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ABSTRACT
Background. Breast cancer is a heterogeneous disease. Compared with other subtypes
of breast cancer, triple-negative breast cancer (TNBC) is easy to metastasize and has
a short survival time, less choice of treatment options. Here, we aimed to identify the
potential biomarkers to TNBC diagnosis and prognosis.
Material/Methods. Three independent data sets (GSE45827, GSE38959, GSE65194)
were downloaded from the Gene Expression Omnibus (GEO). The R software packages
were used to integrate the gene profiles and identify differentially expressed genes
(DEGs). A variety of bioinformatics tools were used to explore the hub genes, including
the DAVID database, STRING database and Cytoscape software. Reverse transcription
quantitative PCR (RT-qPCR) was used to verify the hub genes in 14 pairs of TNBC
paired tissues.
Results. In this study, we screened out 161 DEGs between 222 non-TNBC and 126
TNBC samples, of which 105 genes were up-regulated and 56 were down-regulated.
These DEGs were enriched for 27 GO terms and two pathways. GO analysis enriched
mainly in ‘‘cell division’’, ‘‘chromosome, centromeric region’’ and ‘‘microtubule
motor activity’’. KEGG pathway analysis enriched mostly in ‘‘Cell cycle’’ and ‘‘Oocyte
meiosis’’. PPI network was constructed and then 10 top hub genes were screened.
According to the analysis results of the Kaplan-Meier survival curve, the expression
levels of only NUF2, FAM83D and CENPH were associated with the recurrence-free
survival in TNBC samples (P < 0.05). RT-qPCR confirmed that the expression levels
of NUF2 and FAM83D in TNBC tissues were indeed up-regulated significantly.
Conclusions. The comprehensive analysis showed that NUF2 and FAM83D could be
used as potential biomarkers for diagnosis and prognosis of TNBC.

Subjects Bioinformatics, Molecular Biology, Oncology, Women’s Health, Medical Genetics
Keywords Biomarker, Triple-negative breast cancer, Bioinformatics, RT-qPCR

INTRODUCTION
There were approximately 18.1 million new cancer cases worldwide in 2018, including
2.1 million cases of breast cancer (Bray et al., 2018). Breast cancer is the highest incidence
among new morbidity and mortality in females with cancer (Cao et al., 2019). According
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to variations in the expressions of the estrogen receptor (ER), progesterone receptor
(PR) and human epidermal growth factor receptor 2 (HER2), breast cancer were defined
as four major intrinsic molecular subtypes: luminal A, luminal B, HER2-positive and
triple-negative breast cancer (TNBC) (Sorlie et al., 2001). TNBC is characterized by a lack
of expression of the ER and PR as well as HER2 (Serra et al., 2014). TNBC that occurs
mostly in premenopausal young women represents approximately 15–20% of all invasive
breast cancers(Foulkes, Smith & Reis-Filho, 2010). TNBC is a highly heterogeneous disease,
not only at the molecular level, but also in terms of its pathology and clinical manifestation.
Its prognosis is worse than other types of breast cancer as well as the risk of death is higher
(Metzger-Filho et al., 2012). Chemotherapy is currently the primary adjuvant treatment,
due to the lack of effective molecular targets, it is not only insensitive to endocrine therapy
and HER-2 targeted therapy, but also easily causes chemo-resistant (Wein & Loi, 2017).
TNBC has become an intractable problem for clinical treatment.

Current researchers are focusing on personalized treatment based on the multi-gene
assays (Pan et al., 2019). With the continuous development of high-throughput sequencing
technology, bioinformatics analysis plays a key role in the diagnosis, prognosis and
screening of tumors (Goldfeder et al., 2017; Ma, Zhou & Zheng, 2020). Many genes have
been identified as signatures for diagnosis and prognosis of triple negative breast cancer (Dai
et al., 2019; Stovgaard et al., 2020). A recent study found that CHD4-β1 integrin axis may
be a prognostic marker for TNBC using next-generation sequencing and bioinformatics
analysis (Ou-Yang et al., 2019). The computational analysis of complex biological networks
could help research scholars identify potential genes related to TNBC (Li et al., 2020).

In this study, we first identified a group of differentially expressed genes (DEGs)
associated with TNBC from the Gene Expression Synthesis (GEO) database. Then, based
on bioinformatics analysis, three candidate genes related to TNBC diagnosis and prognosis
were successfully identified. Finally, reverse transcription quantitative PCR (RT-qPCR)
was used to verify the candidate biomarkers in TNBC tissues and adjacent tissues. The
current research aimed to explore potential biomarkers that may be highly correlated with
the prognostic and diagnostic value of triple negative breast cancer.

MATERIAL AND METHODS
Data source
Triple-negative breast cancer gene expression data sets in this study were obtained from
the publicly available GEO databases (https://www.ncbi.nlm.nih.gov/geo/) (Barrett et
al., 2013). Three independent data sets from GSE45827 (Gruosso et al., 2016), GSE38959
(Komatsu et al., 2013), GSE65194 (Maire et al., 2013) were included. GSE45827 consists
of 100 non-triple-negative breast cancer (non-TNBC) samples and 41 TNBC samples,
GSE65194 consists of 109 non-TNBCand 55TNBC samples, bothGSE65194 andGSE45827
are based on the platform GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array. GSE38959 consists of 13 non-TNBC and 30 TNBC samples, and the
platform is GPL4133 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F.
All of the data sets were available online.
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A total of 14 TNBC patients were collected in Chongqing Traditional Chinese Medicine
Hospital. All patients were diagnosed with triple negative breast cancer (ER-negative, PR-
negative, HER-2-negative) by histopathological examination, excluding other malignant
tumors and no important organ diseases, such as severe cardiovascular, liver disease as
well as renal insufficiency. A total of 28 frozen tissue specimens contained 14 tumor
tissues and 14 matched adjacent non-tumor tissues were obtained. All tissues were
collected immediately after surgical resection, and snap-frozen in liquid nitrogen until
RNA extraction. Clinical information was obtained for all patients by the investigator from
medical records. The more detailed clinical information is shown in File S1. This study
has been approved by the Chongqing Hospital of Traditional Chinese Medicine ethics
committee and written informed consent was obtained from all patients.

Data processing of DEGs
R software (v3.6.2; http://www.r-project.org) was used for bioinformatics analysis. First,
the gene expression profiles of three data sets were downloaded by using GEOquery
package. Subsequently, background adjustments were performed by using the dplyr
package. Finally, we utilized log2 transformation to normalize the data using the limma
package. The RobustRankAggreg package was used to screen the differentially expressed
genes, using adjust P value <0.01 and |logFC| ≥ 2 as cut-off criteria. The VennDiagram
package was used to present significant co-expression genes.

GO enrichment and KEGG pathway analysis of DEGs
Gene ontology (GO) (The Gene Ontology, 2019) is a tool for annotating genes from various
ontologies, including biological processes (BP), cellular components (CC), molecular
functions (MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,
2019) is famous for ’’understanding the advanced functions and utility resource library
of biological systems’’, KEGG pathway mainly presents intermolecular interactions and
intermolecular networks. GO enrichment and KEGG pathway analysis for DEGs were
performed through the DAVID database (v6.8; http://david.abcc.ncifcrf.gov/) (Jiao et al.,
2012) with ‘‘after FDR’’ (corrected P-Value < 0.01, gene count ≥ 5) set as statistically
significant. The ggplot2 package in R was used to visualize the GO functional enrichment
results.

Protein-protein Interaction (PPI) networks and hub gene analysis
The online STRING database (v11.0; https://string-db.org/) collects and integrates
information on the correlation between known and predicted proteins from multiple
species (Szklarczyk et al., 2019). PPI network analysis could systematically study the
molecular mechanisms of disease and discover new drug targets. The DEGs screened
previously were mapped via the STRING database. Subsequently, visual analysis of the PPI
network was matched to Cytoscape (v3.7.2; https://cytoscape.org), and hub genes were
analyzed with the Cytoscape plugin CytoHubba (Chin et al., 2014). The DMNC algorithm
was used to identify the top 10 hub genes.

Zhai et al. (2020), PeerJ, DOI 10.7717/peerj.9975 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.9975#supp-1
http://www.r-project.org
http://david.abcc.ncifcrf.gov/
https://string-db.org/
https://cytoscape.org
http://dx.doi.org/10.7717/peerj.9975


Table 1 Primers sequence of target gene and internal reference gene.

Gene Primers

NUF2 Forward Primer: 5′-TACCATTCACCAATTTAGTTACT-3′

Reverse Primer: 5′-TAGAATATCAGCAGTCTCAAAG-3′

FAM83D Forward Primer: 5′-AGTTCCGAATCCTGTATGCC-3′

Reverse Primer: 5′-GCTCCTTGGACTGTGGTTT-3′

CENPH Forward Primer: 5′-CCTTATTTTGGGGAGTAAAGTCAAT-
3′

Reverse Primer: 5′-ACAAATGCACAGAAGTATTCCAAAT3′

GAPDH Forward Primer: 5′-AGGTCGGTGTGAACGGATTTG-3′

Reverse Primer: 5′-GGGGTCGTTGATGGCAACA-3′

Survival analysis
The Kaplan Meier plotter, an online survival analysis tool, could rapidly assess the effect
of 54k genes on survival in 21 cancer types (http://kmplot.com/analysis/), including the
effect of 22,277 genes on breast cancer prognosis (Gyorffy et al., 2012; Gyorffy et al., 2010).
In this study, TNBC patients were only screened out based on the intrinsic sub-type
(basis: n= 879). Probes of genes were selected ‘‘only JetSet best probe set’’ (Li et al., 2011).
Recurrence-free survival (RFS) was selected for survival analysis of candidate hub genes,
P < 0.05 was considered to be statistically significant.

Validation of hub genes
RT-qPCR was used to further verify the mRNA expression of the candidate hub genes in
TNBC tissues and adjacent tissues. Total RNA from TNBC patients’ tissues was isolated
by TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Total RNA quantity was evaluated
by a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). RNA was reverse transcribed into cDNA according to the instructions of the Takara
kit (Takara Bio Inc., Japan). RT-qPCR reactions were performed using the SYBR Green
PCR Master Mix System (Tiangen Biotech, Beijing, China). GAPDH was used as a control
to compare the relative expression of NUF2, FAM83D and CENPH mRNA in 14 pairs of
triple negative breast cancer paired tissues. Three replicate holes were performed for target
genes in the RT-qPCR experiment, and the primer sequences are shown in Table 1. The
primers of the target genes and the internal reference gene were synthesized by Sangon
Biotech (Shanghai) Co., Ltd.

Statistical analysis
Statistical analyses of this study were analyzed with R software v3.6.2 and GraphPad Prism
5.0. Two-tailed Student’s t -test was used to test significance of differences between two
groups, and P < 0.05 was considered statistically significant. The RT-qPCR results were
calculated and evaluated using the 2−44Ct method.
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Figure 1 Venn diagrams of the differentially expressed genes (DEGs).Venn diagrams of the differen-
tially expressed genes (DEGs) from three independent data sets (GSE45827, GSE38959, GSE65194). (A)
a total of 105 up-regulated DEGs were identified and (B) 56 down-regulated DEGs were identified, using
adjust P value < 0.01 and |logFC| ≥ 2 as cut-off criteria.

Full-size DOI: 10.7717/peerj.9975/fig-1

RESULTS
DEGs in non-TNBC and TNBC samples
Three series of matrix files, for a total of 222 non-TNBC samples and 126 TNBC samples,
were selected to identify DEGs (P < 0.01, |logFC| ≥ 2). A total of 488 genes were identified
after analyzing GSE45827, of which 259 genes were up-regulated and 229 genes were
down-regulated. In gene chip GSE38959, 794 DEGs were identified, 478 genes were up-
regulated, and 316 genes were down-regulated. And from GSE65194, 531 DEGs including
282 up-regulated genes and 249 down-regulated genes were identified. The Venn diagrams
showed that a total of 161 DEGs overlapped, in which 105 genes were up-regulated and 56
genes were down-regulated (Fig. 1). The more detailed results are shown in File S2.

GO and KEGG pathway analysis of DEGs
Next, we attempted to identify the biological function of the 161 common DEGs. GO
enrichment and KEGG pathway analysis were performed through the DAVID database.
Termswithmatching the filter criteria were collected and grouped into clusters according to
theirmembership similarities. As shown in Fig. 2, the top 5 functions for biological processes
were as follows: cell division, mitotic nuclear division, chromosome segregation, sister
chromatid cohesion and cell proliferation. The top 5 functions for cellular components were
as follows: chromosome centromeric region, midbody, nucleus, condensed chromosome
kinetochore and kinetochore. The molecular functions enriched were associated with
microtubule motor activity, microtubule binding, ATP binding and protein binding. The
KEGG analysis showed that the main enriched signaling pathways were related to the cell
cycle and oocyte meiosis. The more detailed results are shown in File S3.

PPI network construction and hub genes detection
In order to better understand which of these DEGs were most likely to be the central
regulatory genes for TNBC, PPI network was constructed through the online STRING
platform and Cytoscape software (Fig. 3A). Subsequently, according to the DMNC
algorithm, the top 10 hub genes were screened through the cytoHubba and are sequentially
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Figure 2 GO enrichment analysis of the differentially expressed genes (DEGs).GO enrichment anal-
ysis of the differentially expressed genes (DEGs). BP, biological processes; CC, cellular components; MF,
molecular functions.

Full-size DOI: 10.7717/peerj.9975/fig-2

Figure 3 Protein–protein interaction network of the differentially expressed genes (DEGs). (A)
Protein–protein interaction network of the differentially expressed genes (DEGs). Red color represents
up-regulated genes, blue color represents down-regulated genes. (B) Identification of the top 10 hub DEGs
by cytoHubba plugin. The rank is represented by different degrees of color (from red to yellow).

Full-size DOI: 10.7717/peerj.9975/fig-3

ranked as follows: ANLN, FAM64A, CDCA2, NUF2, FAM83D, CENPH, KIF14, MKLP-1,
KIF15, DEPDC1 (Fig. 3B). The expression of 10 hub genes were all significantly increased
in the PPI network. We initially speculate that 10 candidate hub genes may be related to
tumor occurrence.
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Survival analysis and validation of hub genes
In order to examine whether the candidate hub genes expression levels were associated
with the outcome of TNBC patients. Next, the correlation between these genes and the
recurrence-free survival of TNBC patients were analyzed by the Kaplan Meier plotter.
According to the analysis results of the Kaplan–Meier survival curve, we found that TNBC
patients with higher expression levels of NUF2, FAM83D, CENPH have significantly
decreased recurrence-free survival (P < 0.05), but not ANLN, FAM64A, CDCA2, KIF14,
MKLP-1, KIF15, DEPDC1 (P > 0.05). More specific information about these survival-
related hub genes is shown in Fig. 4.

Finally, we validated the expression levels of NUF2, FAM83D and CENPH in 14 pairs
of triple negative breast cancer paired tissues by using RT-qPCR. Figure 5 showed that
the expression levels of NUF2 and FAM83D were significantly higher in TNBC tissues
than adjacent tissues (P < 0.001), but not CENPH (P = 0.68). Combined with the above
analysis, we preliminarily concluded that NUF2 and FAM83Dmay be potential biomarkers
to TNBC diagnosis and prognosis. The more detailed results are shown in File S4.

DISCUSSION
TNBC is considered as an aggressive subtype of breast cancer. Compared with other types
of breast cancer, TNBC is characterized by high malignancy rate, easier recurrence (Dent
et al., 2007), and low survival rate (Carey et al., 2006). Despite advances in the targeted
therapies of TNBC, including the approval of poly-ADP-ribose polymerase (PARP) and
immune check-point inhibitors for the treatment of BRCA germ cell mutated breast
cancers, there is still a lack of clinical evidence to evaluate their efficacy for TNBC patients
(Vagia, Mahalingam & Cristofanilli, 2020). Therefore, it is necessary to identify effective
molecular therapeutic targets for TNBC.

In the present study, we screened out 161 DEGs between 222 non-TNBC and 126
TNBC samples by analyzing three datasets, of which 105 were up-regulated and 56 were
down-regulated. The GO enrichment analysis and KEGG pathways showed that the
screened DEGs were enriched for 27 GO terms and 2 pathways. To further investigate the
interrelationship of 161 DEGs, PPI network was first constructed and then 10 top hub
genes were screened out, including ANLN, FAM64A, CDCA2, NUF2, FAM83D, CENPH,
KIF14, MKLP-1, KIF15, DEPDC1. The analysis results of the Kaplan–Meier survival curve
showed that the expression levels of NUF2, FAM83D and CENPH were associated with the
recurrence-free survival in TNBC samples (P < 0.05). Finally, we found that the expression
levels of only NUF2 and FAM83D did increase significantly in TNBC tissues by using
RT-qPCR.

NUF2 is an essential component of the kinetochore-associated NDC80 complex, which
plays a regulatory role in chromosome segregation and spindle checkpoint activity (Liu et
al., 2007; Zhang et al., 2015). Several studies have shown that NUF2 was associated with
the development of multiple cancers. The results showed that the expression of NUF2 was
associated with poor prognosis in patients with colorectal cancer (Kobayashi et al., 2014)
and oral cancer (Thang et al., 2016), which may be related to the regulation of tumor cell
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Figure 4 The correlation of 10 hub genes expression levels with the recurrence-free survival of triple-
negative breast cancer (TNBC) samples. TNBC patients with higher expression levels of CENPH (C),
FAM83D (F), NUF2 (I) have significantly decreased recurrence-free survival (P < 0.05), but not ANLN
(A), CDCA2 (B), DEPDC1(D), FAM64A (E), KIF14 (G), KIF15 (H), MKLP-1 (J) (P > 0.05).

Full-size DOI: 10.7717/peerj.9975/fig-4

apoptosis involved in the NUF2. Sugimasa H et al (Sugimasa et al., 2015) demonstrated that
the NUF2 gene could be directly trans-activated by the heterogeneous ribonucleoprotein
K (hnRNP K), and that the hnRNP K-NUF2 axis affected the growth of colon cancer
cells by participating in processes of mitosis and proliferation. Recent studies have shown
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Figure 5 The relative expression levels of NUF2, FAM83D and CENPHmRNA in 14 pairs of tripleneg-
ative breast cancer (TNBC) paired tissues. The mRNA expression levels of NUF2 (A) and FAM83D (B)
increased significantly in most TNBC lesions compared with para-adjacent tissues, but not CENPH (C).
*** P < 0.001.

Full-size DOI: 10.7717/peerj.9975/fig-5

that NUF2 was also closely related to breast cancer. Xu et al (Xu et al., 2019) confirmed
that NUF2 was indeed up-regulated in breast cancer tissue by bioinformatics analysis
and RT-qPCR assay, and that NUF2 may regulate the carcinogenesis and progression of
breast cancer via cell cycle-related pathways. However, the expression level changes of
NUF2 in triple-negative breast cancer have not yet been studied. In this study, we found
that the expression level of NUF2 was higher in triple-negative breast cancer than in
non-triple negative breast cancer and TNBC patients with higher NUF2 expression level
had significantly reduced the recurrence-free survival. GO enrichment analysis shows that
NUF2 is mainly involved in cell division, mitotic nuclear division, chromosome segregation
and sister chromatid cohesion, their dysregulation impact significantly on development
of cancer (Bakhoum et al., 2018; Guo et al., 2013; Lopez-Lazaro, 2018). Based on the above
analysis, we speculate that NUF2 plays an important role in tumor progression, and NUF2
may be serve as a biomarker for diagnosis and prognosis of triple-negative breast cancer.
Certainly, the specific molecular mechanism of NUF2 expression level changes in TNBC
still need to be further studied.

FAM83D belongs to the FAM83 family, which could regulate cell proliferation, growth,
migration and epithelial tomesenchymal transition (Li et al., 2018; Santamaria et al., 2008).
The studies have found that FAM83D could not only affect cell proliferation and motility
through the tumor suppressor gene FBXW7 (Mu et al., 2017) or ERK1/ERK2 signaling
cascade (Wang et al., 2015), but also affect breast cancer cell growth and promote epithelial
cell transformation through MAPK signaling (Cipriano et al., 2013; Cipriano et al., 2014;
Lee et al., 2012). The expression of FAM83D was significantly increased in primary breast
cancer and the high expression level of FAM83D was closely related to the adverse clinical
outcomes and distant metastasis in breast cancer patients (Wang et al., 2013). In our study,
we found that the expression of FAM83D was significantly increased in TNBC patients
and TNBC patients with higher FAM83D expression level had significantly reduced the
recurrence-free survival. GO enrichment analysis shows that FAM83D is mainly involved
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in cell division, mitotic nuclear division and cell proliferation, their dysregulation have
a major impact on the development of cancer (Bakhoum et al., 2018; Lopez-Lazaro, 2018;
Wu et al., 2019). We speculated that FAM83D might play a role in the progression and
prognosis of triple-negative breast cancer.

Centromere protein H (CENP-H) is a component of the kinetochore and plays an
essential role in mitotic processes (Lu et al., 2017), accurate chromosome segregation (Zhu
et al., 2015) as well as appropriate kinetochore assembly (Zhao et al., 2012). Many studies
have shown that CENPH is closely associated with human cancers, including colorectal
cancer (Wu et al., 2017), renal cell carcinoma (Wu et al., 2015), non-small cell lung cancer
(Liao et al., 2009) as well as breast cancer (Walian, Hang & Mao, 2016). However, there
is no current evidence on the correlation between CENPH and triple negative breast
cancer. In this study, we found that there is no significant correlation between the mRNA
expression of CENPH and triple negative breast cancer.

It is worth noting that protein-coding genes are not the sole drivers for cancer. Breast
cancer is also related to the expressions of non-coding RNAs, include repetitive DNA
(Yandim & Karakulah, 2019), transposable element (Karakulah et al., 2019), micro RNA
(Aslan et al., 2020) and Long non-coding RNA (Riahi et al., 2020),etc. In this study, we have
found that the expressions of NUF2 and FAM83D are associated with triple-negative breast
cancer. Next, we will further investigate whether the expression changes of NUF2/FAM83D
in triple-negative breast cancer are caused by non-coding RNA.

CONCLUSION
In summary, we firstly demonstrated that the mRNA levels of NUF2/ FAM83D have
changed significantly in TNBC tissues compared to adjacent tissues. The mRNA expression
levels of NUF2/FAM83D are significantly up-regulated in TNBC tissues. NUF2/FAM83D
might serve as potential molecular biomarkers for diagnosis and prognostic indicators of
TNBC. However, the functional mechanisms of NUF2 and FAM83D in TNBC patients
are still to be further studied, including the expression of their protein levels and their
relationship with the clinical characteristics of TNBC patients and so on. Therefore, we still
need to do more experiments before clinical trials.
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