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ABSTRACT
Quantitative polymerase chain reaction (qPCR) has been used as a standard molecular
detection tool in many scientific fields. Unfortunately, there is no standard method
for managing published qPCR data, and those currently used generally focus on only
managing raw fluorescence data. However, associated with qPCR experiments are
extensive sample and assaymetadata, often under-examined and under-reported. Here,
we present theMolecular DetectionMapping and Analysis Platform for R (MDMAPR),
an open-source and fully scalable informatics tool for researchers to merge raw qPCR
fluorescence data with associated metadata into a standard format, while geospatially
visualizing the distribution of the data and relative intensity of the qPCR results. The
advance of this approach is in the ability to use MDMAPR to store varied qPCR data.
This includes pathogen and environmental qPCR species detection studies ideally
suited to geographical visualization. However, it also goes beyond these and can
be utilized with other qPCR data including gene expression studies, quantification
studies used in identifying health dangers associated with food and water bacteria,
and the identification of unknown samples. In addition, MDMAPR’s novel centralized
management and geospatial visualization of qPCR data can further enable cross-
discipline large-scale qPCR data standardization and accessibility to support research
spanning multiple fields of science and qPCR applications.

Subjects Biodiversity, Bioinformatics, Molecular Biology, Data Science, Population Biology
Keywords R-shiny, Environmental DNA, Quantitative polymerase chain reaction, Molecular
identification, Epidemiology, Biodiversity, eDNA

INTRODUCTION
Understanding patterns of biodiversity and detecting instances of biological species
presence and absence are fundamental steps towards enhancing global biosurveillance and
biomonitoring capabilities (Buckeridge et al., 2005; Tatem, Hay & Rogers, 2006; Fefferman
& Naumova, 2010; Koopmans, 2013). The use of quantitative polymerase chain reaction
(qPCR) assays and the resulting data they generate offer valuable information due to their
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wide acceptance across multiple biological fields, and their ability to detect and quantify
species’ DNA quickly and with high sensitivity (Box 1; Valasek & Repa, 2005; Deepak
et al., 2007). While several international biodiversity projects [e.g., Global Biodiversity
Information Facility (GBIF, http://gbif.org accessed January 13, 2020), Species Link
(http://splink.cria.org.br/), Botanical Information Network and Ecology Network (BIEN,
http://bien.nceas.ucsb.edu/bien/)] aggregate global biodiversity data and facilitate the
analysis of global patterns of species occurrences, the biodiversity community has not yet
integrated qPCR data into current data frameworks.

Box 1. Quantitative PCR

Quantitative PCR (qPCR) is a method where the amplification of DNA is recorded in
real-time through monitoring a fluorescence signal produced during the polymerase
chain reaction (Deepak et al., 2007). The recorded fluorescence signals are compared
to a baseline value, where their relative intensity implies a concentration of target
DNA found in the sample. The point at which the intensity of a fluorescence signal
rises above the baseline signal level and becomes detectable is called the cycle threshold
(Ct). This value is inversely proportional to the amount of target DNA in the sample.
More recently, portable qPCR instruments, such as Biomeme Inc.’s FranklinTM and
Chai Inc.’s OpenPCR, have allowed scientists to retrieve nearly real-time results when
conducting field investigations (Marx, 2015).

Centralizing qPCR datasets, similar to the efforts to standardize and centralize
biodiversity data, remains challenging due to the overall lack of standardized data
reported in published qPCR studies (Hardisty, Roberts & The Biodiversity Informatics
Community, 2013; Peterson et al., 2010). Many published qPCR results are presented
according to the interpretations of authors, and the raw data necessary to reach these
interpretations (such as standard curves, cycler reactions, and primer and probe sequences)
are often not included (Nicholson et al., 2020). Researchers who have qPCR data from their
experiments will often share the data in publications and data repositories such the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/) and Dryad (https://datadryad.org/stash). While these
datasets are available to the public, it is still difficult to locate and combine them for
comparative analyses due to the lack of data indexing for search engines (Pope et al.,
2015). So, unless researchers know exactly where qPCR datasets are located and can
obtain them, published qPCR data is not often utilized beyond its initial research purpose.
The use of standardized data formats such as XML-based Real-Time PCR Data Markup
Language (RDML) to promote qPCR data sharing and improve data utility has been
proposed (Lefever et al., 2009). However, the XML-based RDML is not universally adopted
by biological researchers due to the difficulties reading the data format for researchers
unfamiliar with XML language (Cerami, 2010).

Another obstacle to the centralization of qPCR data is the lack of reporting standards
for sample-level metadata (Box 2; Pope et al., 2015), which causes the subsequent failure to
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establish relationships between habitat data, molecular data, and biological and life history
data. Most qPCR metadata standards (e.g., the Minimum Information for Publication
of Quantitative Real-Time PCR Experiment (MIQE) Guidelines (Bustin et al., 2009),
NCBI GEO’s Metadata Worksheet) only require the disclosure of molecular experiment
information. The lack of sample-level metadata creates difficulties in assembling and
pooling qPCR data generated across researchers and institutions (Nicholson et al., 2020).
Current recommended qPCR metadata standards lack sample-related data such as
geographic location, date of sample collection, and collector(s). This lack of sample
metadata leaves the eco-geographical aspect of qPCR data under-examined and diminishes
the value of the qPCR data for biodiversity studies.

Box 2. Metadata standards and formatting.

Metadata is often recognized as ‘‘data about data’’ (Gilliland, 2016). In biodiversity,
metadata is the data that defines and describes details about each sampling event, in-
cluding target species name(s), sampling location(s), sample collector(s) and sampling
method(s). Metadata is essential to link different data domains for comparison and
analysis. Presently, many biodiversity metadata standards are available. For example,
Darwin Core (DwC) (http://rs.tdwg.org/dwc/) is used for species occurrence data; ISO
19115 (https://www.iso.org/standards.html) is an international standard specifically
for geospatial information; the Botanical Information and Ecology Network (BIEN,
http://bien.nceas.ucsb.edu/bien/) uses self-hosted BIEN 4 Data Dictionary for stan-
dardized ontology; The Global Biodiversity Information Facility (GBIF) uses Ecologi-
cal Metadata Language (EML).

The volume of qPCR data is increasing, along with the urgent need for qPCR
data integration and centralized documentation. In the past decade, qPCR has been
utilized as a tool to support numerous biological fields of inquiry, including natural
resource management (Thomas et al., 2019; Fritts et al., 2019), food safety (Amaral et al.,
2016), conservation planning (Franklin et al., 2019), and disease vector/infectious disease
monitoring (Qurollo et al., 2017; Ikten et al., 2016). Research using qPCR methodologies
extends beyond the detection and quantification of target gene expression. Environmental
samples can be analyzed with qPCR as a method of environmental or disease monitoring,
where an organism’s DNA can be detected in the sampled environment (Veldhoen et al.,
2016; Sato et al., 2018). As a consequence, the extended use of qPCR in environmental
DNA (eDNA) surveys is producing a large amount of qPCR data (e.g., the qPCR raw
fluorescence outputs) and associated metadata. The ability to combine these data sets with
well-structured, sample-level metadata will extend their utility for applications to address
new research questions in biodiversity science (Peterson et al., 2010). However, current
bioinformatics tools largely focus on the quantitative analysis of raw fluorescence data
(Kandlikar et al., 2018; Kemperman & McCall, 2017), with few tools (see examples Young
et al., 2018, Biomeme Tick Map, https://maps.biomeme.com/) available to develop a
conceptual framework to standardize, integrate, display, and document qPCR fluorescence
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outputs with associated metadata (Pabinger et al., 2014). This informatics gap limits
collective thinking and scientific discovery.

To address the lack of data standards and sharing options for qPCR data, we have
developed the extensible open-source informatics tool MDMAPR under the R Shiny
framework v. 1.4.0 (Chang et al., 2019; R Core Team, 2019, v. 3.6.1). This tool helps merge
raw fluorescence outputs along with associated metadata into a tabular data format,
enhancing data searchability and discoverability. Minimal data standards for metadata are
set and include temporal, geographic, and environmental information for each sampling
event. These data will then facilitate the MDMAPR geospatial visualization of the qPCR
results through an interactive world map. These data and their visualization can be applied
to environmental DNA qPCR studies and health related qPCR data alike. In this article,
we show the strengths of MDMAPR with a focus on environmental DNA applications but
also connect the usability of the platform to other uses and describe how the platform can
be extended.

METHODS
TheMDMAPR program is an application written in R (R Core Team, 2019 - v. 3.6.1) under
the Shiny framework (Chang et al., 2019). The Shiny framework is a package built from
R Studio (RStudio Team, 2015). MDMAPR consists of two elements that can be accessed
through common web browsers (e.g., Google Chrome, Internet Explorer, and Safari): a
data input element and an interactive mapping element.

Data input through the Data File Preparation page
In the ‘‘Data File Preparation’’ page, raw fluorescence qPCR data and metadata are
submitted to the application. The MDMAPR accepts raw fluorescence qPCR data
and metadata directly from the output of qPCR platforms, with current support
for MIC qPCR Cycler (https://biomolecularsystems.com/mic-qpcr/), Biomemetwo3
(https://biomeme.com/) and Biomemethree9 (https://biomeme.com/). The extension
of MDMAPR is possible, where additional qPCR platforms can be added to the open-
source code, and is addressed in the discussion section (See associated Wiki on GitHub for
details). Raw fluorescence qPCR data is related to the metadata using individual qPCR well
names as both the primary key and unique identifier. The minimum data fields required
by MDMAPR are: run_location (the alphanumeric letterings used to identify the sample’s
qPCR well), run_platform (the qPCR platform that generated the raw qPCR output),
threshold (this is a user supplied threshold that is required for every sample submitted to
the MDMAPR program and is used by the program to calculate the threshold cycle (Ct)
value), organismScope (the target organism which can be a discrete organism or a specific
kind of organism aggregation (e.g., ‘‘virus’’, ‘‘multicellular organism’’)), eventDate (the
collection date of the biological sample), decimalLatitude (the biological sample collection
GPS latitude), decimalLongtitude (the biological sample collection GPS longitude), taxonID
(the unique identifier for the species target of the qPCR assay), and species (the target qPCR
assay species name in ‘‘Genus species’’ format). While most qPCR assays are specific to
species, there are some instances where an assay could amplify all taxa below a higher-level
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taxon (for example all species in a genus). Currently, to address this in the metadata
input the user would need to submit the taxonID for the higher level taxon of interest,
and where the genus species name was required the user would need to create a unique
identifier in place of a specific species to further differentiate the higher taxon-specific
assay. While most data and metadata are uploaded by the user, MDMAPR has a built-in
algorithm to calculate Ct values using sample threshold values and the function th.cyc()
from the R package ChipPCR (v. 0.0.8.10, Roediger & Burdukiewicz, 2014). Merged data
can be downloaded for manual inspection and editing, or directly uploaded into the
‘‘Dynamic mapping visualization’’ portion of MDMAPR. The current version of MDMAPR
includes the possibility of merging multiple data sets for visualization. To accomplish
this users will download each of the single file data sets of interest from the ‘‘Data File
Preparation’’ page, combine these files locally and then upload to the ‘‘Dynamic Mapping
Visualization’’ page (See Wiki on GitHub for details). Example raw qPCR fluorescence
data and associated metadata for the MDMAPR supported platforms is available in a
compressed file named Example Files (.zip), located in the ‘‘New Data Submission’’ panel
of the ‘‘Data File Preparation’’ page. Darwin Core (DwC) terminology and definitions
are used in MDMAPR to standardize ecological and spatio-temporal data (GBIF, 2010;
Wieczorek et al., 2012).

Visualization through the Dynamic Mapping Visualization page
The merged MDMAPR data file can be uploaded via the submission portal, located in the
data panel on the ‘‘Dynamic Visualization Mapping ’’ page. Uploaded data can be selectively
displayed on the map by applying the filtersOrganism Scope(s), Species, and/or Time Range,
located in the ‘‘Dynamic Mapping Visualization’’ data panel.

The visualized data points are colour-coded based on relative cycle threshold (Ct) values
(see Tsuji et al. (2019) for discussion on interpreting presence/absence using eDNA assays).
In MDMAPR’s default settings, the cut-off Ct value for visualizing positive detection is set
to 40. A Ct value above 40 is regarded as a negative detection, suggesting the target species
DNA is not detected in the sample (Klymus et al., 2019). Conversely, Ct values of less than
40 are considered positive detections and suggest species presence. The default maximum
Ct value for visualization of positive detection in MDMAPR is adjustable as a parameter in
the ‘‘Dynamic Mapping Visualization’’ data panel, according to researchers’ project needs.
Previous studies have suggested that reliable qPCR detections depend on a cycle threshold
of no more than 40 cycles (Klymus et al., 2019). Nevertheless, qPCR runs can have different
amplification efficiencies, and it has been reported that duplicate runs of the same qPCR
sample can generate varied Ct values that differ by up to 2.3 cycles (Caraguel et al., 2011).
Therefore, researchers may need to set species-specific or project-specific Ct cut-off values
to refine analyses and better represent expected presence.

Assessment of the presence of a target species using qPCR is associated with the quantity
ofDNApresent in a sample (Weltz et al., 2017). In the case of eDNA surveys, this correlation
can provide a relative abundance of DNA in a given sample (Weltz et al., 2017; Pilliod et
al., 2014). MDMAPR categorizes Ct values into five intensity levels to better visualize
the potential variation in target DNA abundance across sampling locations on the map.
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Figure 1 ‘‘Data file preparation’’ page—Example data submission andmerge. (A) Select qPCR raw flu-
orescence data source (i.e., platform) (B) Upload qPCR raw fluorescence data. (C) Upload qPCR metadata
spreadsheet. (D) Merged data table containing both the qPCR raw fluorescence data and sample metadata,
which can be downloaded through a button on the bottom right of this page (not shown).

Full-size DOI: 10.7717/peerj.9974/fig-1

These intensity levels include: ‘‘none detected’’, ‘‘weak’’, ‘‘moderate’’, ‘‘strong’’, and ‘‘very
strong’’. No detection of target DNA in the sample (when Ct > 40) is represented by green
colour, whereas presence (when Ct < 40) is represented by a palette of colours depending on
the Ct value. Geographic data points having coordinates with latitude/longitude differences
no more than 0.005 degrees will be collapsed into a single data point with the ability to
spiderfy. This spiderfy effect will take biological replicate samples from the same geographic
point and allow the visualization of these points.

RESULTS
The MDMAPR application can be accessed online (https://hannerlab.shinyapps.io/
MDMAPR/) or alternatively, the source code and example files can be downloaded
from GitHub (https://github.com/HannerLab/MDMAPR). MDMAPR consists of two
pages ‘‘Data File Preparation’’ webpage (Fig. 1), where raw qPCR fluorescence data is
merged with associated metadata (Fig. 2, Files S1 and S2). This can then be visualized
immediately through MDMAPR’s second element, the ‘‘Dynamic Mapping Visualization’’
webpage (Fig. 3) or downloaded and stored for future use.

The ‘‘Dynamic Visualization Mapping ’’ page provides the ability to visualize qPCR signal
intensity data. The tool’s default setting for qPCR signal intensity levels is: ‘‘none detected’’
(Ct > 40; light green), ‘‘weak’’ (30 < Ct < 40; light yellow), ‘‘moderate’’ (20 < Ct < 30;
cerulean), ‘‘strong’’ (10 < Ct < 20; light magenta-pink) and ‘‘very strong’’ (0 < Ct < 10;
tawny). The range of Ct values for each presence intensity level can be customized by users
through the selection of a starting value for each intensity level from the drop-down list,
located at the bottom of the data panel. Data points with similar or identical geographic
coordinates are clustered together (Fig. 3B). When users click on one of the clusters,
the interactive map will zoom in to the region where the selected cluster is located, and
the corresponding data points with identical or similar coordinates will move apart in a
spiderfied shape (Fig. 3F).
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Figure 2 The transformation of raw qPCR fluorescence outputs and structure of merged data table.
(A) During qPCR data merge, MDMAPR converts the fluorescence data for each of the samples into a
column of data strings, which is then combined with the metadata file. (B) The merged file includes all
metadata columns, a column containing the raw fluorescence output for all samples, and a column with
calculated Ct values (File S1). Extra columns can be added according to researchers’ study needs. The
structure of the merged data table is the format accepted by the ‘‘Dynamic Mapping Visualization’’ page.
A full list of metadata fields and their descriptions that are currently used in MDMAPR can be found in
File S2.

Full-size DOI: 10.7717/peerj.9974/fig-2

DISCUSSION
MDMAPR offers researchers an interactive environment for merging raw qPCR
fluorescence values with sample metadata, and the ability to visualize qPCR data in
a geographic context. These two elements enable researchers to visualize qPCR signal
intensities (presence or absence) on an interactive world map, thereby demonstrating
the potential of centralized qPCR data generated from multiple projects for use in
comparative studies. In addition, MDMAPR not only brings these data together, but
also transforms them into a more accessible format. The open-source, customizable, and
scalable nature of MDMAPR’s code offers researchers flexibility and extensibility options
while simultaneously providing standard formats for the centralization and searchability
of data.

MDMAPR was built using the R language (R Core Team, 2019 - v. 3.6.1) for statistical
computing and the R Shiny framework (Chang et al., 2019), which enables web-based
interactive applications. The strengths of developing MDMAPR using R include cross-
platform accessibility and wide adoption in the biological sciences for programming, data
manipulation, and statistical analyses (2019; Lai et al., 2019). The establishment of an R
community of researchers and programmers, together with an international and centralized
resource network named The Comprehensive R Archive Network (CRAN; Hornik, 2012)
provides a large resource for the implementation and extension of the MDMAPR program.
The open-source nature of MDMAPR is significant, especially in the life sciences, where
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Figure 3 ‘‘Dynamic VisualizationMapping’’ page. This image is based on the visualization of
the MDMAPR example data file. (A) The data panel contains the data submission portal and data
visualization filters. (B) Clustered data points are clustered and when users click on a cluster, the points
will spiderfy. (C) A data point represented by one qPCR sample. (D) The information bubble for each
data point appears when users click on a data point. The information bubble includes: target species name,
NCBI Taxonomy ID, Ct value, qPCR platform, species common name, sample collection date, collection
coordinates, and sample collector(s). The Taxon ID is clickable and will forward users to the species
information in the NCBI Taxonomy Database. (E) The qPCR intensity colour legend. (F) As users zoom
in, samples with identical or similar coordinates (clusters) will move apart in a spiderfied shape.

Full-size DOI: 10.7717/peerj.9974/fig-3

many biological laboratories tend to use accessible and customizable informatics tools
to implement their research methodologies. More importantly, open-source informatics
programs have the ability to be rewritten for addressing new biological questions, which is
integral to the biology community where researchers with different areas of specialization
work together (Deibel, 2014).

While other R-based informatic tools for qPCR data visualization exist (Dvinge &
Bertone, 2009; Pabinger et al., 2009), they largely focus on statistical qPCR results rather
than establishing the connection between biological information, geographical locations,
and other metadata. Specifically, these tools display qPCR results through individual data
sets in plots, histograms, and density distribution graphs. These forms of visualization
are useful to analyze single-study qPCR data and aid data interpretation. However, these
analyses lack the ability to interpret results with respect to sample metadata, which is
quickly becoming a standard in the field of environmental DNA (Nicholson et al., 2020).
Data fields such as collection location, type of collection, and others described in the
MDMAPR program provide connection of metadata to qPCR data. This connection
promotes a greater breadth and depth of data interpretation.

MDMAPR addresses the lack of visualized and accessible qPCR sample metadata in
three different ways. First, the data file generated in MDMAPR’s ‘‘Data File Preparation’’
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page combines the data for use in MDMAPR ‘‘Dynamic Visualization Mapping’’ page, and
also makes the columnar data format accessible for easy manipulation and selection of
records after visualization. As such, biological researchers can informatically link disparate
data types from diverse sources, including genomic, ecological, and environmental data.
Moreover, the columnar data format can be easily shared onto public data repositories
such as Dryad (https://datadryad.org/), which can then also be associated with publications
through existing avenues such as the association of a digital object identifier (DOI).

The second aspect where MDMAPR advances the interoperability of accumulated qPCR
data is in the ability to adjust the range of each qPCR intensity level. This results in real-time
visualization changes to mapped data points. The abundances of different species may vary
greatly. For example, endangered species tend to have relatively lower DNA concentrations
(or higher Ct values) within a given region (Weltz et al., 2017). In such cases, higher Ct
values have greater frequencies. To address this phenomenon, users can update the default
range setting of the qPCR intensity level in MDMAPR to visualize the variation of Ct values
by color. Future development of MDMAPR will incorporate the option of visualizing
sample points with their Ct values displayed for a less subjective interpretation of mapped
results.

Thirdly, MDMAPR has the option to filter data to visualize temporal relationships. This
functionality is useful when investigating how species or populations are distributed over
time. For example, filtering submitted data by time helps understand the invasion pathway
of introduced non-native species and can identify possible routes of species introduction. In
epidemiology, this functionality helps evaluate the temporal distribution of disease-causing
pathogens (Arino, 2017; Thalinger et al., 2019).

The lack of a central location for storing qPCR fluorescence data and metadata limits
the current and future applications of biological data (Tedersoo et al., 2015;Nicholson et al.,
2020). A unifying data platform that is both scalable and interactive can preserve existing
research efforts and centralize information from diverse projects, while simultaneously
providing opportunities for comparative research (Penev et al., 2017;König et al., 2019).We
use the DNA barcoding effort as an example to illustrate the challenges and opportunities
facing qPCR data centralization, and the strengths of standardized data storage. The global
DNA barcoding effort is an initiative to characterize all metazoan life on earth using
one or a few short segments of DNA (Ratnasingham & Hebert, 2007). The International
Barcode of Life (iBOL;Adamowicz, 2015) project has established a central database and data
framework (Barcode of Life Data System, BOLD) to store and share barcode data (Hebert
et al., 2003; Hebert, Ratnasingham & De Waard, 2003). Research using a DNA barcoding
approach has been applied across numerous biological disciplines, including epidemiology
(Stothard et al., 2009), border surveillance (Madden et al., 2019), and environmental DNA
studies (Dejean et al., 2012). One of the beneficial outcomes of these large barcoding efforts
has been the retrospective study of data in the shared data resource, using the aggregate
data from many smaller projects (Shen et al., 2016;Madden et al., 2019;Manel et al., 2020).
For example, Manel et al. (2020) used the centralized DNA barcoding data to investigate
the genetic diversity of marine species and identified the relationship between species’
genetic diversity and environmental factors. These large DNA barcode studies were made
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possible through the use of a standard data ontology and data sharing frameworks. The
need for similar data structure and centralization has been identified for qPCR and its
associated metadata (Holland et al., 2003; König et al., 2019).

While the centralized storage element of BOLD is highly effective, there are drawbacks to
the system. One such drawback is the ‘‘one-size-fits-all’’ nature of the system. The BOLD
system classifies submitted DNA barcoding data by comparing them with pre-existing
taxonomic work already stored on BOLD using five built-in algorithms (Ratnasingham &
Hebert, 2013). This means the sequence classification outcome may vary depending on the
available taxonomic data on BOLD that can be used as reference for sequence comparison,
thereby making it challenging to reproduce classification outcomes. Furthermore, the
fixed nature of sequence classification algorithms in BOLD prohibits researchers from
integrating state-of-art sequence analysis methods in their studies. Hence, the ability
for bioinformatic tools to be open-source and fully extensible is integral to continuous
innovation in the biological sciences. MDMAPR addresses this concern by establishing
required data elements but also providing open-source code to allow for, and encourage,
the extensibility of the underlying R code. This is significant to the biological sciences, as
it allows scientists to expand on the pre-existing MDMAPR code to produce novel and
more advanced informatics analyses and applications. In addition, using the ‘‘Data File
Preparation’’ page, datasets can be stored for reanalysis at a later date, allowing for the
reproducibility of research results.

To further facilitate the integration and shareability of qPCR data and associated
metadata, MDMAPR has used DwC data standards to provide standardization and
harmonization with other data repositories (Wieczorek et al., 2012). The use of DwC-
compatible identifiers provides the ability to connect qPCR data in MDMAPR to other
repositories like GBIF (GBIF, 2010). Of chief importance among these standardized data
fields is the TaxonID field. This field holds unique numerical identifiers that represent
species-specific taxonomic records stored in the NCBI Taxonomy database (Federhen,
2012), which link MDMAPR’s qPCR data to molecular and taxonomic data resources
on other databases. This linkage adds value to the MDMAPR data format, in its ability
to be exported and associated with other large biological databases. The use of standard
terms in MDMAPR removes the heterogenicity in the meaning of data, easing the process
of discovering, combining, and comparing data from different sources. MDMAPR’s
data format, which adheres to the FAIR principle (Findable, Accessible, Interoperable,
Reusable;Wilkinson et al., 2016), combined with the use of Darwin Core ensures the future
discoverability and shareability of qPCR data.

The collation and integration of metadata allows for comprehensive data exploration
and visualization, which is an approach we believe can accelerate biological knowledge
synthesis and revolutionize the biological research field (Jetz, McPherson & Guralnick,
2012; König et al., 2019). In MDMAPR, the integration of associated metadata allows
researchers to filter qPCR samples by DwC-compatible species names. This is an important
feature, as a single species can have multiple qPCR assays targeting different genetic
markers (see examples in Medina, Weil & Szmant, 1999; Guo et al., 2015). Moreover, the
sensitivity of species detection is enhancedwhenmultipleDNAmarkers are used for analysis
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(See et al., 2016; Liu et al., 2017). Thus, the preservation of species- and biomarker-specific
qPCR results becomes important formaintaining the data robustness required for detecting
the presence/absence of species. In MDMAPR, the DwC-compatible species field is what
links these data together (Walls et al., 2014). Currently MDMAPR can filter data by species.
Ongoing development of the platform will include other filtering options like filtering by
molecular marker.

A core element of the MDMAPR approach is in establishing a platform that can accept
data from different qPCR instruments and their corresponding software’s data formats.
This diversity of potential instruments becomes a bottleneck in the biological informatics
research workflow, as extra efforts are required to integrate raw qPCR fluorescence data
from different platforms before these data can be further analyzed in a comparative context.
Unfortunately, unlike DNA sequence repositories that store nucleotide data in a common
format (FASTA), the qPCR raw fluorescence outputs from different instruments do not
share a common data format. Thus, accepting data from different qPCR platforms and
integrating these data into a single location is essential for data centralization. MDMAPR
accepts raw fluorescent outputs from multiple platforms and integrates these data into
a tabular format. This functionality allows the aggregation of many qPCR results, and
more importantly, it provides convenience for those researchers who want to compare
performances or biases across different qPCR platforms during species detection (Ross
et al., 2013). Although there are only a few qPCR platforms currently supported with
the MDMAPR program, the open-source code makes it easy for users to add additional
platforms directly in the programing (see User Guide on GitHub for details). Ongoing
development of the MDMAPR platform is focused on making the addition of platforms
modular through the creation of reference files for the system to access.

The mapping of centralized qPCR data can reveal useful information on the dynamics
of species distribution patterns across space and time. MDMAPR can reveal patterns in
what appears to be unrelated instances of species occurrences. For example, centralized
data storage and mapping of Salmonellosis cases, which are often categorized as sporadic
events, may provide insight into the relationships among different outbreaks (Riley, 2019).
The accumulation of qPCR results in a centralized repository, like MDMAPR, can unmask
interrelationships and could also help to elucidate dispersal pathways and barriers to
distributions through visualizing data through time (Nelson & Platnick, 1981).

MDMAPRpreserves both qPCR-derived presence and absence data, which is valuable for
modelling and tracking biological organisms across space and time. In biodiversity research
inferring species absence from available data can be approached using modelling, however,
assertations of absence are often regarded as uncertain (Mackenzie & Royle, 2005). Species
distribution modelling can have better predictive outcomes when combining as many
data records as possible including both presence and absence data (Brotons et al., 2004;
Lobo, Jiménez-Valverde & Hortal, 2010; Rahman et al., 2019). MDMAPR’s approach to
integrating qPCR data enables the documentation of both positive (presence) and negative
(absence) detections obtained from environmental studies that use qPCR technologies.
The choice of R as a coding language for MDMAPR provides further opportunities for the
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integration of existing modelling analyses such as the R eDNAOccupancy package (Dorazio
& Erickson, 2017).

The future development of MDMAPR should focus on its core strengths of being
open-source, extensible, and centralized while using standardized data fields to connect to
other data storage efforts (Guralnick & Hill, 2009). With the increasing number of qPCR
technologies available with platform specific data formats, such as output data file types
(csv vs. xlsx) and different structures and naming within these file types, the inclusion of
all data formats in this or future releases of MDMAPR is not feasible. A necessary next step
to further the extensibility of MDMAPR is to develop a standardized process to allow the
upload of additional qPCR fluorescence data formats. A related future goal would be the
establishment of a central storage location for these extensions such as a supported website
or GitHub repository. Finally, future work by the qPCR community at large is needed
where a single standard format for reporting qPCR fluorescence is adopted.

The increased amount of qPCR data accepted by future MDMAPR may require more
robust data storage capacity (e.g., a relational database), and more diverse data filters
(e.g., by geographic coordinates) to be implemented so that users can still find and subset
targeted data in an efficient manner. Ongoing development for MDMAPR will incorporate
more diverse data structures which will support situations such as multiple qPCR assays
in a single reaction and additional metadata including reporting standards recommended
by the MIQE Guidelines (Bustin et al., 2009). The export of data from MDMAPR should
not be limited to a single spreadsheet format. One option is that MDMAPR could include
the ability to transform presence/absence data in a shapefile format, so that it could be
imported into other mapping platforms such as ArcGIS (https://www.arcgis.com).

Currently, MDMAPR addresses data security by having the qPCR data stored on a
local computer and then utilizing the web-based R-Shiny MDMAPR instance for data
combing and visualization. Future work to develop MDMAPR should focus on integrating
a more robust underlying data structure to address concerns related to accessibility
and security. To accomplish this, the integration of existing R and R Shiny options,
such as the use of an SQL database and Shiny Server Pro for enhanced data security
features (https://rstudio.com/products/shiny-server-pro/) is ideally suited. The further
development of an underlying database and additional filtering options (while maintaining
open access to all code) presents many opportunities to consolidate qPCR data in an
internationally accessible global qPCR data repository.

CONCLUSION
MDMAPR is a significant first step toward providing an open-source and scalable
framework for qPCR data centralization and geographic visualization. The features
of MDMAPR are designed to meet the needs of a variety of research aims including
biodetection and surveillance. With the quality and reliability improvements of portable
qPCR devices, MDMAPR is addressing a critical need by providing a resource to centralize
data and present computational options to accompany technological advances. With the
integration and centralization of qPCR and associated metadata through platforms like
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MDMAPR, the expedited visualization of species presence/absence data is possible which
can contribute to quicker management decisions by researchers, governments, and other
involved personnel.
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