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ABSTRACT
Deep sequencing of the viral phoH gene, a host-derived auxiliary metabolic gene, was
used to track viral diversity throughout the water column at the Bermuda Atlantic
Time-series Study (BATS) site in the summer (September) and winter (March)
of three years. Viral phoH sequences reveal differences in the viral communities
throughout a depth profile and between seasons in the same year. Variation was also
detected between the same seasons in subsequent years, though these differences
were not as great as the summer/winter distinctions. Over 3,600 phoH operational
taxonomic units (OTUs; 97% sequence identity) were identified. Despite high
richness, most phoH sequences belong to a few large, common OTUs whereas
the majority of the OTUs are small and rare. While many OTUs make sporadic
appearances at just a few times or depths, a small number of OTUs dominate the
community throughout the seasons, depths, and years.
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INTRODUCTION
Viruses are the most abundant biological entities on the planet (Breitbart, 2012), an order

of magnitude more abundant than bacteria (Fuhrman, 1999). Most ocean viruses prey

upon bacteria (Fuhrman, 1999), and as a result, play a critical role in ecosystem dynamics.

When these viruses (bacteriophage, or phage) lyse bacterial cells, carbon is converted

to its dissolved form, slowing the export of carbon to the deep ocean (Suttle, 2005).

Marine viruses thus ultimately influence biogeochemical cycling and can affect the rate

of atmospheric warming (Wilhelm & Suttle, 1999; Danovaro et al., 2011). Besides being

abundant and fundamental contributors to the Earth’s biogeochemical cycles, marine

viruses are also extremely diverse. Although recent work examining viral protein clusters

in metagenomes suggests the global virome may be smaller than previously thought,

marine viruses still constitute one of the largest reservoirs of genetic diversity on the
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planet (Rohwer, 2003; Ignacio-Espinoza, Solonenko & Sullivan, 2013). Moreover, viruses

can change the genetic makeup of bacteria through horizontal gene transfer (Lindell et

al., 2004; Monier et al., 2009; Hurwitz & Sullivan, 2013) and affect bacterial community

composition through lysis of specific host cells (Mühling et al., 2005). For all of these

reasons, understanding the diversity of marine viruses has been a research focus for more

than 20 years, since Bergh et al. (1989) documented high viral abundance in the oceans.

Studying viral diversity is challenging because the lack of a single gene common to all

viruses precludes PCR-based surveys of total viral diversity (cf. 16S rDNA for bacteria)

(Rohwer & Edwards, 2002; Dwivedi et al., 2012). However, a variety of signature genes

exist that can be used to capture subsets of viral diversity (Adriaenssens & Cowan,

2014), such as the DNA polymerase gene for podophage (Breitbart, Miyake & Rohwer,

2004; Huang et al., 2010), capsid genes for myophage (Jameson et al., 2011; Chow &

Fuhrman, 2012), and psbA for cyanophage (phage infecting cyanobacteria) (Chenard &

Suttle, 2008). More recently introduced, phoH can capture viruses in multiple families

of double-stranded DNA tailed phage (Goldsmith et al., 2011). PhoH has been found

in phage that infect both heterotrophic and autotrophic hosts, including cyanobacteria

such as Prochlorococcus (infected by phage P-SSM2 (Sullivan et al., 2005)), Synechococcus

(infected by Syn9 (Weigele et al., 2007)), Microcystis aeruginosa (infected by Ma-LMM01

(Yoshida et al., 2008)), SAR11 bacteria (infected by pelagiphage HTVC008M (Zhao et al.,

2013)), Roseobacter SIO67 (infected by SIO1 (Rohwer et al., 2000)), and at least eight Vibrio

species (infected by KVP40 (Miller et al., 2003)), as well as autotrophic eukaryotes such as

Ostreococcus and Bathycoccus (infected by OtV-1 and BpV1, respectively (Weynberg et al.,

2009; Moreau et al., 2010)). Moreover, phoH is more likely to be present in marine phage

than in phage originating from non-marine environments (Goldsmith et al., 2011).

The diversity of marine viral communities has been examined through numerous

snapshots—analyses at a single time and place, or a depth profile studied at a single

time. However, analysis of a surface viral community is unlikely to be representative of

the viruses throughout the water column, and viral communities sampled in one season

are likely to differ in composition from viruses at the same site but in a different season.

Numerous studies have found that marine viral communities vary between depths and

seasons (Bergh et al., 1989; Waterbury & Valois, 1993; Suttle & Chan, 1994; Wommack et

al., 1999; Fuhrman, Griffith & Schwalbach, 2002; Riemann & Middelboe, 2002; Marston

& Sallee, 2003; Wang & Chen, 2004; Mühling et al., 2005; Sandaa & Larsen, 2006; Payet

& Suttle, 2008; Winget & Wommack, 2008), but multiyear experiments are needed to

determine whether these patterns repeat over time.

This study improves current understanding of spatiotemporal dynamics of marine

viral diversity by examining the Bermuda Atlantic Time-series Study (BATS) site in the

northwestern Sargasso Sea. Ten years of monthly sampling at this site by Parsons et al.

(2012) revealed annually recurring seasonal patterns of viral abundance in the upper

300 m of the water column. Viral abundance peaked every summer between 60 and

100 m depth concurrent with stratification of the water column. This subsurface peak

in viral abundance was highly correlated with a localized increase in the concentrations
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of Prochlorococcus, the dominant photosynthetic organism at this site. Convective

overturn each winter deepened the mixed layer and abolished the subsurface peak in

viral abundance, leading to fairly stable viral concentrations in the upper water column

(Parsons et al., 2012). Knowledge of the dynamics of viral abundance at the BATS site makes

this site an ideal location to conduct a thorough analysis of dynamics in viral diversity. In

this study, we performed 454 pyrosequencing of the phoH gene from the viral community

in two different seasons (September = summer, stratified water column; March = winter,

mixed water column) in multiple years over a depth profile from the surface to 1,000 m.

To our knowledge this is the first examination of viral diversity using deep sequencing of

a signature gene, allowing exhaustive sampling and determination of richness for a subset

of the viral community. Both temporal and depth-related patterns of phoH composition

emerge. Additionally, while the viral phoH community at BATS is very rich in terms of

operational taxonomic units (OTUs; 97% sequence identity), the community is extremely

uneven, with only a few OTUs dominating at many depths and times. The remainder of the

viral community comprises OTUs that appear infrequently and have few members.

MATERIALS AND METHODS
Sample collection and DNA extraction
Samples were collected from throughout a depth profile on September 2–3, 2008, March 9

and September 5, 2010, and March 28 and September 17, 2011. All samples were collected

in the vicinity of the Bermuda Atlantic Time-series Study (BATS) site (31◦40′N, 64◦10′W)

from 0, 20, 40, 60, 80, 100, 120, 140, 160, 180 (2008 and 2011 only), 200, 250 (2010 and

2011 only), 300, and 400 m depth. In 2008 and 2011, samples were also collected from 500,

600, 700, 800, 900, and 1,000 m. Whole seawater samples (100 mL) were filtered through

a 0.22 µm Sterivex filter (Millipore, Billerica, MA) and then onto a 0.02 µm Anotop filter

(Whatman, Piscataway, NJ). Anotop filters were stored at −80 ◦C until DNA was extracted

with a MasterPure complete DNA and RNA purification kit (Epicentre Biotechnologies,

Madison, WI) following the protocol of Culley & Steward (2007). Briefly, filters were

defrosted, and all liquid was purged from the filter by pushing air through with a sterile

syringe. A flame-sealed pipette tip was used to temporarily seal the filter outlet, and a

mixture of 400 µL of 2X T&C lysis buffer (from the MasterPure kit) and 50 µg proteinase

K was forced onto the filter. The filter was then incubated for 10 min in the air at 65 ◦C

before the lysate was expelled into a microcentrifuge tube and immediately placed on ice.

Then 150 µL of MPC protein precipitation reagent (from the MasterPure kit) was added

to the lysate and vortexed vigorously for 10 s. The debris was pelleted by centrifugation at

10,000 × g for 10 min. Isopropanol was added to the recovered supernatant, and the tube

was inverted 30 to 40 times. The DNA was then pelleted by centrifugation at 20,000 × g at

4 ◦C for 10 min and washed twice with 75% ethanol. Extracted DNA was resuspended in

sterile water and stored at −20 ◦C.

Collection of environmental data
Metadata associated with these sampling dates and depths are in Table S1 and are also

available at the BATS website (bats.bios.edu) (Bermuda Institute of Ocean Sciences, 2014).
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The BATS monthly sampling is considered synoptic although it extends over three to five

days (Michaels & Knap, 1996). All parameters used in this comparison (except chlorophyll

a in March 2010) were collected within 36 h of each other to produce a composite profile

for each sampling period. With the exception of September 2008, when all metadata

was drawn from a BATS cruise conducted eight days after the cruise that provided the

viral samples, temperature, salinity, and density measurements came from the same

casts that provided the water from which viral DNA was extracted. Measurements of

oxygen, chlorophyll a concentrations, and nutrients, as well as total bacterioplankton,

Prochlorococcus and Synechococcus densities, were drawn from the same cruise where the

viral samples were collected (except in September 2008) in order to establish biological and

environmental context. No pigments were measured during the March 2010 cruise, so the

chlorophyll a measurements for those samples were drawn from the previous BATS cruise

that measured pigments, 12 days earlier.

Amplification of the phoH gene
The extracted DNA was amplified in triplicate reactions using the strand displacement

method of the Illustra GenomiPhi V2 DNA amplification kit (GE Healthcare, Piscataway,

NJ) according to the manufacturer’s instructions and then pooled. Next a first-stage PCR

was conducted for amplification of the phoH gene, using viral phoH primers vPhoHf (5′-

TGCRGGWACAGGTAARACAT-3′) and vPhoHr (5′-TCRCCRCAGAAAAYMATTTT-3′)

(Goldsmith et al., 2011). As shown by Goldsmith et al. (2011), these primers do not amplify

known bacterial phoH genes. Since the publication of these primers, at least sixty new

phage genomes that contain annotated phoH genes have been published in GenBank. Most

of these phage infect heterotrophic bacteria. A phylogenetic tree (not shown) reveals that

the primers would not capture the phoH genes from the newly-sequenced phage that infect

heterotrophic bacteria, but with one exception (Synechococcus phage S-TIM5), all of the

new cyanophage phoH sequences (Synechococcus phage S-MbCM100, S-MbCM7, S-SKS1,

metaG-MbCM1, S-MbCM6, S-CAM1, Syn2, Syn10, KBS-M-1A, S-IOM18, S-CBM2, and

S-SSM6a; Prochlorococcus phage P-SSM3, P-SS1, P-RSM3, and P-RSM6) fall into Group 2

of the phylogenetic groups identified in Goldsmith et al. (2011).

Four replicates of the PCR reaction were conducted for each sample, and the products

were pooled after a reconditioning PCR and cleaning (see below). The 50-µL reaction

mixture contained 1 U Apex Taq DNA polymerase (Genesee Scientific, San Diego, CA),

1X Apex Taq reaction buffer, 1.5 mM Apex MgCl2, a 0.5 µM concentration of each primer,

0.2 mM deoxynucleoside triphosphates, 0.08% bovine serum albumin, and 1 µL of tem-

plate DNA (pooled GenomiPhi product). The reaction conditions were: (i) 5 min of initial

denaturation at 95 ◦C; (ii) 35 cycles of 1 min of denaturation (95 ◦C), 1 min of annealing

(53 ◦C), and 1 min of extension (72 ◦C); and (iii) 10 min of final extension at 72 ◦C.

Next, each PCR product underwent a reconditioning step as recommended by Berry et

al. (2011), in order to minimize variation that can accompany different barcoded primers.

The reaction mixture was the same as in the first-stage PCR, except that 10-bp barcodes

were attached to the viral phoH primers (see Table S2). The template DNA consisted
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of 1 µL of product from the first-stage PCR reaction and the same reaction conditions

were used, except that only 10 amplification cycles were run. After the reconditioning

PCR, the four replicates for each sample were individually cleaned with a DNA Clean

& Concentrator-25 kit (Zymo Research Corp., Irvine, CA) following the manufacturer’s

instructions and resuspended in 45 µL of sterile water. The four replicates for each sample

were pooled for quantification and downstream processing.

DNA quantification and sequencing
The amount of DNA recovered for each sample was quantified using a real-time PCR

measurement of fluorescence as suggested by Blotta et al. (2005), with Quant-iT PicoGreen

as the detector (Life Technologies, Grand Island, NY). Each sample was run in duplicate,

with the real-time PCR machine set to obtain a fluorescence reading during each of three

75-s cycles. The six fluorescence readings were averaged to obtain a mean fluorescence

reading for each sample. After quantitation based on a standard curve, equal amounts of

each sample (∼1600 ng) were placed into one of four pools for sequencing. Sequencing of

the phoH amplicon was performed on the 454 GS FLX Titanium platform by Beckman

Coulter Genomics (Danvers, MA). Before sequencing, Beckman ligated sequencing

adaptors to each of the four pools, multiplexing them onto half of a picotiter plate. After

sequencing, the four pools were de-multiplexed before the sequences were returned

for analysis. The FASTA, .qual, and .sff files for each sample have been submitted to

GenBank’s Sequence Read Archive as accession SRP039081. The BioProject Accession

Number is PRJNA239691, and individual sample accession numbers are SAMN02670781

to SAMN02670865.

Sequence analysis
After the barcodes were removed, the sequences were searched for the forward primer, and

the downstream analyses proceeded with those sequences containing the forward primer.

The sequences have been deposited in METAVIR (http://metavir-meb.univ-bpclermont.

fr) under the public project name “Viral phoH at BATS—Goldsmith et al., 2014”, virome

name “All phoH sequences, forward primer”. Mothur (Schloss et al., 2009) was used to

align the sequences, trim them to include only the aligned space, filter out columns of the

alignment that do not contain data, pre-cluster the sequences to merge sequences that are

within two base pairs of a more abundant sequence, and remove chimeras, leaving 313,312

sequences. Using mothur, the sequences were grouped into operational taxonomic units

(OTUs) defined by sequence identity of 97% or greater. Rarefaction curve data, Chao1

richness estimates, and inverse Simpson diversity estimates were also calculated using

mothur, and plotted in R (R Development Core Team, 2013). In particular, the heatmap

reflecting the inverse Simpson diversity estimates (Fig. S2) was plotted using the gplots

(Warnes et al., 2009) and RColorBrewer (Neuwirth, 2011) packages in R. The heatmap re-

flecting the Chao1 richness estimates (Fig. S1) was plotted with the fossil package (Vavrek,

2011). Hierarchical clustering was performed with the average linkage method from a

Bray-Curtis dissimilarity matrix using the picante package (Kembel et al., 2010). Distances

were also computed using other algorithms (Euclidean, Manhattan, and Canberra; data
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not shown), but all methods produced the same general clustering trends. In order to boot-

strap the dendrogram, Jaccard stability means were computed using the fpc package (Hen-

nig, 2013). The dot plot (Fig. 5) was constructed with the lattice package (Sarkar, 2008).

PhoH sequences representative of each of 94 OTUs were selected for the phylogenetic

tree: the 51 OTUs that contain at least 0.1% of the total number of sequences, and an

additional 43 OTUs that contain at least 1% of the sequences from any individual sample.

These 94 representative sequences have been deposited in GenBank’s Sequence Read

Archive under accession SRP039081. The representative sequences are also in METAVIR

(http://metavir-meb.univ-bpclermont.fr) under the public project name “Viral phoH

at BATS—Goldsmith et al., 2014”, virome name “phoH OTU representatives”. Next, the

HAXAT program (Lysholm, 2012) was applied to the sequences (against a custom-built

database of viral phoH sequences) in order to correct homopolymer sequence errors (using

default parameters, except that both strands were queried and a minimum score of 200

was used). PhoH sequences from several fully-sequenced phage genomes were added,

and then an amino acid alignment was built from the sequences using MUSCLE (Edgar,

2004) with default parameters as implemented by TranslatorX (Abascal, Zardoya & Telford,

2010). Alignments based on amino acids rather than nucleotides are more accurate for

protein-coding sequences such as phoH (Abascal, Zardoya & Telford, 2010). However, since

nucleotide sequences better reflect the diversity of the phoH gene in the environment, the

alignment was back-translated for phylogenetic analysis. FastTree (Price, Dehal & Arkin,

2010) was used to build an approximate maximum likelihood phylogenetic tree, with the

Jukes-Cantor model of nucleotide evolution and the CAT approximation of a single rate of

evolution across all sites. In R, the tree was prepared for aligning with the heatmap using

the ape (Paradis, Claude & Strimmer, 2004) and phangorn (Schliep, 2011) packages. The

heatmap (Fig. 6) was constructed and aligned with the tree using the gplots (Warnes et al.,

2009), RColorBrewer (Neuwirth, 2011), and colorRamps (Keitt, 2012) packages. Permuta-

tional MANOVA analyses were conducted in PAST, version 3.01 (Anderson, 2001; Hammer,

Harper & Ryan, 2001). Pairwise identities between OTU representative sequences were cal-

culated using Sequence Demarcation Tool, version 1.2 (Muhire, Varsani & Martin, 2014).

Mathematical modeling
A rank-abundance plot was constructed for each of the 85 samples in order to examine the

mathematical distribution that best approximated the curve shape. Least-squares fits were

determined for power law, exponential and lognormal shapes (Fig. S3; Supplemental In-

formation 1) using the Solver package within Microsoft Excel. Based on the realization that

each community was dominated by just a few OTUs, the interpolated median rank for each

sample was also determined by considering the cumulative normalized abundance distri-

bution and linearly interpolating to the rank value at which the cumulative fraction would

reach 0.5. For examples of the interpolated median rank calculation, refer to Table S3.

RESULTS
Deep 454 pyrosequencing of the phoH gene from 85 depth/time samples from the BATS

site yielded a total of 313,312 sequences. The number of sequences per sample ranged
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Figure 1 Rarefaction curves for phoH sequences from all 85 depths/times; OTUs are defined by
sequence identity of 97% or greater. (A) Plotting with different scales on x- and y-axes demonstrates
some separation of the rarefaction curves. Curve with greatest slope is September 2008, 0 m, while curve
with least slope is March 2011, 1,000 m. (B) Plotting in relation to the 1:1 line demonstrates flattening of
all rarefaction curves.

from 288 to 12,791, with a median of 3,028 sequences recovered per sample. Based on

operational taxonomic units (OTUs) defined by sequence identity greater than or equal

to 97%, the total dataset consisted of 3,619 OTUs. Although the shape of the rarefaction

curves differs for each of the 85 samples (Fig. 1A), the rarefaction curves for all of the

samples have approached an asymptote (Fig. 1B), indicating that this level of sequencing

sufficiently captured the diversity of the viral phoH gene at the BATS site.

As a method of quantifying the number of highly abundant OTUs in the community,

we introduced and explored the interpolated median rank parameter, which is the rank

at which the cumulative distribution reaches 0.5. The median rank parameter therefore

represents the number of OTUs in the top half of the community (Fig. 2). Excluding a few

outliers, the interpolated median rank was between 1 and 4 OTUs. Even including the out-

lying samples—900 m in September 2011, 0 m and 20 m in September 2008 (high outliers),

and 700 m in September 2011 (low outlier)–the range of values is quite narrow, remaining

between 0.8 and 7 OTUs. This parameter demonstrates the highly uneven nature of the vi-

ral phoH communities, in which only a few OTUs represent more than half of any sample.

Calculation of two diversity metrics (Chao1 and the inverse Simpson’s index) did not

reveal clear trends in viral phoH diversity over depth or time. The Chao1 richness estimator

predicts the minimum richness of a community (Chao, 1984) and values for this dataset

ranged from 89 to 1,164 phoH OTUs per sample. The richest phoH communities tended

to be in the upper 300 m of the water column, with the exception of March 2011, when

the 700 m community had the second highest richness in the depth profile (Fig. S1).

Another diversity metric, the inverse Simpson’s index, incorporates not only richness but
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Figure 2 Median rank for each of the 85 communities sampled, arranged in descending order of me-
dian rank. Each · represents a sample and the median rank can be interpreted as the number of abundant
OTUs in that community. Shading emphasizes that most of the communities have a median rank between
1 and 4. The outlier on the right, with a median rank less than one, is hypothesized to represent a
community during a kill-the-winner scenario which leads to communities of the type represented by
the outliers to the left with median rank between 6 and 7. Assuming that such kill-the-winner cycles are
present in all the communities, the density of points in a region should be characteristic of the rate at
which the community dynamics move through that region.

also a measure of evenness (Simpson, 1949); it is influenced by the abundance of the most

common species (Magurran, 2004). The inverse Simpson’s index thus potentially provides

greater insight and is more robust than diversity measures based solely on richness

(Magurran, 2004). The inverse Simpson’s index ranges from a minimum of 1 (where

only one OTU is present) to a maximum of the total number of OTUs (3,619 in this study)

(Ricklefs & Lovette, 1999). According to the inverse Simpson’s index, the surface sample

from September 2008 was the most diverse, with a diversity measure of 19.8, while the

700 m sample from September 2011 was the least diverse, with an inverse Simpson’s index

of 2.5 (Fig. S2). The median value of the inverse Simpson’s index for all 85 samples was 6.3.

A hierarchical cluster analysis performed after constructing a Bray-Curtis dissimilarity

matrix revealed that similar depths and seasons cluster together (Fig. 3; dissimilarity

matrix is presented in Table S4). For example, 14 of the 15 samples from September at

depths shallower than 100 m fall into just two clusters, with no other samples contained

in those clusters. In addition, 12 of the 16 samples collected in September 2010 and

September 2011, from depths between 120 m and 500 m, form a well-supported cluster,

with only two other samples contained in the cluster (March 2010, 300 m and September

2008, 180 m). Winter samples appear to cluster not only by season and depth, but also by

year. The nine March 2010 samples from 0 m to 160 m are all in the same well-supported
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Figure 3 Dendrogram illustrating hierarchical clustering of all 85 depths/times. Samples are clustered
using a Bray-Curtis dissimilarity matrix for all 3,619 OTUs. Nodes marked with a filled circle have a
Jaccard stability mean greater than 75; nodes marked with an open circle have a Jaccard stability mean
from 60 to 75 (Hennig, 2007; Hennig, 2008). Unmarked nodes have a Jaccard stability mean below 60.
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cluster, joined by only one other sample (September 2010, 40 m). Twelve samples from

March 2011 form a well-supported cluster, including all depths from 40 m to 400 m.

Regardless of season or year, deep water samples cluster together. Seven of the nine samples

drawn from depths greater than or equal to 800 m form a well-supported cluster, which

further divides into two subclusters according to season.

Over time, the phoH communities are more different between depths than they are

within depths, according to a permutational MANOVA (F = 3.095, p = 0.0001). Pairwise

comparisons reveal that many of the largest differences are between 1,000 m and other

depths, especially depths shallower than 500 m (F values range from 4.7 to 14.3; p-values

range from 0.015 to 0.03) (Table S5). Among the other depths investigated, 0 m is

significantly different from every depth below 80 m (F values range from 3.13 to 5.79;

p-values range from 0.008 to 0.04). The largest pairwise difference in phoH communities

is between the 400 m community and the 1,000 m community (F = 14.3; p = 0.019). The

depths with the fewest significant differences with other depths are 180 m (significantly

different only from the 0 m community, F = 3.62, p = 0.037) and 500 m (significantly

different only from the 0 m community (F = 4.06, p = 0.04) and the 40 m community

(F = 3.77, p = 0.04)). Combining all depths and years, the season of sampling also

influences the phoH viral community structure. The differences between the March and

September phoH communities are greater than the differences within communities in the

same month (F = 2.781, p = 0.011).

Of the 3,619 OTUs recovered in this study, the vast majority of the OTUs were rare

(∼96% of these OTUs contain <0.01% of the total number of sequences). Only 18 OTUs

contain at least 1% of the total number of sequences (Fig. 4A). Fifty-one OTUs have at least

0.1% of the sequences, and 150 OTUs contain at least 0.01% of the sequences. Distribution

of the sequences among the OTUs is highly skewed, in that together, the two largest OTUs

(OTUs 1 and 2) contain more than one third of the sequences. The five largest OTUs

(OTUs 1 through 5) contain 52.4% of the sequences, and more than 82% of the sequences

are contained in the top 18 OTUs. Pairwise comparison of representative sequences from

the five largest OTUs reveals that the two most similar pairs are OTUs 2 and 5 (94.6%

identity) and OTUs 1 and 4 (74% identity). The remaining pairwise comparisons yield

identities ranging from 59.5% to 65%.

Analysis of the five largest OTUs provides significant insight into compositional

changes of the phoH community at BATS with season, depth, and year. Although the

five largest OTUs together contain more than half of the total number of sequences, the

degree to which those OTUs contribute to the community of each individual sample

varies considerably (Fig. 4B). Sequences from these five OTUs comprise up to 77.1% of a

sample (March 2011, 160 m) or as little as 0.2% of a sample (September 2011, 1,000 m).

Although OTU 1 contains the largest proportion of sequences overall, this OTU is virtually

absent from each of the three September surface communities. OTU 1 starts to appear

in September below the surface, but sequences from OTU 1 do not reach 20% of the

community until 100 m (2010), 120 m (2008), or 140 m depth (2011). In March, however,

OTU 1 is a more consistent component of the phoH community throughout the depth
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Figure 4 Composition of the phoH community according to the largest OTUs. (A) Percent of total
sequences belonging to the 18 OTUs that contain at least 1% of the total sequences (n = 313, 312). (B)
Percent of each sample belonging to OTUs 1 through 5. An empty spot indicates absence of sample for
that date/depth.
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profile; OTU 1 comprises 14% to 32% of the March 2010 community at all sampled depths,

and 21% to 30% of the March 2011 community from the surface to 700 m.

Similarly, OTU 2 is a consistent presence in March 2011 from the surface to 500 m, and

in March 2010 from the surface to 250 m (except for 60 m). However, OTU 2 constitutes

less than 2% of each of the three September surface communities. OTU 2 becomes a larger

portion of the September phoH communities starting with 20 m in September 2008 and

40 m in September 2010. In September 2011, OTU 2 has a sporadic and varied presence

among the sampled depths. No OTU 2 sequences were present in the communities

sampled at 140 m, 600 m, 900 m, and 1,000 m. At the other depths in September 2011,

the contribution of OTU 2 sequences ranges from 0.01% at 100 m to 24% at 400 m.

OTU 3 has a strong presence in the upper 80 m during September 2010 and September

2011, as well as the upper 160 m of March 2010. OTU 3 appears in smaller percentages

during September 2008 and March 2011. Sequences from OTU 3 are not found below

250 m, with a few exceptions where they constitute less than 1% of the phoH communities

(300 m in March and September 2011, 400 m in September 2010 and March 2011, 500 m

in September 2011). OTUs 4 and 5 constitute a smaller percentage of the phoH community

at BATS; however, OTU 4 makes an especially large contribution to the 400 m community

in March 2010 (27.5%) and the 700 m community in September 2011 (61.6%). The 61.6%

contribution of OTU 4 to the September 2011 700 m community is the single largest

contribution by any OTU to any sampled date and depth.

For the ease of data visualization, further analyses consider only 94 OTUs: the 51 OTUs

that contain at least 0.1% of the total number of sequences, and an additional 43 OTUs

that contain at least 1% of the sequences from any individual date/depth sample. Figure 5

demonstrates the percent of sequences in the top 94 OTUs from each of the samples from

2010 and 2011 (data underlying Fig. 5 are presented in Table S6). Few OTUs constitute a

substantial portion of any individual sample. Only one OTU (OTU 4, discussed above)

constitutes more than 50% of the sequences recovered from a single sample. Six OTUs

constitute more than 40% of an individual sample. As the threshold decreases, more OTUs

are included: 8 OTUs constitute at least 30% of a sample; 13 OTUs constitute at least

20%; and 24 constitute at least 10%. However, even at 5%, only 42 OTUs (out of a total

of 3,619 OTUs identified in the dataset) meet the threshold. Thus only 1.1% of the OTUs

constitute at least 5% of any sample, and the vast majority of the OTUs are rare. Figure 5

also demonstrates the seasonal nature of some OTUs. Some OTUs appear only in phoH

communities sampled in March, while other OTUs appear only in September samples.

Figure 6 displays a phylogenetic tree of the phoH gene containing representatives from

each of the top 94 OTUs, as well as the phoH gene from several fully-sequenced “reference”

viral genomes. The heat map next to the tree displays the prevalence of each OTU (rows) in

each sample (columns). The groups identified in the phylogenetic tree are the same groups

identified in a previous study of marine viral phoH diversity (Goldsmith et al., 2011).

Despite the greatly increased sequencing depth in the present study, no new phylogenetic

groups were identified among those top 94 OTUs. However, some of the rare OTUs

(those containing less than 0.1% of the total number of sequences and less than 1% of
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Figure 5 Percent of sample sequences falling in an OTU versus OTU. The dots represent samples and
are color-coded to indicate month and depth. Samples from March 2010, September 2010, March 2011,
and September 2011 are displayed in this plot. The September 2008 samples are not included in order
to avoid overemphasizing seasonal differences (March 2008 was not sampled). The plot considers the
83 OTUs that contain ≥1% of the sequences from at least one sample from 2010 or 2011. Because the
September 2008 samples are not included, the 83 OTUs displayed in this figure are a subset of the top 94
OTUs. No dots are displayed in OTU columns for samples in which less than 1% of the sample’s sequences
belong to that OTU. OTUs are arranged along the x-axis in descending order of largest contribution to
any single sample.

the sequences from any individual sample) fall outside the previously-defined groups (data

not shown). The five largest OTUs (Fig. 4) belong to three phylogenetic groups: OTUs 1

and 4 are in Group 1; OTUs 2 and 5 are in Group 3; and OTU 3 is in Group 2. Groups 2

and 3 contain known cyanophage phoH sequences; however, hosts for phage in the other

groups are currently unknown.

Based on the phylogenetic groups to which each of the top 94 OTUs belongs (Fig. 6),

Fig. 7 displays the phylogenetic group composition of each sample. Group 1 (containing

OTUs 1 and 4) is a dominating presence throughout the dataset, constituting at least

40% of 68 of the 85 samples, and at least 30% of 78 of the samples. Group 2, containing

OTU 3, is limited to the upper part of the water column. While Group 2 appeared in each

summer phoH community, no consistent pattern emerged for Group 2 in winter. It is

virtually absent in March 2011, but represents from 11% to 36% of the viral communities

in March 2010 from the surface to 160 m. Group 3 (containing OTUs 2 and 5) has a strong

presence at all depths in March 2011, but is more varied in its abundance throughout the

depth profile in March 2010. Group 3 comprises a smaller portion of the three September

surface communities than it does of the March surface communities. In September 2011 in

particular, Group 3 forms less than 15% of every sample from the surface through 140 m,

with the exception of the 60 m community (20.7%).
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Figure 6 Prevalence of phylogenetically clustered OTUs in each sample, indicated as percent of each sample’s sequences that belong to each of
the 94 top OTUs. Reference phoH sequences from fully-sequenced phage genomes (and one eukaryotic virus) are indicated with dark blue in the
vertical color bar along the left side of the heatmap, between the heatmap and tree. The phylogenetic Groups 1–5 indicated in the tree are the same
groups designated in Goldsmith et al. (2011).
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Figure 7 Percent of each sample belonging to phylogenetic Groups 1 through 5. An empty spot
indicates absence of sample for that date/depth.

Overall, Groups 4 and 5 comprise a smaller part of the sampled phoH communities,

and are more represented at depth than in the upper water column. In only 3 out of 85

samples did Group 4 comprise at least 1% of the phoH community. All three of those

samples were from September 2011, at depths of 700 m, 800 m, and 900 m. Group 5 is more

prevalent than Group 4, but even so, only five samples contain Group 5 as at least 15% of

the community. The maximum contribution Group 5 makes to a sample is in September

2008, 900 m, where it constitutes 31% of the phoH community. However, no patterns

emerge in the environmental metadata to explain the unusual abundances of Groups 4 and

5 in these samples.

DISCUSSION
The present study demonstrates statistically significant temporal patterns in viral diversity.

A permutational MANOVA and a dendrogram based on a Bray-Curtis dissimilarity matrix
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show that the month of sampling significantly influences composition of the phoH viral

community (Table S5), and that when considered individually, similar depths and seasons

tend to cluster together (Fig. 3 and Table S4). These data are consistent with numerous

previous studies that have demonstrated temporal variation in marine viral communities

using vastly different methods including pulsed field gel electrophoresis (PFGE) randomly

amplified polymorphic DNA (RAPD) PCR, denaturing gradient gel electrophoresis

(DGGE) and fluorescence intensity (Wommack et al., 1999; Steward, Montiel & Azam,

2000; Mühling et al., 2005; Sandaa & Larsen, 2006; Winget & Wommack, 2008; Winter,

Kerros & Weinbauer, 2009; Jamindar et al., 2012; Magiopoulos & Pitta, 2012). Based on more

than a year of monthly analyses, two signature genes in cyanomyophage (g20 and psbA)

showed clear distinctions between the summer viral community and the fall/winter viral

community in coastal California (Clasen et al., 2013) and analysis of myophage isolates

through the g20 signature gene also revealed seasonal variations of abundance and diversity

in coastal Rhode Island waters (Marston & Sallee, 2003).

Most of these studies have been limited to temporal analyses within a single year, so

the repeatability of these patterns cannot be addressed. Multiyear time-series studies,

such as the data presented here, are especially valuable for addressing this issue. The

cyanopodophage community of the Chesapeake Bay, analyzed via the DNA polymerase

gene during winter and summer for two years, exhibited repeating seasonal differences,

and winter phage communities sampled in different years grouped more closely with each

other than with summer phage communities from the same year (Chen et al., 2009). For

cyanophage isolated from Narragansett Bay, similarity analysis based on the g43 DNA

polymerase gene showed clustering according to season, such that the cyanomyophage

community composition was more similar between samples from the same season of

different years than between samples from a different season in the same year (Marston

et al., 2013). Viral communities at the site of the San Pedro Ocean Time-series (SPOT)

also displayed seasonally recurring patterns of diversity as measured by T-RFLP analysis of

the g23 gene (Chow & Fuhrman, 2012). Communities 3–7 months apart were negatively

correlated, while communities from adjacent months were highly correlated, as were

communities from the same month one year apart (Chow & Fuhrman, 2012). Using the

same type of analysis, Pagarete et al. (2013) studied changes in the myophage community

sampled monthly for two years from water in Raunefjorden, Norway and observed three

distinct viral communities depending on the season: summer, fall, and winter/spring.

The present study found that most of the sequences are in a few (large) OTUs that were

common (i.e., found in a high proportion of sampling dates/depths). The remaining OTUs

(the bulk of the OTUs) were small and rare. It should be noted that the methods used

in this study are subject to potential biases. The whole genome amplification method

used here, multiple displacement amplification (MDA), relies on random hexamers

and the activity of the phi29 polymerase (Dean et al., 2002). Community composition

of a population amplified by MDA is skewed (Pinard et al., 2006; Yilmaz, Allgaier &

Hugenholtz, 2010), with a bias against templates of high GC content (Bodelier et al., 2009;

Yilmaz, Allgaier & Hugenholtz, 2010) and in favor of circular genomes (Kim & Bae, 2011).
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In addition, the primers used in this study, designed from three cyanophage and one

vibriophage, will only amplify a limited subset of the phoH genes known to occur in phage

and may not amplify phoH genes from phage of heterotrophic bacteria (Goldsmith et al.,

2011). This study applied barcoded versions of the phoH primers, but used them in a

reconditioning step in order to reduce variation that can result from differences in the

barcodes (Berry et al., 2011) (see Materials and Methods). Finally, PCR is always subject

to bias because different templates amplify with different efficiencies (Polz & Cavanaugh,

1998; Lee et al., 2012) and because in later cycles of the reaction, the increased number

of templates results in a greater chance of templates annealing to each other rather than

to primers (Suzuki & Giovannoni, 1996). Despite these potential biases, because the same

methods were used to process all samples in this study, between-sample comparisons

are appropriate, and the outcomes of this study are consistent with numerous previously

published studies.

The present results are in concordance with the findings of a 78-day time series in

which most of the OTUs appeared in less than 25% of the samples, but more than 80%

of the viral community consisted of OTUs that appeared in at least 90% of the samples

(Needham et al., 2013). A culture-based study by Marston et al. (2013) obtained similar

results for cyanophage isolates. At one location, the 12 most abundant OTUs (out of 108)

represented 63.5% of the isolates. At other locations, the five most abundant OTUs (out

of 162) represented 58% of the isolates (Marston et al., 2013). In another study, monthly

sampling over two years showed that the most commonly observed OTUs had higher

average and maximum contributions to the viral community (based on the g23 gene),

while the OTUs that appeared less frequently in the samples tended to represent fewer

sequences from the viral community (Pagarete et al., 2013). Analysis of the g23 gene in

another study yielded concordant findings: over three years of monthly samples, the most

common OTUs made up a higher proportion of the viral community than did the least

common OTUs (Chow & Fuhrman, 2012).

Both the present study and Parsons et al. (2012) underscore the importance of

investigating both time and depth in order to understand the dynamics of a marine viral

community. In this study, the OTU composition of the upper 200 m is fairly consistent

in March when the water column at BATS is well-mixed (Fig. 4B), while the September

samples, collected during summer stratification at BATS, reflect a much more variable

composition of the phoH community in the upper 200 m. Part of the September variability

in OTU composition is due to the presence of OTUs belonging to phylogenetic Group

2 (Fig. 7). Group 2, which contains the vast majority of phoH sequences from phage of

Prochlorococcus and Synechococcus (Fig. 6), is abundant in the upper water column but

absent from deeper depths, suggesting that this group is dominated by phoH genes of

cyanophage. The 20 m sample from September 2010 is especially noteworthy, because

more than 93% of the community belongs to phylogenetic Group 2 (Fig. 7). The high

abundances of Group 2 phoH sequences in the viral communities from the surface to

60 m in September 2010 correspond to elevated average abundances of Prochlorococcus at
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those depths in September 2010 compared to the same depths from September 2008 and

September 2011 (Parsons et al., 2012; Bermuda Institute of Ocean Sciences, 2014).

In winter, when the water column is well-mixed, Group 2 exhibits much greater interan-

nual variation. In March 2010, Group 2 forms between 11% and 36% of each sample from

0 m to 160 m. However, in March 2011, Group 2 is virtually absent from the depth profile.

At every depth from the surface to 160 m, the abundance of Prochlorococcus was higher in

March 2010 than in March 2011, and the water temperature was also higher (Table S1). The

differences between Synechococcus abundances at these depths between March 2010 and

March 2011 were more variable, but the average Synechococcus abundance from the surface

to 160 m was 4% higher in March 2010 than in March 2011 (Table S1). The similarity of the

trends in Group 2 phoH abundance and cyanobacterial abundance, along with the concen-

tration of Group 2 phoH genes in the photic zone, supports the hypothesis that the Group

2 phoH sequences belong to cyanophage. Assuming that Group 2 does in fact represent

cyanophage, these data are consistent with a study by Wilson et al. (1999) showing that the

cyanophage population structure was similar throughout the upper 100 m at a well-mixed

Atlantic Ocean site, while at another site, where the water column was stratified, the

structure of the cyanophage population was variable throughout the depth profile.

Persistence of some OTUs and transience of other OTUs are recurring themes in studies

of viral diversity, and the present study is no exception. At SPOT, certain OTUs showed

repeating seasonal patterns, but the patterns varied among OTUs: some OTUs persisted

throughout the year at moderate levels, while others had peak abundances in a particular

season (Chow & Fuhrman, 2012). In a hypersaline lake in Australia, over nearly three years,

much of the viral community was dynamic, while at least one assembled viral genome and

two other viral genome fragments appeared in 91% to 100% of the samples (Emerson et al.,

2012). In Lake Ontario, quantitative PCR (qPCR) was used to track the abundance of three

algal virus genes for 13 months (Short & Short, 2009). Two of the genes appeared in nearly

every sample, with seasonal variations in abundance, while the other gene appeared in only

a few samples but at higher abundance than the other two genes. This study posited that

some aquatic viruses persist throughout the year, while others are transient. Rozon & Short

(2013) expanded upon the results of that study by using qPCR to monitor the abundance of

10 viral genes at three stations in an embayment of Lake Ontario from May to October. The

genes (from algal viruses and freshwater cyanophage) exhibited several different patterns

of abundance. Some OTUs appeared at all locations and all time points at fairly constant

abundances, some taxa appeared at all locations but only sporadically, and other taxa

showed patchy distribution (Rozon & Short, 2013). Similarly, in the present study, we find

that some OTUs persist throughout the seasons, depths, and years, while many other OTUs

make sporadic appearances at just one or a few times or depths.

Along with all other available studies, the present data support the Bank model, where

marine viral communities contain a small subset of abundant viruses and a large bank

fraction of rare viruses (Breitbart & Rohwer, 2005). However, in contrast to the originally

proposed Bank model, where viruses cycle between the abundant and bank compartments,
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this study demonstrates dynamics similar to those observed by Rodriguez-Brito et al.

(2010), where the largest phoH OTUs persist throughout changes in seasons, depths, and

years. The appropriateness of the Bank model is supported by the interpolated median

rank values, which represent the number of OTUs in the top half of the population

and can roughly be interpreted as the number of abundant OTUs. Most of the samples,

representing the phoH-containing viral communities at a particular snapshot in space

and time, have between 1 and 4 abundant members as reflected in the interpolated

median rank (Fig. 2). The outliers, clearly visible in Fig. 2, point to a possible signature

of kill-the-winner dynamics (Thingstad & Lignell, 1997). In the scenario that gives such

dynamics its name, a community with a highly active bacterial strain (the winner) is

subject to a bloom of phage that specifically infects it, reducing the abundance of the

winning strain and releasing carbon and nutrients for consumption by scavenger members

of the bacterial community. For each community containing a median rank of one or

less (one clear winner), many communities with a median rank of several competitors

vying for the vacated top spot would be expected, as scavenger “rare” bacterial taxa move

temporarily from the bank to the abundant class for as long as the available substrates

from the lysis event last. At the completion of this relatively brief period, the median rank

(i.e., size of the abundant group) moves back to the stable 1–4 member region.

The above line of reasoning leads to the expectation of cycles in the number of abundant

members as a consequence of kill-the-winner dynamics between phage-host pairs. We con-

jecture that the 85 samples analyzed here were taken at random times along such a cycle in

median rank and thus the number of sampled points in a median rank interval is indicative

of the fraction of the time that the dynamics of such a community spends in that median

rank range. The outliers (both high and low) in Fig. 2 are then interpreted as evidence of

such cycles. These data therefore provide insight into the relative time scales involved in

such a cycle: a slow drift of one of the abundant OTUs to dominance, followed by a rapid

decline of this dominant OTU to many abundant OTUs (6 or 7) for a brief period, after

which we again establish a relatively long-lasting abundant group size of 1–4. This scenario

is illustrated by the arrows in Fig. 2, which demonstrate the cyclical dynamics that consist

of the following steps: (1) drift of abundant group size from 4 to 1 (slowest step); (2) jump

of the abundant group size from 1 to 6–7 (fastest step); (3) drift back to steady state from

7 to 4 (intermediate speed step). The distinctness and relative speed of these three regimes

have been generally conjectured for pelagic phage-host dynamics and are the chief features

of canard dynamics, which are cycling dynamics that experience very different speeds (of

traversing the cycle) during different stretches along the cycle (Gavin et al., 2006; Hoffmann

et al., 2007). If each of the sampled communities is considered a random selection from

these trajectories (Hoffmann et al., 2007), the fact that only four outlying snapshots were

captured in steps (2) and (3) (i.e., outside the typical abundant group of 1–4 members)

suggests that these stages comprise approximately 5% of the cycle time.

Our findings modify the Bank model by suggesting that exchange rarely occurs between

compartments, and by analyzing the median rank of these communities to demonstrate

the relative timescales on which kill-the-winner interactions occur. The in situ viral phoH
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diversity data generated in the present study are consistent with the constant-diversity

dynamics model proposed by Rodriguez-Valera et al. (2009) and theoretical analyses by

Thingstad et al. (2014), suggestive of the strong role of phage predation in driving bacterial

diversification among successful lineages in the environment. Moreover, these data are

consistent with the findings of Rodriguez-Brito et al. (2010), who studied virus and host

dynamics in four aquatic environments and demonstrated the persistence of broad viral

and host taxa concurrent with kill-the-winner-type fluctuations at the level of host strains

and viral genotypes. Together, these experimental and theoretical findings support the

hypothesis that a given sample in the ocean contains a small number of highly successful

abundant viruses (which comprise the top 50% of community abundance), complemented

by a large number of rare bank species. Transient conditions related to major lysis events

occasionally (approximately 5% of the snapshots captured in this study) enable OTUs in

the bank to become abundant, but the system rapidly returns to steady state.

CONCLUSION
This study represents the first deep sequencing of a signature gene to explore marine viral

diversity. Using the viral phoH gene to examine the composition of the viral community in

the Sargasso Sea, patterns of diversity emerged related to both depth and time. Moreover,

the study confirmed the findings of previous research in determining that some viral OTUs

persist in the environment over depth and time, while many other OTUs appear only

sporadically. These data conform to one aspect of the Bank model, in that the abundant

OTUs constitute a small portion of the total number of viral OTUs, while most of the viral

OTUs are rare. However, these data modify the Bank model by suggesting that rare OTUs

stay rare, rather than cycling between the abundant and rare fractions over time.
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