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ABSTRACT
Trypanosoma cruzi, the cause agent of Chagas disease, is transmitted mainly by blood-
feeding insects of the subfamily Triatominae. The T. cruzi life cycle alternates between
triatomines andmammalian hosts, excluding birds and reptiles. Triatomines ofMepraia
genus are wild vectors of T. cruzi in Chile. Mepraia specimens infected with T. cruzi
have been detected in Pan de Azúcar and Santa María islands. The most common
vertebrates that inhabit these islands are birds and reptiles, and it is unknown whether
small mammals are present. Consequently, it is relevant to know whether there are
any T. cruzi-infected small mammals on those islands to elucidate the T. cruzi cycle.
To clarify this crossroads, islands of northern Chile were explored to determine if T.
cruzi-infected triatomines and rodents co-occur in islands of northern Chile. T. cruzi
DNA was detected by conventional and real-time PCR in three islands: on Santa María
and Pan de Azúcar islands T. cruziwas detected inMepraia sp samples, while on Pan de
Azúcar (6.1%) and Damas islands (15%) was detected in the rodent Abrothrix olivacea.
We show for the first time in Chile the occurrence of insular rodents infected with
T. cruzi, and a complete T. cruzi life cycle in a coastal island. Our results provide new
insights to understand the T. cruzi infection in the wild cycle.

Subjects Ecology, Entomology, Parasitology, Zoology, Infectious Diseases
Keywords T. cruzi reservoir in islands, Island T. cruzi cycle, Island T. cruzi hosts,Mepraia, Insular
small mammals, Hemiptera:Reduviidae, Trypanosoma cruzi, T. cruzi life cycle

INTRODUCTION
Trypanosoma cruzi is the cause agent of Chagas disease, one of the main zoonotic diseases
mediated by vectors in America. This parasite is transmitted principally by blood-feeding
bugs of the subfamily Triatominae. The T. cruzi life cycle circulates among triatomines
and several mammalian host species while birds and reptiles still are considered refractory
to T. cruzi infection (Kierszenbaum, Ivanyi & Budzko, 1976; Urdaneta-Morales & McLure,
1981). Mepraia is a genus (Mazza, Gajardo & Jörg, 1940) of Triatominae endemic to arid
and semiarid regions of Chile; it plays an important role in the wild cycle of T. cruzi
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transmission, and its species are potential vectors for humans (Botto-Mahan et al., 2008;
Campos-Soto et al., 2016).

Three species are currently included in the genus Mepraia: M. gajardoi, M. parapatrica
andM. spinolai (Frías, Henry & Gonzalez, 1998; Frías-Lasserre, 2010). The first two inhabit
coastal areas, while M. spinolai inhabits coastal and interior valleys. M. parapatrica is
distributed in the coastal desert in an area intermediate between those of M. spinolai and
M. gajardoi (Frías-Lasserre, 2010;Campos et al., 2013). Island populations ofM. parapatrica
have been reported inhabiting Pan de Azúcar Island in the Atacama Region (Sagua et al.,
2000; Frías-Lasserre, 2010). Sagua et al. (2000) suggested that triatomines from Pan de
Azúcar Island feed mainly on seabirds (78%), marine mammals (15%) and reptiles (7%).
Individuals of Mepraia sp. were also reported in Santa María Island in the Antofagasta
Region (Rives-Blanchard et al., 2017).

The presence of triatomines infected with T. cruzi, as well as mixed infections with
more than one T. cruzi Discrete Typing Unit (DTU), were reported in both islands (Rives-
Blanchard et al., 2017). Mixed infections are more common in ecotopes with high infection
rate or high diversity of mammals that harbor different T. cruzi lineages (Campos-Soto et
al., 2016). However, the most frequent vertebrates that inhabit both islands are lizards,
seabirds and few marine mammals such as seawolf, sea otters and migratory cetaceans (R.
Campos-Soto, 2018, field observations of this study). Small mammals inhabiting these
islands are unknown, despite their potential major role in the T. cruzi life cycle. Given that
there are two islands with infected bugs, are there any T. cruzi-infected small mammals
on those islands? Therefore, sampling insular triatomines and small mammals as possible
reservoirs of T. cruzi in coastal islands of northern Chile is key to clarify this question and
the T. cruzi life cycle. We studied two major islands in the north of Chile (Pan de Azúcar
and Santa María) together with three additional islands in which hosts of T. cruzi are
unknown without previous infection studies. The evidence provided by this study offers
new opportunities to examine the T. cruzi life cycle in coastal islands of northern Chile.

MATERIALS & METHODS
Areas of small mammal and triatomine collections
Small mammals and Mepraia individuals were collected during the summer (2017 to
2019) in five coastal islands of northern Chile: Santa María Island (distant site 1.9 km
from the continent), in Antofagasta Region; Pan de Azúcar Island (distant site 1.8 km
from the continent), in Pan de Azúcar National Park, Atacama Region; Chañaral Island
(distant site 8.5 km from the continent), in Atacama Region; Damas Island (in a site at
5.5 km from the continent) and Choros Island (distant site 8.6 km from the continent)
in Coquimbo Region. The last three islands are included in the Pingüino de Humboldt
National Park. Localities and their geographical locations are shown in Fig. 1 and Table 1.
Only on Chañaral Island two field activities were carried out.

Small mammal and triatomine sampling
Insular rodents were caught with standard Sherman traps (8 × 9 × 23 cm). Trapping
effort was 100 traps/night and conducted for two nights at each site. This sampling design
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Figure 1 Sample localities of small mammal and triatomine collection. ISMa: Santa María Island, IPA:
Pan de Azúcar Island, ICha: Chañaral Island, ICho: Choros Island, IDa: Damas Island. Attributions: Map
data c©2020 Google, Image c©2020 TerraMetrics, Image c©2020 CNES/Airbus, Data SIO. NOAA. US Navy.
NGA. GEBCO. Map was modified by illustrations purposes.

Full-size DOI: 10.7717/peerj.9967/fig-1

was previously shown successful to capture small mammals (Boric-Bargetto et al., 2016).
A mixture of oats (900 grs) and vanilla essence (150 ml) was used as bait, which have
been used in several studies with efficient results (Torres-Pérez et al., 2004; Boric-Bargetto
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Table 1 Collection sites in islands and Trypanosoma cruzi infections in small mammals and triatomines by kDNA conventional PCR and
satDNA real-time PCR.

Island Latitude/longitude Host species ID Host kDNA PCR SatDNA qPCR

Santa María 23◦25′51′′S/70◦36′31′′W Smam. not found – – –
Triat.Mepraia sp 1isma + (-)

2isma + +
3isma + +
4isma + +
5isma (-) +
7isma (-) +
9isma + +
10isma + (-)
12isma + +
14isma + +
16isma + +
18isma (-) +
22isma + +
23isma + +
26isma (-) +
27isma (-) +
Inf. rate 11/38 (28.9%) 14/38 (36.8%)

Pan de Azúcar 26◦9′6′′S/70◦41′7′′W Smam. Abrothrix olivaceus 8Aipa + +
25Aipa + +
Inf. rate 2/33 (6.1%) 2/33 (6.1%)

Triat.Mepraia parapatrica 1ipa + +
2ipa + +
5ipa (-) +
6ipa + +
7ipa + (-)
8ipa (-) +
9ipa (-) +
10ipa (-) +
15ipa (-) +
17ipa (-) +
19ipa (-) +
23ipa (-) +
26ipa (-) +
29ipa + (-)
40ipa + (-)
Inf. rate 6/59 (10.17%) 12/59 (20%)

Chañaral 29◦2′17′′S/71◦34′8′′W Smam. Thylamys elegans 0/9 0/7
Triat. not found – – –

Damas 29◦13′49′′S/71◦31′47′′W Smam. Abrothrix olivaceus 12ida + +
(continued on next page)
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Table 1 (continued)

Island Latitude/longitude Host species ID Host kDNA PCR SatDNA qPCR

18ida + +
21ida + +
Inf. rate 3/20 (15%) 3/20 (15%)

Triat. not found – – –
Choros 29◦2′17′′S/71◦34′8′′W Smam. not found – – –

Triat. not found – – –

et al., 2012). Small mammals were anesthetized in the field with isoflurane and 0.2 ml
of blood was sampled in a field laboratory. Fresh blood samples were received in a
cryotube and conserved in a liquid nitrogen container. Blood samples were taken only
from adult rodents; juvenile and pregnant females were released. The captured rodents
were marked with a temporal nontoxic-highlighter and released once they were well
awake and recovered. Triatomines were collected passively as described in Campos-Soto,
Torres-Pérez & Solari (2015) by qualified personnel, when this method was unsuccessful
triatomines were collected actively by lifting stones in rock piles and nests. Captured insects
were transported to the laboratory and maintained in a climate chamber at 27 ◦ C with a
relative humidity of 50% and a 14:10 h light:dark photoperiod. Then the complete gut of
triatomines was dissected and used for DNA extraction.

Ethics statement
All individuals were manipulated following the standard bioethics and biosafety protocols
proposed by the American Society of Mammalogists (Sikes, 2016). Sampling procedures
were authorized by the Servicio Agrícola y Ganadero (resolution number: 8353),
Corporación Nacional Forestal from Atacama Region (permit number: 049/2017) and
Coquimbo Region (permit number: 22/2019). We appreciate the logistical help was
provided by Pan de Azúcar National Park and Pingüino de Humboldt National Reserve
administrators and their park rangers. The research project that includes this study was
approved by the Bioethic and Biosecurity Committee of the Pontificia Universidad Católica
de Valparaíso (permit number: BIOEPUCV-A98b-2017).

DNA extraction from triatomines and blood of small mammals
DNA was extracted from blood samples and intestinal contents of triatomines using the
DNeasy R© Blood & Tissue kit (QIAGEN). The protocol was carried out according to the
manufacturer’s instructions; the DNA was eluted twice with 100 µL of elution buffer.
All samples were co-extracted with 100 pg of a sequence of Arabidopsis thaliana used as
a heterologous internal amplification control (IAC) as previously described in Mc Cabe
et al. (2019) to discount loss of DNA or carryover of polymerase chain reaction (PCR)
inhibitors.

Kinetoplast DNA conventional PCR assays
Assays were performed for all samples using kinetoplast DNA (kDNA) primers 121
(AAATAATGTACGGGKGAGATGCATGA) and 122 (GGTTCGATTGGGGTTGGTG-
TAATATA) (Wincker et al., 1994) and the polymerase fast PCRMasterMix SapphireAmp R©
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(Takara). Cycling conditions were 30 s at 94 ◦C, followed by 40 cycles at 94 ◦C for 30 s, 55 ◦C
for 30 s and 72 ◦C for 1 min according to Takara manufacturer’s instructions in a Bioer
model TC-96/G/H(b)C LifeEco R© thermocycler. Verification of amplification of a variable
region of 330 bp of minicircle kDNA was assessed by 2% agarose gel electrophoresis. Each
sample was tested twice to confirm the infection with T. cruzi; the sample was considered
infected with T. cruzi when at least one of the two amplifications resulted positive.

Satellite DNA real-time PCR assays
Assays were performed using T. cruzi nuclear satellite DNA (satDNA) primers Cruzi 1
(ASTCGGCTGATCGTTTTCGA) and Cruzi 2 (AATTCCTCCAAGCAGCGGATA) (Piron
et al., 2007) in a final volume of 20 µL containing 5 µL DNA template as previously
described in Muñoz-San Martín et al. (2020). Each sample was tested in duplicate.

Parasite standard calibration curve
T. cruzi DNA standards for absolute quantification were obtained from 105 parasite
equivalents/mL (par-eq/mL) of clonal reference strains Dm28c (TcId) and Y (TcII) and
10-fold serial dilutions were performed with nuclease-free water (range between 105 and
101 par-eq/mL) as previously described inMuñoz-San Martín et al. (2020).

Heterologous internal amplification control qPCR Assays
Assays were performed in blood samples using primers IAC Fw (5′ACCGTCATGGAACAG
CACGTA 3′) and IAC Rv (5′ CTCCCGCAACAAACCCTATAAAT 3′) Duffy et al., 2013
at a final concentration of 0.2 µM and at a melting temperature of 58 ◦C as previously
described in (Mc Cabe et al., 2019). Quantification of the parasite equivalents from DNA
samples was calculated considering the amplification curve of standard T. cruzi DNA and
the results were normalized according to the heterologous IAC results.

Genotyping assays
Four DTU real-time PCR genotyping assays were performed for mammal samples positive
for T. cruzi (Muñoz Martín, Apt & Zulantay , 2017). Detection of TcI, TcII, TcV, and
TcVI was performed using the same primers, concentrations, and controls as previously
described in (Muñoz-San Martín et al., 2018). The other assay conditions, including the
cycling profile, are described above. Controls were always included in each reaction and
each sample was tested in duplicate.

RESULTS
Small mammal and triatomine collection
Small mammals were captured in three islands (Figs. 1 and 2, Table 1). In Pan de Azúcar
Island, 49 Abrothrix olivacea (Sigmodontinae) were captured in one sampling night; 33
blood samples were obtained. In Chañaral Island, nine mouse opossums of the species
Thylamys elegans (Didelphidae) were captured in two sampling nights in the first field
activity (Fig. S1), obtaining nine blood samples. In Damas Island, 48 Abrothrix olivacea
were captured in two sampling nights, obtaining 20 blood samples (Table 1, Fig. 2). No
small mammals were found in Santa María and Choros Islands.Mepraia triatomines were
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Figure 2 Sampling sites on islands with detected Trypanosoma cruzi hosts. (A) Santa María Island. (B)
Pan de Azúcar Island. (C) Damas Island. (D) high abundance ofMicroluphus atacamensis on Santa María
Island. (E) Abrothrix olivacea form Pan de Azúcar Island. (F) A. olivacea form Damas Island. Photos A, B,
D and E credit: Ricardo Campos-Soto, photos C and F credit: Javier Cruz.

Full-size DOI: 10.7717/peerj.9967/fig-2

captured in SantaMaría Island (N = 38) and Pan deAzúcar Island (N = 59); no triatomines
were found in the other three islands. Collected small mammals and triatomines for each
island and their geographical coordinates are detailed in Table 1 and Fig. 1.

Kinetoplast DNA conventional PCR assays
T. cruzi kDNA in small mammals was detected in two Abrothrix olivacea in Pan de Azúcar
Island, representing an infection rate of 6.06%. No infected Thylamys elegans were found
in Chañaral Island, and three A. olivacea were detected with T. cruzi (infection rate of 15%)
in Damas Island (Table 1, Fig. 3). For triatomines, 11 samples ofMepraia were positive for
T. cruzi in Santa María Island, representing an infection rate of 28.9% (Fig. S2, Table 1). In
Pan de Azúcar Island we detected six samples ofMepraia positive for T. cruzi, representing
an infection rate of 10.17% (Fig. S3, Table 1).

Satellite DNA real-time PCR assays
For T. cruzi satDNA detection in small mammals, all the same A. olivacea samples were
positive as in the detection by kDNA (Table 1, Fig. S4). The genomic quantification by
real-time PCR only was possible for Abrothrix from Pan de Azúcar Island, with 129 (sample
8Aipa) and 3.6 (sample 25Aipa) par-eq/mL while in Abrothrix from Damas Island low
parasitemias were detected (<1 par-eq/mL). For T. cruzi satDNA detection in triatomines,
14 Mepraia samples for Santa María Island were positive, representing an infection rate of
36.8%, while in Pan de Azúcar Island we found 12 positive samples, with an infection rate
of 20.33% (Table 1, Fig. S4). Raw data of real-time PCR analyses in small mammals and
triatomines are available in Table S1.
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Figure 3 Agarose gel electrophoresis of amplified kDNA by conventional PCR in small mammals
(Abrothrix olivacea). Lanes IPA: positive rodents from Pan de Azúcar Island, IDa: positive rodents from
Damas Island. Lanes C(-): negative control, C+: Positive control and M: 100-bp DNA ladder. Arrow indi-
cates 300 bp. Photo credit: Gabriel Díaz-Campusano.

Full-size DOI: 10.7717/peerj.9967/fig-3

Genotyping assays
Genotyping T. cruziDTU assays were only performed in the Abrothrix from Pan de Azúcar
Island because higher parasitemia was detected. We found the TcII DTU in a mixed
infection with TcVI in A. olivacea (sample 8Aipa), and a single infection with TcII (sample
25Aipa).

DISCUSSION
The wild cycle of T. cruzi in continental areas has been widely reported, but there is still
remains a lack of knowledge in insular areas. A few examples were reported that revealed
the enzootic T. cruzi cycle that included mammals and triatomines in islands of Brazil
(Grisard et al., 2000; Das Xavier et al., 2014). In Chile, T. cruzi- infected triatomines were
reported in Santa María and Pan de Azúcar islands (Rives-Blanchard et al., 2017), raising
question related to the mammal hosts involved in this T. cruzi cycle.

On Pan de Azúcar Island, two A. olivacea were positive to T. cruzi by kDNA PCR and
satDNA qPCR (infection rate 6.06%, Table 1, Fig. 3). It has been suggested that triatomines
on Pan de Azúcar Island feedmainly on sea birds (Sagua et al., 2000), whichmay explain the
low infection rate found in A. olivacea. Interestingly, one of the A. olivacea samples showed
a mixed infection with two DTU, TcI and TcII, congruent with the two DTUs previously
found in Mepraia on Pan de Azúcar Island (Rives-Blanchard et al., 2017). Therefore, our
results confirm that on Pan de Azúcar Island there is a complete T. cruzi life cycle, i.e., a
cycle in which T. cruzi circulates through triatomines and mammalian blood.

Three A. olivacea on Damas Island resulted positive for T. cruzi by kDNA PCR and
satDNA qPCR (infection rate 15% Table 1, Fig. 3). However, no triatomines were found in
our study, a pattern also detected on Chañaral and Choros islands. It has been reported that
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many triatomines foci can go undetected when vector density is low (Abad-Franch et al.,
2014). A likely explanation is that we failed to find triatomines on those islands particularly
if they occur at low abundance (sampling bias). However, we sampled intensively using
both a passive (Campos-Soto, Torres-Pérez & Solari, 2015) and active method, and the park
rangers never reported seeing triatomines (personal communication with park rangers).
A study suggests that the current absence of M. spinolai in those islands may be explained
by their absence when the islands were formed or that ancient allopatric populations
were extinguished (Campos-Soto et al., 2020). If hypothetically triatomines are not present,
alternatives to explain the T. cruzi infection in rodents include: (i) Maintenance of the
parasite by vertical trans-placental transmission between rodents, which has been reported
in humans, bats and mice (Delgado & Santos-Buch, 1978; Añez, Crisante & Soriano, 2009;
Ortiz et al., 2012); (ii) Cross-reaction with other trypanosomatids (see below).

On Santa María Island, individuals of Mepraia infected with T. cruzi were previously
reported (Rives-Blanchard et al., 2017), but no small mammals were found in our study
despite the sampling effort was similar to that performed on Pan de Azúcar and Damas
islands. Unlike the other islands, Santa María Island lacks of vegetation (Fig. 2, Fig. S1),
and the influence of climatic conditions create an arid and desertic landscape (Jerez, 2000;
Cavieres et al., 2002; Clarke, 2006). Also, this island had very few suitable places to set traps
(Fig. 2). Under these conditions, detecting small mammals can be difficult, likely impacting
our results. Future studies including higher sampling effort both in density and temporal
may elucidate this finding. Strikingly, we found triatomines with an infection rate of 28.9%
by kDNA PCR and 36.8% by satDNA qPCR (23.6% confirmed by both, Table 1). These
values reveal a high infection rate, particularly taking into account that the most abundant
vertebrates inhabiting this island are marine birds and reptiles of the genus Microlophus
(Fig. 2; R. Campos-Soto, 2018, field observations of this study).

Mixed infection was previously reported in bugs from Santa María Island (Rives-
Blanchard et al., 2017). It has been suggested that mixed infections are more frequent
in areas with high infection rate and/or there is high diversity of mammals that harbor
different T. cruzi lineages (Campos-Soto et al., 2016). This is congruent with our triatomine
infection rates but contrasts with our small mammals captures. Despite we cannot confirm
the absence of small mammals on Santa María Island, the question of how the T. cruzi cycle
is maintained still remains. In the absence of small mammals on Santa María Island, one
explanation for our results is the horizontal transmission ofT. cruzi among triatomines. For
example, coprophagy and cleptohematophagy were reported as (uncommon) mechanisms
of transmission among triatomine vectors, mainly by young nymphs (Ryckman, 1951;
Schaub, 1988). On the other hand, Rives-Blanchard et al. (2017) showed that there are
positive triatomines on Santa María Island, in which T. cruzi DTUs were not identified by
hybridization assays. The authors suggested that some TcI or TcII variants did not hybridize
with the probes used, or that there are other DTUs not analyzed in their study. Alternatively,
there is the possibility that these unidentified DTUs could be another Trypanosoma with
cross-reactivity to T. cruzi. In fact, cross-reactivity in parasite detection by PCR and qPCR
analyses has been reported between T. cruzi and T. rangeli (Ramírez et al., 2015; Seiringer et
al., 2017). The only triatomines that can transmit T. rangeli are Rhodnius and Panstrongylus
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(Vallejo et al., 2015). These genera do not co-occur withMepraia, therefore cross-reactivity
with T. rangeli is unlikely.

Lizard and avian trypanosomes phylogenetically related to T. cruzi has been reported
(Hughes & Piontkivska, 2003; Hamilton, Gibson & Stevens, 2007; Viola et al., 2008; Dario
et al., 2017). Reptiles of the genus Microlophus and marine birds are found in high
abundance on Santa María Island (Fig. 2), thus triatomines may feed mainly of bird
and reptile blood. Also, it has been observed that Microlophus actively hunt and feed on
these triatomines (R. Campos-Soto, 2018, field observations of this study). Consequently,
the triatomines could be hosting a reptilian or avian trypanosome that could have cross-
reactivity with T. cruzi. However, reptilian trypanosomes are transmitted by dipterous
sandflies and not by triatomines (Adler & Theodor, 1957; Hamilton, Gibson & Stevens,
2007). According to Seiringer et al. (2017), the best T. cruzi diagnosis is a combination
of both kinetoplast DNA detection and nuclear satellite DNA by conventional PCR and
qPCR assays, respectively. In our study, all small mammals and most of the triatomines
were positive for T. cruzi by conventional PCR (targeting kDNA) and qPCR (targeting
nuclear satellite DNA), suggesting the absence of cross-reaction with reptilian or avian
trypanosomes. Trypanosomes such as T. brucei can exceptionally infect lizards in the wild
cycle (Njagu et al., 1999), and chickens experimentally (Minter-Goedbloed, 1981). A study
shows that the availability of reptiles is positively related to the T. cruzi infection risk in
an endemic area of Chile (San Juan et al., 2020). These antecedents show that the role of
endemic reptiles as hosts of T. cruzi remains to be elucidated.

The mechanisms of colonization ofMepraia to the islands of northern Chile are relevant
to understand the T. cruzi infection in these areas. The origin of Mepraia populations
on Santa María and Pan de Azúcar islands was suggested by mechanisms of vicariance
and dispersal, starting about middle-upper Pleistocene. Bidirectional migration rates
between these islands and continental populations was inferred (Campos-Soto et al., 2020).
Possible means of dispersal include passive transport by marine birds (Schofield et al., 1998;
Sagua et al., 2000) and fishermen who sail to the islands carrying infected triatomines
and/or eggs in their clothes or backpacks. An additional passive dispersal mechanism
might include sea wolves (Otaria flavescens), which could transport nymphs within their
pelage (Schofield et al., 1998). The flight of kissing-bugs also may be another dispersal
mechanism. However, Mepraia’s nymphs and adult females are wingless while males
show wings polymorphism (Schofield et al., 1998; Campos et al., 2011). M. parapatrica and
M. gajardoi males are brachypterous (Frías-Lasserre, 2010), with wings shorter or equal
than the abdomen length (Campos et al., 2011) and flying capacity not documented, which
would allow discard the dispersion by flight of the bugs.

CONCLUSIONS
In conclusion, we show for the first time in Chile the occurrence of insular rodents
infected with T. cruzi, and a complete T. cruzi life cycle in a coastal island (Pan de Azúcar
Island). We also show two different contrasting results: an island (Santa María) with
infected triatomines but without captured small mammals, and another island (Damas)

Campos-Soto et al. (2020), PeerJ, DOI 10.7717/peerj.9967 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.9967


with infected rodents but without captured triatomines (Fig. 1, Table 1). Future studies
including a greater capture effort targeting the hosts and the vector will help to elucidate
the transmission mechanism maintaining the T. cruzi life cycle on those islands. Our study
provides new relevant knowledge about the T. cruzi cycle on islands and the role of its hosts
and vectors.
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