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Background. Automated sound recorders are a popular sampling tool in ecology. However so far, the
microphones themselves received little attention. Specifications that determine the recordings' sound
quality are seldom mentioned. Here, we demonstrate the importance of microphone signal-to-noise ratio
for sampling sonant animals.

Methods. We tested 24 different microphones in the field and measured their signal-to-noise ratios and
detection ranges. We also measured the vocalisation activity of birds and bats that they recorded, the
bird species richness, the bat call types richness, as well as the automated detection accuracy of bat
echolocation calls.

Results. We provide the first measurements of a range of microphone models in the ultrasound range.
Microphone signal-to-noise ratio positively affects the sound detection spaces and consequently, the
sampled vocalisation activity and richness of birds and bats, as well as the automated detection accuracy
of bat echolocation calls.

Discussion. Microphone signal-to-noise ratio is a crucial characteristic of a sound recording system. It
should be maximised by choosing appropriate microphones, and be quantified independently, especially
in the ultrasound range.
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21 Abstract

22 Background. Automated sound recorders are a popular sampling tool in ecology. However so 

23 far, the microphones themselves received little attention. Specifications that determine the 
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24 recordings' sound quality are seldom mentioned. Here, we demonstrate the importance of 

25 microphone signal-to-noise ratio for sampling sonant animals.

26 Methods. We tested 24 different microphones in the field and measured their signal-to-noise 

27 ratios and detection ranges. We also measured the vocalisation activity of birds and bats that they 

28 recorded, the bird species richness, the bat call types richness, as well as the automated detection 

29 accuracy of bat echolocation calls.

30 Results. We provide the first measurements of a range of microphone models in the ultrasound 

31 range. Microphone signal-to-noise ratio positively affects the sound detection spaces and 

32 consequently, the sampled vocalisation activity and richness of birds and bats, as well as the 

33 automated detection accuracy of bat echolocation calls.

34 Discussion. Microphone signal-to-noise ratio is a crucial characteristic of a sound recording 

35 system. It should be maximised by choosing appropriate microphones, and be quantified 

36 independently, especially in the ultrasound range.

37
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42 Introduction

43 Acoustic recording of wildlife is a popular sampling method for birds, bats, and other sonant 

44 animals (Gibb et al., 2018, Darras et al., 2019). In a sound recording system, the recorder 

45 converts the electrical signal output by the microphones to a digital signal that is saved on 

46 storage media. For the ecologist, microphone quality is essential as it determines whether the 

47 resulting recording's quality is sufficient to detect the animal sounds of interest. Microphone 

48 quality is commonly described by its self-noise and signal-to-noise ratio (commonly written 

49 SNR). Self-noise is the noise produced by the microphone in the absence of sound, and is 

50 typically given in dB SPL (decibel sound pressure level, defined as 20 times the logarithm of 

51 ratio of the sound pressure to the reference sound pressure of 20 µPa) A-weighted. It describes 

52 the equivalent background noise level that would be measured by a perfect (noiseless) 

53 microphone, and is ideally measured by placing the microphone in a sound proof container. 

54 Microphone self-noise defines the lowest sound pressure level the microphone can detect, and 

55 also the resulting signal-to-noise ratio of the recorded signals. Signal-to-noise ratio in dB is 

56 defined as the 10 times the logarithm of ratio of a standard signal’s power to the noise power of 

57 the microphone created by its self-noise (Stewart & Lindsay, 1930). The standard signal is 

58 commonly generated by a sound calibrator with a 94 dB SPL tone at a 1 kHz sound frequency. 

59 Signal-to-noise ratio is a relative measure, valid only for a given signal level, while self-noise is 

60 an absolute measure of the microphone quality. Signal-to-noise ratio at a calibrated SPL will 

61 however give a measure of self-noise.

62 In the following, we will focus on the more commonly mentioned signal-to-noise ratios. Their 

63 importance is routinely implied in technical literature about microphones (Lewis & Schreier, 

64 2013). In contrast, in ecoacoustics, even though some studies have evaluated the effectiveness of 
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65 different recorder types for birds (Venier et al., 2012) and bats (Adams et al., 2012), little 

66 attention has been paid to the microphone. Indeed, out of 20 published studies used in a recent 

67 meta-analysis about autonomous sound recording (Darras et al., 2018 a), only six mentioned 

68 signal-to-noise ratios, and only two of those specified the signal-to-noise ratio of their own 

69 microphones. However, it is the first element in the signal processing chain and it determines the 

70 output recording's quality.

71 Technical specifications of microphones, including their signal-to-noise ratio, have an impact on 

72 the sampling effectiveness, probably through their impact on the detection ranges: microphones 

73 that have a low signal-to-noise ratio (a high self-noise) add too much noise to the recordings, so 

74 that the animal sounds - especially faint, distant ones - are not detectable anymore (Darras, et al., 

75 2018 a). However, an experimental proof of the relationship between signal-to-noise ratio and 

76 detection ranges is still missing. Moreover, high signal-to-noise ratios should facilitate the 

77 automated detection of animal sounds (Kaplan, 1972), as well as their classification (Chen & 

78 Maher, 2006), both of which are commonly used in acoustic bat surveys.

79 We evaluated 24 microphones spanning a wide range of signal-to-noise ratios with respect to 

80 their effectiveness for sampling birds and bats. We recorded: 1) silence to determine the self-

81 noise floor of our microphones, 2) sound transmission sequences to determine the microphones' 

82 signal-to-noise ratios and their detection ranges and 3) bats at night and birds during the morning 

83 to determine the sampling efficiency. We measured the microphones’ calibrated signal-to-noise 

84 ratios with test signals in the audible and ultrasound frequency range and compared them to 

85 manufacturer specifications to check their reliability. For the first time, we measured microphone 

86 signal-to-noise ratios in the ultrasound range. We test whether signal-to-noise ratios determine 

87 the detection ranges of the microphones at audible and ultrasonic frequencies. Since detection 
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88 ranges determine the acoustic sampling areas, we can ultimately test whether signal-to-noise 

89 ratios affect the measured activity and richness of the sampled birds and bats. Additionally, we 

90 demonstrate how signal-to-noise ratios affect the proportion of bat calls detected with an 

91 automated bat call detection method, and also whether using automatic detection templates based 

92 on audio recorded with other microphones affects that measure.
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93 Materials and methods

94 Study site and setup

95 We purchased omnidirectional microphone elements (the actual sensor of microphones) of 

96 different types and qualities. We used two units of each of 12 different models from six different 

97 manufacturers, with specified signal-to-noise ratios from 55 to 80 dB SPL, resulting in a total of 

98 24 microphone elements (Table 1). Eight microphone element models were in the form of 

99 traditional cylindrical capsules, and two of them are used in commercial microphones (WM-61A 

100 in SMX-II, FG-23629-C36 in SMX-U1, Wildlife acoustics). Four models were Micro-Electro-

101 Mechanical Systems (hereafter MEMS) chips that can be integrated on printed circuit boards, 

102 and four of them (plus one capsule) are part of an open-source microphone system Sonitor 

103 (Darras et al., 2018 c). Details about microphone assembly are in the supplementary materials.

104 Our microphones were calibrated at 1 and 40 kHz using reference microphones for audible sound 

105 calibration, because not all had the same, standard format to fit a sound calibrator. For audible 

106 sound, we used the discontinued SMX-US (Wildlife Acoustics, Massachusetts, USA); it has a 

107 standard ¼ inch diameter, fitting into a class I sound calibrator (PCE-SC42, PCE instruments, 

108 Germany) that emits a 94 dB SPL tone of 1 kHz. For ultrasound, we used the reference 

109 microphone ICS-40720; it was calibrated with the ultrasound calibrator (Wildlife Acoustics, 

110 Massachusetts, USA) that emits a 48 dB SPL tone of 40 kHz (measured at a distance of 30 cm, 

111 because microphones are not plugged into it).

112 We set up the microphones in a research plot situated in an oil palm plantation (S01.70725, 

113 E103.39781, WGS84 datum) belonging to the PTPN6 state company in Sumatra, Indonesia. We 

114 installed 12 microphones, one of each model, simultaneously in a microphone holder consisting 

115 of a wooden pane (approximately 25 cm × 35 cm) with holes padded with foam, to equalise the 
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116 soundscapes that they record. The microphones were oriented parallel to the ground, pointing to 

117 the horizon. We removed wind screens, which incur a slight loss in sound transmission, to 

118 measure the performance of the actual microphone elements. We ensured there was no rain as 

119 most microphones were not protected. The microphones were connected to six sound recorders 

120 (SM2Bat+, Wildlife Acoustics) with 5 m cables. We chose the SM2Bat+ because it was the only 

121 recorder that we possessed which was compatible with all microphones. The manufacturer 

122 specifies an electric noise floor of -115 dB V for 44.1 kHz recordings and -105 dB V for 192 

123 kHz recordings. After completing all measurements with the first set of microphones, we 

124 repeated them with the second set.

125 We used recordings sampled at 96 kHz and generated their spectrograms with a Fast-Fourier-

126 Transform with a Hanning window size of 1024. We measured relative sound levels in dB in the 

127 frequency bins containing the 1 kHz and at 40 kHz test frequencies using the "Plot spectrum" 

128 function in Audacity (Audacity Team, 2018). We chose to consistently use the 1024 window size 

129 as it is the default setting in Audacity that allowed the best trade-off between temporal and 

130 frequency resolutions for locating and measuring the short 40 kHz signal tone in space and time. 

131 Since we are dealing with field measurements with noise outside of the test frequencies, we did 

132 not use root-mean-squared values to measure sound pressure levels as they would cover the 

133 entire frequency spectrum. Moreover, we need to apply filtering in the following for aurally and 

134 visually detecting those signals, justifying the use of sound levels derived from specific 

135 frequency bins. Statistical tests were performed in R 3.6.1 (R Core Team, 2018).

136 Silent recordings

137 We measured microphone self-noise by recording sound in an environment that was as silent as 

138 possible. We did not have access to an anechoic chamber and preferred to record silence in the 

PeerJ reviewing PDF | (2020:04:48477:0:1:CHECK 5 May 2020)

Manuscript to be reviewed

diogoborgesprovete
Comentário do texto
what do you mean by that?

diogoborgesprovete
Comentário do texto
you need to provide much more details on which analysis have you conducted specifically 



139 field, far from anthropogenic machinery noise rather than in the laboratory or other urban 

140 buildings. We used an isolating, large cylindrical ice box with a hole in its cover to pass the 

141 microphone cables. The box was padded inside with synthetic foam and surrounded by a thick 

142 polyester sleeping bag to prevent extraneous noise from reaching the microphones, resulting in a 

143 basic anechoic box. We started the recording on all recorders, knocked on the box to be able to 

144 synchronize them later, and recorded silence for one minute at a 96 kHz sampling rate.

145 We measured the relative sound pressure levels in dB – representing the uncalibrated self-noise 

146 of the microphones – inside the silent recording for all microphones 1 and 40 kHz. We used the 

147 same simultaneous 60 s of sound for all microphones of one set. To compute calibrated self-

148 noise, we needed the relative sensitivity values of all microphones and the absolute sensitivity 

149 values  of the reference microphones from the measurement detailed below.

150 Sound transmission sequences

151 We recorded sound transmission sequences (Darras et al., 2016) to determine relative 

152 microphone sensitivity, to compute signal-to-noise ratios, and to measure detection spaces. We 

153 generated an audio recording in Audacity, consisting of a sequence of 1 s long test tones at 1 

154 kHz, repeated at 5 different sound levels to be able to choose the most appropriate sound level a 

155 posteriori. Audible test sounds came from a battery-powered one driver loudspeaker (SoundCore 

156 Anker) with the audio recording loaded on a Mini-SD card. We emitted ultrasound with the 

157 ultrasonic calibrator, which produces 40 kHz chirps of constant loudness in “Chirp” mode. 

158 Sound transmission sequences are obtained by recording test tones emitted at different distances 

159 from the microphone: The loudspeaker and ultrasound calibrator were held at a height of 2 m and 

160 pointed to the microphones as they emitted test sounds at distances of 2, 4, 6, 8, 10, 15, 20, 25, 

161 30, 35, 40, 45, and 50 m to the front, the left, the right, and the back of the microphones to 
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162 determine the entire sound detection area.

163 At 1 kHz and 40 kHz, we used the nearest common distance at which none of the microphones 

164 recorded clipped (saturated) test tones to extract the test signal; it had the same source sound 

165 pressure level and distance to all microphones of one set. For every microphone, we measured 

166 the test sound level at 1 kHz with a 0.9 s audio selection, and at 40 kHz with the mean of ten 

167 0.07 s audio selections (due to the short chirp emitted by the ultrasound calibrator). The relative 

168 sound pressure levels output by the recorder were calibrated by subtracting the amplification 

169 applied by the recorder and adding the frequency-specific calibration value obtained from the 

170 reference microphones. These values were used to calculate each microphone’s sensitivity offset 

171 relative to the calibrated reference microphone. These offsets and the frequency-specific 

172 calibration values were used to calculate the self-noise of the microphones and compute signal-

173 to-noise ratios relative to the absolute sound pressure level of the calibrators (94 dB SPL for 1 

174 kHz, 48 dB SPL for 40 kHz).

175 We plotted the measured and specified (i.e. manufacturer given) microphone signal-to-noise 

176 ratio to check how consistent they are across manufacturers. Note that we did not expect our 

177 signal-to-noise ratios to absolutely equal manufacturer specifications due to the different 

178 procedure used for measuring them: we use frequency-specific measures of sound level while 

179 manufacturers use broad-band root-means-squared measures of sound level. Some microphones 

180 had acoustic vents (GAW112, Gore, USA) in front of them, which reduce sound transmission  by 

181 <1 dB (specified by the manufacturer) while providing protection against water ingress; we 

182 corrected this by adding 1 dB to their measured signal-to-noise ratio, only when comparing them 

183 to manufacturer signal-to-noise ratios. We compared the corrected Akaike Information Criterion 

184 (Sugiura 1978) and adjusted R-squared of different models that use all combinations of specified 
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185 signal-to-noise ratio and manufacturer variables, for predicting the measured signal-to-noise ratio 

186 as to find the one with the highest predictive power.

187 For measuring the microphones' standardized detection ranges, we chose the loudest of the five 

188 recorded sound levels at which none of the microphones recorded detectable (i.e. not visible on 

189 spectrogram and not audible in recording) test tones at 50 m by focusing on the relevant 

190 frequency (1 or 40 kHz). By doing this, we ensured that we measured maximal detection ranges 

191 for each microphone, and obtained the most accurate relative range differences. We determined 

192 the detection range as extinction distances: the distance at which the test tone was not detectable 

193 anymore (Darras et al., 2016). Since we only emitted test tones every 5 m, we estimated the 

194 detection range to the meter based on the experience of a single listener who analysed all sound 

195 transmission sequences and based on how loud the last detectable test sound was. For some 

196 combinations of microphone and direction however, detection ranges exceeded 50 m at 1 kHz, so 

197 we chose to measure sound pressure levels of the test tone (when audible or visible in the 

198 spectrogram) and the ambient sound directly afterwards at distances of 2, 4, 8, 15, 30, and 50 m. 

199 We fitted linear models of test tone sound pressure level against log-transformed distances to 

200 find the extinction distance (i.e., the detection range) for those combinations.

201 The detection ranges in the four different directions formed four quarter-ellipses which were 

202 used to calculate the sound detection space areas (Fig S2). We did not use the mean detection 

203 ranges in our analysis because our setup could have resulted in directional sound pickup patterns, 

204 and also because detection area is ultimately the measure that determines the sampling area for 

205 our organisms of interest. We tested for the relationship between the log-transformed 

206 microphone signal-to-noise ratio and detection area, depending on the frequency, using a linear 

207 regression model, based on the assumption that signal-to-noise ratios have a stronger positive 
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208 effect at low values than at high values, where the detection area is increasingly limited by the 

209 ambient sound (Darras et al., 2018 a). We compared the AICc of that model against one with 

210 non-transformed signal-to-noise ratios. Note that we did not model more complex relationships 

211 between signal-to-noise ratio and detection area because a multitude of interacting, and 

212 sometimes opposed factors affect sound transmission: amplification due to reflection between 

213 the canopy and ground, attenuation due to absorption by leaves and atmospheric absorption (for 

214 ultrasound), deviations due to directive animal vocalisations, refraction due to microclimatic 

215 conditions, etc. Moreover, our detection ranges represent standardised ranges that are specific to 

216 the particular sound emitters we used, which are characterised by their sound frequency, 

217 amplitude, and directivity, in contrast to effective detection radii that are specific to particular 

218 species (Matsuoka et al., 2012).

219 Bird and bat recordings

220 After carrying out the sound transmission recordings, the microphones were left in place to 

221 record bats and birds. After retrieval, the recordings' sound levels were equalised by amplifying 

222 them to the sound level of the most sensitive microphone using the microphone-specific 

223 sensitivity offsets (see above).

224 We uploaded the amplified recordings to our online platform for ecoacoustics Biosounds 

225 (https://soundefforts.uni-goettingen.de/biosounds/collection/show/31/4/gallery) and screened the 

226 first 30 minutes after sunrise for birds and the first 30 minutes after sunset for bats. Synchronous 

227 recordings from every microphone were opened side-by-side. The recordings' spectrograms and 

228 audio enabled visual and aural filtering and detection of bird and bat vocalisations. The 

229 recordings that appeared to have the best quality (clearest spectrogram and noise-free audio) 

230 were used as reference (Knowles FG-23629-C36 for bats, Primo EM258 for birds). Clear 
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231 differences were visible in the spectrograms between microphones (Fig S3). Whenever a 

232 vocalisation was found in the reference recording, it was tagged to extract its coordinates in time. 

233 Calls that were separated by less than 15 (for birds) or 5 seconds (for bats) were put in a common 

234 tag. Note that different thresholds could result in slightly different results. However, it is more 

235 important to use a consistent threshold across the variables of interest (here, the microphones) for 

236 unbiased results. All other non-reference recordings were checked at the same time point and if 

237 vocalisations could be found, they were also tagged. We checked whether other vocalisations 

238 were missed in the non-reference recordings that could not be found in the reference recording.

239 We measured bird and bat activity and richness. We assigned bird vocalisations to species, and 

240 bat vocalisations to call types due to the lack of comprehensive reference libraries for South-East 

241 Asia, and also because bat species identity is not relevant here. We counted richness as the 

242 number of bird species or bat calls for each microphone. We computed the total duration of 

243 tagged vocalisations for birds and bats for each microphone, which yielded the vocalisation 

244 activity, in seconds. We tested the relationship between log-transformed microphone signal-to-

245 noise ratio and bird and bat activity using a linear mixed effects model with the sampling day as 

246 a random intercept to account for day-to-day variations in animal activity. We compared the 

247 AICc of that model against one with non-transformed signal-to-noise ratio. Oil palm plantations 

248 have limited species pools: in our study area, we expect no more than four call types for 

249 echolocating bats and seven bird species (Darras et al., 2019). We graphically show how quickly 

250 the species pool was sampled by microphones of different measured signal-to-noise ratios. To do 

251 that, we plotted species accumulation curves of birds and bat calls against the sampling time, 

252 split in 20 discrete time steps. We also statistically analysed the influence of signal-to-noise ratio 

253 on the species richness at each time step. Due to the bounded distribution of the response 
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254 variable (lower bound: 0, higher bound: 4 for bats, 7 for birds), we chose to express richness as a 

255 proportion of the maximum and arc-sine transformed it to model it with linear mixed-effects 

256 models with sampling date as a random intercept. We did not use beta regression as values and 0 

257 and 1 might occur.

258 For measuring automated detection accuracy, we chose one common bat call type. For each 

259 unamplified recording, we exported the corresponding bat passes along with two representative 

260 bat calls contained within them, which were the same across microphones. We used the latter as 

261 templates to detect all other calls in the exported bat passes with monitoR (Katz, Hafner, & 

262 Donovan, 2016). We counted the number of positive matches of calls that monitoR found inside 

263 each recording and divided it by the actual number of calls that we counted visually in the 

264 spectrogram of the bat passes. We obtained the proportion of correctly detected calls, which was 

265 our measure of automated detection accuracy, and modeled it against the signal-to-noise ratio 

266 with a beta regression model (Cribari-Neto et al., 2010, 0 and 1 values did not occur). 

267 Additionally, to test how reference audio from different sources affects detection probability, we 

268 checked whether automated detection accuracy changes when using “external” templates, 

269 obtained from other microphones than those used for the recording that was analysed.
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270 Results

271 Signal-to-noise ratios and detection areas

272 The linear model using specified signal-to-noise ratios and manufacturer identity as predictors 

273 had the highest predictive power (lowest AICc, ΔAICc: 5.92; Fig. S4). We detected large 

274 differences between manufacturers: for instance, PUI Audio indicated signal-to-noise ratio 

275 values that were on average 26 dB below those of Knowles microphone elements.

276 For several microphone and direction combinations, extinction distances had to be extrapolated 

277 (Fig S1), but we excluded measurements from 15 m distance for a particular direction from the 

278 analysis due to terrain irregularities. Detection areas increased significantly with log-transformed 

279 signal-to-noise ratio from 220 to 10750 m2 at 1 kHz and from 118 to 4671 m2 at 40 kHz  (all P < 

280 0.01, adjusted R2: 0.96; Fig. 1). Actual effect sizes are hard to interpret due to the log-

281 transformation, and they are specific to our study site, so we do not report them. Detection 

282 ranges roughly corresponded to beams of omni-directional microphones (Fig S2).

283 Sampling effectiveness

284 The sampled vocalisation activities significantly increased with log-transformed signal-to-noise 

285 ratio from 0 to 1539 s for birds, and from 0 to 360 for bats (all P < 0.01, marginal R-squared: 

286 0.95; Fig. 2). Actual effect sizes are hard to interpret due to the log-transformation, and they are 

287 specific to our study site and animals, so we do not report them.

288 Maximal bird and bat species richness levels reached higher levels, at a higher rate, with 

289 increasing microphone signal-to-noise ratio (Fig 3). For all time steps when at least one species 

290 was detected over all microphones, the influence of the signal-to-noise ratio on the bird and bat 

291 arc-sine-transformed species richness proportion was statistically significant (P<0.01).
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292 Detection accuracy

293 Bat call automated detection accuracy, measured by the proportion of automatically detected 

294 calls, was positively affected by microphone signal-to-noise ratio (pseudo-R-squared: 0.82, P = 

295 0.015) and the detection accuracy was consistently lower when using external detection 

296 templates (from other microphones than those used for the analysed recording; Fig. 4). We only 

297 used the 12 microphones from the first night: Bat calls from the second night were distant, so 

298 that they were not picked up by two microphones, and with another microphone, MonitoR 

299 inexplicably led to thousands of false positives.
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300 Discussion

301 Our measured signal-to-noise ratios showed large discrepancies between microphone element 

302 manufacturers. Signal-to-noise ratios considerably affected sound detection areas for audible 

303 sound and ultrasound. In turn, the sampled bird and bat activity and richness was largely 

304 enhanced by high microphone signal-to-noise ratios, and automated detection accuracy of bat 

305 calls also increased with microphone signal-to-noise ratio.

306 Measuring signal-to-noise ratios and detection ranges

307 For ecoacoustic studies, we need standardised microphone signal-to-noise values for specific 

308 frequencies of interest corresponding to different animal groups. Microphone manufacturer-

309 provided signal-to-noise ratios did not correlate well with our standardised signal-to-noise ratio 

310 measurements because of strong differences between manufacturers. Microphone element 

311 manufacturers do not follow any standard certification for measuring microphone signal-to-noise 

312 ratio (pers. comm. with Vesper and PUI audio representatives). The latter are usually specified in 

313 technical documentation for wildlife microphones, but rarely featured prominently in product 

314 brochures. Moreover, signal-to-noise ratios are usually only specified for 1 kHz, a representative 

315 frequency for human speech (but see Knowles, 2014), so that we could not compare our signal-

316 to-noise measurements at 40 kHz with any reference. However, for bat researchers, knowing 

317 ultrasound signal-to-noise ratio is imperative, and signal-to-noise ratios at 1 kHz are not 

318 indicative of microphone performance in the ultrasound range (Fig S5), even though some of the 

319 variation in our ultrasound signal-to-noise ratio values might have been caused by variable 

320 alignment of the microphones. Finally, our self-noise measurements were carried out for specific 

321 frequencies, but manufacturers usually measure signal-to-noise – which is based on the self-

322 noise measure - with A-weighting (which weights human-audible frequencies more) over a 20 

PeerJ reviewing PDF | (2020:04:48477:0:1:CHECK 5 May 2020)

Manuscript to be reviewed

diogoborgesprovete
Riscado



323 Hz to 20 kHz bandwidth that encompasses different groups of vocalising animals. Moreover, 

324 different weightings and bandwidths can lead to different signal-to-noise ratios. In future studies, 

325 signal-to-noise measurements in audible sound and ultrasound ranges should be compiled by 

326 researchers with standard measurement protocols for different microphone models to support 

327 microphone selection for ecoacoustic studies.

328 Using our sound detection area measurement approach, one could also directly benchmark 

329 microphones based on their detection ranges. It would be possible to devise protocols to evaluate 

330 sound recording setups - recorders with microphones, or only microphones - of different 

331 manufacturers in respect to their sampling effectiveness in a standardised way. Relative 

332 differences should be independent of the habitat in which recordings are made, but absolute 

333 ranges would vary between habitats. Possibly, results of previously published comparisons 

334 (Adams, Jantzen, Hamilton, & Fenton, 2012) could be explained better by simple differences in 

335 detection ranges caused by differing microphone signal-to-noise ratios.

336 Other microphone characteristics

337 We consider that sensitivity is secondary compared to self-noise or signal-to-noise ratios with 

338 respect to their impact on detection ranges. Microphones used for wildlife recordings usually 

339 have a sensitivity of -36 dBV, their levels are equalised with amplification, and the added signal-

340 to-noise ratio that arises from this amplification is generally negligible. Even with our 

341 discontinued recorders, and only at ultrasound sampling frequencies, only the ICS-40720 and 

342 Primo EM258 microphone elements are notably limited by having higher electrical noise floors 

343 than the amplifier. Thus, we argue that for a broad range of commercially available microphone 

344 elements that come into question for wildlife recordings, signal-to-noise ratios are the limiting 

345 factor determining sound detection areas. This is also clearly supported by the statistically highly 
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346 significant dependence of detection areas on signal-to-noise ratios we found, which were the 

347 only variable factor in our study setup.

348 Different microphone models have specific acoustic signatures. We recorded the exact same bat 

349 calls, but in spectrograms, they were visibly different between microphones. As a result, 

350 automated detection became less effective when we used external detection templates (from 

351 microphones other than the one used for recording). Thus on one hand, caution should be 

352 exercised when using reference material from online databases (such as Xeno-Canto for birds) to 

353 detect calls automatically. It seems preferable to extract detection templates directly from the 

354 analysed recordings - which is not always done (but see Ovaskainen et al., 2018) - to achieve 

355 maximal representativeness and detection accuracy. However on the other hand, for birds, it can 

356 be challenging to extract clean detection templates from field recordings (the ultrasound 

357 frequency range of bats is usually less noisy). Also, we could not directly test the performance of 

358 detection templates from online databases as we could not access other reference audio for the 

359 bats found in our recording.

360 Maximising recording quality

361 The inherent sampling effectiveness of sound recorders, in terms of sampling area, should be 

362 maximised by choosing microphones with high signal-to-noise ratios. In our case, we could 

363 reach half of the largest detection area with signal-to-noise ratios as low as 42 dB for birds and 

364 81 dB for bats. However, this number depends on the range of signal-to-noise ratios covered by 

365 our selected microphones. In contrast, a previous meta-analytical approach showed that 

366 microphones for audible sound perform as well as human observers at signal-to-noise ratios of 

367 approximately 80 dB (Darras et al., 2018 a). Thus, more importantly, detectability increases with 

368 signal-to-noise ratio. Even though extremely low signal-to-noise ratios microphone elements are 
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369 almost non-existent (such products do not have any application), it is worthwhile to search for 

370 the highest signal-to-noise ratios in the market of existing microphone elements: The detection 

371 areas of our wide range of microphone elements did not reach a clear saturation point, although 

372 detection spaces are eventually limited by the ambient sound (Apol et al., 2018, Darras et al., 

373 2018 a). Moreover, the best-performance microphones can be obtained at little additional 

374 expense: As an example, the lowest signal-to-noise PUI Audio microphone element (55 dB SPL) 

375 cost us 3.10 EUR, only a little less (28 %) than the highest signal-to-noise PUI Audio 

376 microphone element (80 dB SPL) that cost 4.25 EUR. Compared to the total cost of 

377 microphones, these expenses are negligible, and even more so with even cheaper MEMS 

378 microphones, which can cost roughly half as much.

379 Low signal-to-noise microphones are not unusable, but they come with manageable drawbacks. 

380 Even if it is more efficient to sample birds and bats with high-quality ratio microphones, in some 

381 special cases where the sampling area should not be too large (e.g., when sampling needs to be 

382 limited to small habitat patches), having small microphone detection ranges can be an advantage. 

383 Also, sub-optimal recordings from low-quality microphones can be used too by sampling for 

384 longer durations to obtain higher vocalisation activities. For species richness, the results depend 

385 on the animals’ mobility: when animals are territorial, species richness would always be lower 

386 with low-quality microphones; when animals are mobile within the sampled region, low-quality 

387 microphones could reach the same species richness values, albeit with longer sampling durations. 

388 Low-quality microphone recordings can also be used together with high-quality recordings when 

389 accounting explicitly for the different detectabilities (e.g., with occupancy modeling approaches). 

390 However, high signal-to-noise ratios are required for accurate localisation of sound sources 

391 (Good & Gilkey, 1996), which would support the estimation of bird detection distances for 
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392 distance sampling (Darras et al., 2018 b). Finally, for all microphones, sensitivity and signal-to-

393 noise ratios degrade with time, so that they should be regularly assessed to keep sampling 

394 effectiveness to a maximum or to account for their variable detection ranges (Darras et al., 2018 

395 c, Turgeon et al., 2017).

396 Conclusions

397 We suggest that microphone signal-to-noise ratio or self-noise becomes a standard metric for 

398 assessing microphone quality in ecoacoustics. Microphone signal-to-noise ratio largely 

399 determines the sound detection space. Through this, it dictates how many individuals and species 

400 are recorded, and how accurately vocalisations can be automatically detected. Thus, high-quality 

401 microphones are paramount for achieving maximum detection ranges with accurately detectable 

402 sounds.
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Table 1(on next page)

Microphone elements used in the study, along with letter codes used in Figure 1. MEMS:
Microelectromechanical systems
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Microphone element Code Type Format Manufacturer

Signal-to-noise

ratio 1kHz (dB)

Sensitivity 

(dB SPL)

POM-1345P-C3310-R A 55 -45

POM-2735P-R B 60 -35

ROM-2235P-HD-R C 68 -35

POM-2730L-HD-R D 74 -30

AOM-5024L-HD-R E capsule PUI Audio 80 -24

ICS-40720 F MEMS Invensense 70 -38

WM-61A G

electret 

condenser capsule Panasonic 62 -35

PMM-3738-VM1000-R H piezoelectric Vesper 62 -38

SPM0404UD5 I 59 -42

SPU0410LR5H-QB J MEMS 63 -38

FG-23629-C36 K Knowles 66 -53

EM258 L

electret 

condenser capsule Primo 74 -32

1

PeerJ reviewing PDF | (2020:04:48477:0:1:CHECK 5 May 2020)

Manuscript to be reviewed



Figure 1
The influence of microphone signal-to-noise ratio on detection space areas in the
audible (1 kHz) and ultrasound (40 kHz) ranges.

Lines show predictions from a linear regression against log-transformed signal-to-noise ratio.
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Figure 2
Vocalisation activity of birds and bats against microphone signal-to-noise ratio in the
audible (1 kHz for birds) and ultrasound (40 kHz for bats) ranges.

Lines show predictions from a mixed-effects model with sampling day as random intercept.
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Figure 3
Species accumulation curves of each microphone, recording bird and bat species on
different days, plotted against sampling time.

Signal-to-noise ratios are scaled within each taxon for achieving higher color contrast.
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Figure 4
Bat call automated detection accuracy against microphone signal-to-noise ratio at 40
kHz, using a reference of 48 dB SPL.

The black dots are from internal detection templates (from within the actual analysed
recording), and the line represents a beta regression over these points. The red transparent
dots are from external detection templates (from recordings made with different
microphones), and their means are shown without transparency.
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