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Using the crystal structure of SARS-CoV-2 papain-like protease (PLpro) as a template, we
developed a pharmacophore model of functional centers of the PLpro inhibitor-binding
pocket. With this model, we conducted data mining of the conformational database of FDA-
approved drugs. This search identified 147 compounds that can be potential inhibitors of
SARS-CoV-2 PLpro. The conformations of these compounds underwent 3D fingerprint
similarity clusterization, followed by docking of possible conformers to the binding pocket
of PLpro. Docking of random compounds to the binding pocket of protease was also done for
comparison. Free energies of the docking interaction for the selected compounds were
lower than for random compounds. The drug list obtained includes inhibitors of HIV,
Hepatitis C, and cytomegalovirus (CMV), as well as a set of drugs that have demonstrated
some activity in MERS, SARS-CoV, and SARS-CoV-2 therapy. We recommend testing of the
selected compounds for treatment of COVID-19
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18 ABSTRACT

19 Using the crystal structure of SARS-CoV-2 papain-like protease (PLpro) as a template, we 

20 developed a pharmacophore model of functional centers of the PLpro inhibitor-binding pocket. 

21 With this model, we conducted data mining of the conformational database of FDA-approved 

22 drugs. This search identified 147 compounds that can be potential inhibitors of SARS-CoV-2 

23 PLpro. The conformations of these compounds underwent 3D fingerprint similarity clusterization, 

24 followed by docking of possible conformers to the binding pocket of PLpro. Docking of random 

25 compounds to the binding pocket of protease was also done for comparison. Free energies of the 

26 docking interaction for the selected compounds were lower than for random compounds. The drug 

27 list obtained includes inhibitors of HIV, Hepatitis C, and cytomegalovirus (CMV), as well as a set 

28 of drugs that have demonstrated some activity in MERS, SARS-CoV, and SARS-CoV-2 therapy. 

29 We recommend testing of the selected compounds for treatment of COVID-19.
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30 One Sentence Summary: Using pharmacophore-based data mining and computational docking, 

31 we selected 147 potential COVID-19 papain-like protease inhibitors.

32 Introduction

33 Coronaviruses have caused the outbreak of several deadly respiratory diseases since the 

34 turn of the 21st century, such as the severe acute respiratory syndrome (SARS) in 2002 and the 

35 Middle East respiratory syndrome (MERS) in 2012, in addition to the recent COVID-19 pandemic, 

36 which has claimed more than 489 000 lives with over 9.5 million confirmed cases worldwide. 

37 Despite the profound impact of these viral outbreaks on public health and the economy, effective 

38 vaccines have not been found for either SARS or MERS viruses. In view of the ongoing pandemic, 

39 and the absence of vaccines, there is an immediate need to find drugs to treat patients.

40 Viral proteases are an attractive target for drug development. Viral proteases are essential 

41 for replication, and are unique to each virus, thus offering the potential for highly specific 

42 treatments that produce minimal toxic side effects. Viral protease inhibitors such as indinavir 

43 (HIV-1), ritonavir (HIV-1, HIV-2), and boceprevir (HCV) have been used to effectively treat a 

44 variety of viral infections [1]. For coronaviruses, extracellular proteases provide one possible 

45 target where protease inhibitors can prevent viral entry [2-4]. On the other hand, two viral 

46 proteases, PLpro (papain-like protease) and 3CLpro (chymotrypsin-like protease, aka main protease) 

47 are also attractive as druggable targets [5,6]. Both proteases are highly conserved domains of the 

48 specific nsps: nsp5 for 3CLpro and nsp3 for PLpro. Nsp3 is a large (200 000 kDa) multi-domain 

49 polypeptide that provides the membrane anchored scaffolding structure required for the 

50 replication/transcription complex (RTC) of coronaviruses [7]. In addition to PLpro, the C-terminus 

51 of nsp3 contains transmembrane domains that anchor the protein and a dsDNA, unwinding/RNA 

52 binding domain that is essential for replicase activity [8]. It is a particularly attractive drug target 

53 because it plays an essential role in processing the viral polyproteins to create the mature nsp3, as 

54 well as helping the coronavirus evade host immune response via competitive interaction with 

55 ubiquitin and ISG15 on host-cell proteins [7,9-11]. Although no protease inhibitors are currently 

56 available for treatment of SARS, MERS, or COVID-19, studies of inhibitors of the MERS, SARS-

57 CoV, and SARS-CoV-2 PLpro are underway and reports have appeared that such protease 

58 inhibitors can prevent SARS-CoV replication in cultured cells [10,12-14].
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59 In view of the urgent need for effective treatments and the high cost of developing new 

60 drugs (both in terms of time and resources), repurposing FDA-approved drugs is an efficient 

61 strategy for identifying drug candidates that can be used immediately in the COVID-19 pandemic 

62 [15]. In a previous report, we [16] and others [17-21] have used molecular modeling studies to 

63 identify FDA-approved drugs and other compounds [18,19,21,22] that are predicted to bind to 

64 3CLpro. The list of potential inhibitors includes bleomycin, mithramycin, and goserelin, as well as 

65 others that may be effective [16]. Here we report a similar screen of FDA-approved drugs for 

66 potential inhibitors of SARS-COV-2 PLpro using the recently reported structure of SARS-CoV-2 

67 PLpro (PDB ID: 6W9C) [23,24].  

68 Methods

69 Pharmacophore design and use

70 Analyzing a pocket, we elucidated a majority of possible interactions between PLpro (PDB ID: 

71 6W9C) and a potential ligand for developing a protein-based pharmacophore model with potential 

72 fictional centers that would bind to the residues in the pocket (Figure 1A). Using Molecular 

73 Operating Environment (MOE; CCG, Montreal, Canada), we constructed two pharmacophore 

74 models including ten features (Pha01) and ten features with excluded volume R=1.3 Å (Pha02): 

75 two donors, two donors or acceptors, one hydrophobic, and five hydrophobic or aromatic features 

76 (Figure 1A). Based on developed pharmacophores to select potential drug-candidates, we 

77 conducted a pharmacophore search with both pharmacophore models on our conformational 

78 database (DB) of FDA-approved drugs, containing around 2500 drugs and 600 000 conformations. 

79 Searches were provided using pharmacophores partial match: eight of ten features for Pha01 and 

80 seven of ten features for Pha02. Search results of Pha01 (Search 1) identified 405 compounds with 

81 63 821 conformations while Pha02 (Search 2) identified 857 compounds with 224 609 

82 conformations. We selected 84 and 77 compounds from Search 1 and 2 respectively based on a 

83 number of H-bonds and hydrophobic interactions in the best docking pose. Because some 

84 compounds appeared in both searches, we eliminated duplicate compounds, resulting in a total of 

85 147 unique drugs. Then we clustered the selected 147 compounds, using MOE Database Viewer 

86 with a fingerprint GpiDAPH3 and similarity–overlap parameter SO = 42% to elucidate the 

87 common structure-functional features of the groups of compound to enhance further drug 

88 development.
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89 Docking of drug conformers using the supercomputer Comet

90 For docking the selected compounds, we used the crystal structure of the SARS-CoV-2 PLP (PDB 

91 ID: 6W9C). A binding pocket was defined based on the known residues of the S3/S4 binding 

92 pocket site of SARS-CoV-2 PLP. Docking of the selected compounds was done using Autodock 

93 Vina. Conformers of each of the selected compounds were generated using OpenBabel. However, 

94 since Autodock Vina does not support docking compounds that include boron atoms (i.e., 

95 bortezomib), each boron atom in the conformers of bortezomib was replaced with carbon atoms 

96 due to their similar size. The random control compounds were selected by a 79-compound, simple-

97 random subset of all the ZINC DB compounds; these were docked with PLpro in the same 

98 processes. Likewise, the conformers of the compound with ID: ZINC001779539170 had their 

99 silicon atom replaced with carbon due to Autodock Vina’s restraints regarding supported atoms. 

100 The Comet supercomputer at the San Diego Supercomputer Center (SDSC) was primarily used 

101 for two parts of the analyses: (1) conversion of files in the pdb format to the pdbqt format, using 

102 the Open Babel software (version 2.4.1), and (2) all the docking computations using the AutoDock 

103 Vina software (version 1.1.2). We outline the system configuration and the analyses workflow 

104 details below.

105 The Comet supercomputing system

106 Comet is an NSF funded cluster (NSF grant: ACI #1341698) designed by Dell and SDSC 

107 delivering 2.76 peak petaflops. It features Intel Haswell processors with AVX2, Mellanox FDR 

108 InfiniBand interconnects, and Aeon storage [25]. There are 1944 standard compute nodes and 72 

109 GPU nodes. The standard compute nodes consist of Intel Xeon E5-2680v3 (Haswell) processors, 

110 128 GB DDR4 DRAM (64 GB per socket), and 320 GB of SSD local scratch memory. The GPU 

111 nodes contain four NVIDIA GPUs each. There are four large memory nodes containing 1.5 TB of 

112 DRAM and four Haswell processors each. All the computations for this paper were conducted on 

113 the standard compute nodes and made extensive use of the local scratch filesystems.

114 File conversion and docking workflow

115 The first step in the computational workflow on Comet was to convert 385 193 pdb files of drug 

116 conformers into the pdbqt format. The files were contained in 27 zip files and the jobs were 

117 simultaneously run on Comet (one zip file in each job). The zip files were extracted to the local 
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118 SSD based file system to reduce IO loads, converted to pdbqt files in the same location, and then 

119 the results were archived in a zip file. With the local SSD approach, all the conversion jobs were 

120 completed in less than 20 minutes.

121 The AutoDock Vina software was used to dock a total of 490 678 drug conformers using 

122 computations on Comet. The local SSD approach was used again to mitigate IO loads on the main 

123 filesystem. The docking tasks were split up into separate jobs (that were run simultaneously) with 

124 3000–4000 drug conformers docked in each job. All the individual docking computations were 

125 conducted using 8 cores (The parallelism is limited by the exhaustiveness parameter, set to 8 for 

126 the analysis) and scaling tests showed an excellent parallel efficiency of 93.2%. 

127 Results

128 Among the compounds selected by the pharmacophore search of FDA-approved drug DB, we 

129 identified two clusters (A and B) containing twenty compounds; three clusters (C, D, and E) 

130 containing nine, five, and ten compounds correspondingly; two clusters (F and G) with four, and 

131 three clusters (H, I, and J) with three compounds; along with ten two-compounds clusters and 46 

132 not clustered single compounds. Compounds in clusters A–G are listed in Table 1, other 

133 compounds can be found in Supplemental Materials (Table S1). Flexible alignment of clusters B 

134 and C were used to illustrate compounds’ common features (Figure 2).

135 Figure 1. Insert here

136 Interesting to note that this selection contained the best docking energy drug nilotinib that 

137 showed activity against SARS-CoV. 

138 Table 1. Insert here

139

140 Figure 2A and B shows the flexible alignments of clusters B and C containing the drugs with the 
141 best docking energies.

142

143  

144 Figure 2. Insert here

PeerJ reviewing PDF | (2020:07:50572:0:1:NEW 1 Jul 2020)

Manuscript to be reviewed



145 To define the putative best binding drugs, we conducted docking of multiple conformers of drugs 

146 selected from a pharmacophore-based search and of random compounds to the binding site of 

147 COVID-19 papain-like protease. The random control compounds were selected by a 79-

148 compound, simple-random subset of the ZINC DB of drug-like compounds. For docking the 

149 selected compounds, we used the same crystal structure of the SARS-CoV-2 (Protein Data Bank 

150 entry, 6W9C) imported into MOE. A S3/S4 pocket site was defined, which included the following 

151 residues: K157, L162, G163, D164, R166, P247, P248, Y264, G266, Y268, and P299. Conformers 

152 of each of the selected compounds were generated with OpenBabel before being docked with 

153 AutoDock Vina.

154 Figure 3 shows the values of docking free energies of the selected and random compounds. 

155 The energies of interaction with PLpro are shown in Table 2. One can see that drugs of clusters 2 

156 and 5 are at the top of the table. Note that the binding pocket of PLpro is not very specific and 

157 contains a number of hydrophobic binding centers; that is why binding energies are not 

158 overwhelmingly better than those of random compounds (Figure 3). At the same time, we want 

159 also note that the values of energies in the table can be used with discretion. Binding positions of 

160 ligands in the pockets of proteins in many cases do not have minimal energies. 

161

162 Figure 3. Inset here

163

164 Table 2. Insert here

165

166 Figure 4. Insert here

167 Discussion

168

169 Based on the crystal structure of SARS-CoV-2 PLpro (PDB ID: 6W9C), we developed two 

170 pharmacophore models of the binding pocket of this protein. Using these models, we browsed our 

171 conformational database of FDA-approved drugs and obtained 147 hits that were clusterized for 

172 selecting the most promising candidates and then used for multi-conformational docking to the 

173 PLpro pocket. The drug list obtained includes inhibitors of HIV, Hepatitis C, and CMV, as well as 

174 a set of drugs that demonstrated some activity in MERS, SARS-CoV, and SARS-CoV-2 therapy. 

175 We developed a pharmacophore model of the binding pocket site S3/S4 of COVID-19 PLpro then 
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176 conducted multi-conformational docking of these drug compounds to this site for ranging the 

177 potential inhibitors selected by pharmacophore-based search. We also conducted clusterization of 

178 the selected compounds based on their pharmacophores 3D profiles to elucidate the common 

179 features for further drug design, and compared the docking results for the selected drug compounds 

180 with the docking results of random compounds to evaluate the area of significance in the values 

181 of binding energies. We note that the pharmacophore-based selection is a very powerful tool so 

182 even the drugs with the binding energies on the same level with the random compound do not have 

183 to be completely discarded.

184 We are aware of two other studies where docking experiments were used to predict binding of 

185 existing pharmaceuticals to the SARS-CoV-2 PLpro [9,18]. Both prior studies relied on homology 

186 modelling of part [18] or the entire SARS-CoV PLpro. Wu et al [18] studied 2924 compounds from 

187 ZINC Drug Database, as well as 78 known antivirals; while Arya et al. studied 2525 FDA-

188 approved compounds from DrugBank and the ZINC 15 database. Two compounds were identified 

189 in the present study and by Wu et al [9]: valganciclovir and pemextred. The remaining compounds 

190 identified here are unique to our study. This may reflect the influence of using the crystal structure 

191 of SARS-CoV-2 as the starting point in the present study, and a difference in methodology in our 

192 case including preliminary pharmacophore-based search before docking computational 

193 experiments.  

194 It is interesting to note that several drugs with high docking energy were tested or are in 

195 experimental testing: nilotinib was active only for SARS-CoV [26]; dasatinib was confirmed to be 

196 active in cell-culture assays for MERS-CoV and SARS-CoV [27]. Dasatinib was also shown to be 

197 active against SARS-Cov-2 in clinical cases [27]. Terconazole and fluspirilene were shown to be 

198 active in cell-culture assays for SARS-Cov-2 [27]. Manidipine was found in the database of 

199 experimental results for broad set of antiviral drugs, DrugVirus.info [28]. Indinavir and ritonavir 

200 (HIV viral protease inhibitor), boceprevir (Hepatitis C protease inhibitor), and valganciclovir 

201 (antiviral medication for CMV) were found with energies of binding to PLpro of −6.7 kcal/mol and 

202 better. We note that according to the DrugVirus.info database [28], 11 of the compounds selected 

203 by the pharmacophore-based search showed activity against the set of viruses (Fig. 4) including 

204 amodiaquine, chloroquine, sorafenib, dasatenib, hydroxychloroquine, bortezomib, topotecan, 

205 manidipine, lovastatin, gefitinib, and ritonavir. Most experimental testing was done in cell-

206 cultures, but there is also a significant amount of animal testing and several of these drugs are in 
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207 different stages of clinical trials. The prior computational studies [9,18] did not identify any of 

208 these compounds as potential inhibitors of PLpro, with the exception of chloroquine [18]. On the 

209 other hand, Wu et al. [9] identified two antivirals that our experiments did not predict as inhibitors: 

210 ribavirin and β-thymidine. 
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322 Figure 1. Binding position of the drugs with the best scores in papain-like protease. (A) Ten 

323 features pharmacophore. The model contains ten functional centers: two donors, two donors or 

324 acceptor centers, one hydrophobic center, and five hydrophobic or aromatic centers (excluded 

325 volume is hidden). (B) Dihydroergocryptine, docking free energy (DFE) = −8.0 kcal/mol. (C) 

326 Enasidenib, (DFE) = −8.1 kcal/mol. (D) Irinotecan, (DFE) = −8.5 kcal/mol. (E) Levomefolic acid, 

327 (DFE) = −8.4 kcal/mol. (F) Nilotinib, (DFE) = −9.3 kcal/mol. (G) Siponimod, (DFE) = −8.0 

328 kcal/mol. (H) Sorafenib, (DFE) = −8.0 kcal/mol.

329 Figure 2. Flexible alignments of compounds in clusters selected by the pharmacophore-based 

330 search of possible drug-candidates in the conformational database of FDA-approved drugs having 

331 the best docking energies. (A) Cluster B (20 compounds), (B) cluster C (9 compounds).

332 Figure 3. Free energies of docking interactions of selected and random compounds with PLpro. 

333 Minimal energies of the selected and random compounds are −9.3 and −7.7 kcal/mol respectively.

334 Figure 4. Drugs among the predicted by pharmacophore search inhibitors of PLpro that were 

335 experimentally tested for various viruses (Obtained using DrugVirus.info database [26]). 

336
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Figure 1
Ten features pharmacophore of papin-like protease binding pocket..

The model contains ten functional centers: two donors, two donors or acceptor centers, one
hydrophobic center, and five hydrophobic or aromatic centers (excluded volume is hidden).
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Figure 2
Binding position of the drugs with the best scores in papain-like protease.

Dihydroergocryptine, docking free energy (DFE) = −8.0 kcal/mol.
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Figure 3
Binding position of the drugs with the best scores in papain-like protease.

Enasidenib, (DFE) = −8.1 kcal/mol.

PeerJ reviewing PDF | (2020:07:50572:0:1:NEW 1 Jul 2020)

Manuscript to be reviewed



Figure 4
Binding position of the drugs with the best scores in papain-like protease.

Irinotecan, (DFE) = −8.5 kcal/mol.
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Figure 5
Binding position of the drugs with the best scores in papain-like protease. (A) Ten
features pharmacophore.

Levomefolic acid, (DFE) = −8.4 kcal/mol.
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Figure 6
Binding position of the drugs with the best scores in papain-like protease. (A) Ten
features pharmacophore.

Nilotinib, (DFE) = −9.3 kcal/mol.
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Figure 7
Binding position of the drugs with the best scores in papain-like protease. (A) Ten
features pharmacophore.

Siponimod, (DFE) = −8.0 kcal/mol.
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Figure 8
Binding position of the drugs with the best scores in papain-like protease.

Sorafenib, (DFE) = −8.0 kcal/mol.
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Figure 9
Flexible alignments of compounds in clusters selected by the pharmacophore-based
search of possible drug-candidates in the conformational database of FDA-approved
drugs having the best docking energies.

Cluster B (20 compounds)
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Figure 10
Flexible alignments of compounds in clusters selected by the pharmacophore-based
search of possible drug-candidates in the conformational database of FDA-approved
drugs having the best docking energies.

Cluster C (9 compounds).
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Figure 11

Free energies of docking interactions of selected and random compounds with PLpro.

Minimal energies of the selected and random compounds are −9.3 and −7.7 kcal/mol
respectively.
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Figure 12

Drugs among the predicted by pharmacophore search inhibitors of PLpro that were
experimentally tested for various viruses

Obtained using DrugVirus.info database [26]
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Table 1(on next page)

Drug-candidates clustered by fingerprint similarity–overlap alignment.

PeerJ reviewing PDF | (2020:07:50572:0:1:NEW 1 Jul 2020)

Manuscript to be reviewed



1 Table 1. Drug-candidates clustered by fingerprint similarity–overlap alignment. 

 Cluster

A B C D E F G

Alclometasone Abemaciclib Bilastine Dipyridamole Acebutolol Isoetharine Lactulose

alpha-Tocopherol 

acetate Bosentan Darifenacin Enoxacin Atenolol Isoxsuprine Micronomicin

Bimatoprost Cefdinir Droperidol Gatifloxacin Betaxolol Nylidrin Netilmicin

Boceprevir Cefmenoxime Fluspirilene Gemifloxacin Bisoprolol Protokylol Tobramycin

Buprenorphine Cefmetazole Haloperidol Moxifloxacin Celiprolol

Calcitriol Cefotaxime Iloperidone Esmolol

Diflorasone Cefotiam Loperamide Metipranolol

Dihydroergocryptine Cephaloglycin Ropinirole Metoprolol

Flunisolide Copanlisib Ziprasidone Nadolol

Fluocinolone acetonide Dasatinib Propafenone

Ibutilide Dicloxacillin

Iloprost Doxazosin

Lapyrium Enasidenib

Lovastatin Flucloxacillin

Methyl undecenoyl 

leucinate Gefitinib

Retapamulin Latamoxef

Ritonavir Nilotinib

Travoprost Prazosin

Vitamin E Succinate Riociguat

Zucapsaicin Vemurafenib

2
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Table 2(on next page)

List of docked compounds sorted by their energies of interaction with COVID-19 papain-
like protease in the docked positions
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1 Table 2. List of docked compounds sorted by their energies of interaction with COVID-19 

2 papain-like protease in the docked positions  

Drug name

DFE* 

energy Cluster Drug name

DFE* 

energy Cluster

Nilotinib -9.3 B Losartan -7.3 aa

Irinotecan -8.5 S Tolvaptan -7.3 S

Levomefolic acid -8.4 S Darifenacin -7.3 C

Enasidenib -8.1 B Flunisolide -7.3 A

Siponimod -8.0 S Alvimopan -7.2 hh

Sorafenib -8.0 S Iloperidone -7.2 C

Dihydroergocryptine -8.0 A Indacaterol -7.2 S

Abemaciclib -7.9 B Mirabegron -7.2 S

Ziprasidone -7.9 C Ximelagatran -7.2 S

Pemetrexed -7.8 hh Droperidol -7.2 C

Doxazosin -7.8 B Ertapenem -7.2 jj

Axitinib -7.7 S Ivacaftor -7.1 S

Indinavir -7.7 S Loperamide -7.1 C

Lymecycline -7.7 S Flibanserin -7.1 S

Methysergide -7.7 I Brexpiprazole -7.0 C

Rutin -7.7 S Cefmenoxime -7.0 B

Vemurafenib -7.7 B Latamoxef -7.0 B

Glyburide -7.7 dd Olmesartan -7.0 aa

Trabectedin -7.6 S Bilastine -6.9 C

Dasatinib -7.6 B Bosentan -6.9 C

Methylergonovine -7.5 I Cefdinir -6.9 C

Riociguat -7.5 B Cefotaxime -6.9 B

Fluocinolone -7.5 A Prazosin -6.9 B

Fluspirilene -7.5 C Retapamulin -6.9 A

Isavuconazole -7.4 S Ritonavir -6.9 A

Manidipine -7.4 ii Sulfasalazine -6.9 S

Regadenoson -7.4 S Topotecan -6.9 H

Glimepiride -7.4 dd Copanlisib -6.9 B

Canagliflozin -7.3 bb Diflorasone -6.9 A

Gemifloxacin -6.9 H

3 *Docking free energy; S- single compound cluster

4
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