tetrapyle octacantha group Mueller 67.24 31.00 31.00

Didymocyrtis tetrathalamus (Haeckel) 5.54 8.11 39.11

Dictyocoryne group 2.53 4.62 43.73

Stylodictya multispina Haeckel 1.95 4.05 47.78

Spongodiscus resurgens Ehrenberg 1.55 3.96 51.74

ECSSR group Average similarity: 65.02%

Tetrapyle octacantha group Mueller 38.91 17.85 17.85

Didymocyrtis tetrathalamus (Haeckel) 9.06 7.41 25.25

Dictyocoryne group 5.26 5.95 31.20

Spongaster tetras Ehrenberg 3.98 5.01 36.21

Zygocircus piscicaudatus Popofsky 3.42 4.56 40.77

Phorticium pylonium Haeckel 2.98 4.43 45.20

Stylodictya multispina Haeckel 3.67 4.28 49.48

Euchitonia furcata Ehrenberg 2.44 3.87 53.35

1
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Table 3(on next page)

（A） Results of the RDA for the radiolarian assemblages and environmental variables. （B）
Conditional effects of the total environmental variables in the RDA with the significant
variables in bold.
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　 Axes                               　

　 1 2 3 4

Total 

Inertia

Eigenvalues 0.300 0.099 0.039 0.024 1

Species-environment correlations 0.955 0.971 0.816 0.772

Cumulative percentage variance of 

species data 30.0 39.9 43.8 46.2

Cumulative percentage variance of 

species-environment relation 65.1 86.5 94.8 100

Sum of all eigenvalues                          1

Sum of all canonical eigenvalues      　 　 　 　 0.462

1

2

　

Conditional 

Effects
　

　 　

Variable VIF LambdaA % contribution to canonical eigenvalues p F

SST     1.86 0.14 30% 0.004 3.34

SSS     2.76 0.24 52% 0.001 8.01

Clay% 1.02 0.05 11% 0.086 1.43

Phospate 2.69 0.03 6% 0.301 1.16

3
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Table 4(on next page)

The Spearman correlation between diversity indices and the environmental variables.
Values of significant correlations are in bold.

Different lowercase a, b and c indicate significant differences among regional groups.

Abbreviations: N, Abundance (tests.(100g)-1); S, species number; H’ (loge) , Shannon-Wiener's

index; Ssub, species number of subsamples; H'sub (loge) , Shannon-Wiener's index of

subsamples.
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SST 　 SSS
Diversity index n

r p r p

N 24 0.60 0.00 0.47 0.02

S 24 0.69 0.00 0.55 0.01

H' 24 0.50 0.01 0.11 0.62

Ssub 24 0.60 0.00 0.28 0.19

H'sub 24 0.41 0.04 0.02 0.92

1
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