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ABSTRACT
Master regulator genes (MRGs) have become a hot topic in recent decades. They
not only affect the development of tissue and organ systems but also play a role in
other signal pathways by regulating additional MRGs. Because a MRG can regulate
the concurrent expression of several genes, its mutation often leads to major diseases.
Moreover, the occurrence of many tumors and cardiovascular and nervous system
diseases are closely related toMRGchanges.With the development in omics technology,
an increasing amount of investigations will be directed toward MRGs because their
regulation involves all aspects of an organism’s development. This review focuses on
the definition and classification ofMRGs as well as their influence on disease regulation.

Subjects Molecular Biology, Clinical Trials, Oncology, Medical Genetics
Keywords Master regulator genes, Signal pathway, Tumor diseases, Cardiovascular disease,
Nervous system disease

INTRODUCTION
Since the discovery of the master regulator genes (MRGs) and the powerful functions of
these genes involved in all aspects of tissue and organ development, the study of MRGs
have been more and more extensive, and an increasing number of new MRGs have
been reported to play key roles in major clinical diseases. In the field of biomedicine,
potential MRGs are generally analyzed based on the method of omic technologies, for
instance, whole genome transcriptomics ChIPSeq and ATAC-Seq and well established
bioinformatic analysis such as GSEA and its variants (Alvarez et al., 2016; Boboila et al.,
2018; Lefebvre et al., 2010; Tomljanovic et al., 2018). Recent studies have pointed that the
protein called myocyte enhancing factor 2C (MEF2C) is one of such master regulators
involved in the pathogenesis of primary breast cancer. A systematic biological analysis of
the transcriptional regulation activity of MEF2C and its target genes has revealed that this
molecule induces collective responses leading to system-level gene expression deregulation
and carcinogenesis (Hernández-Lemus, Baca-López & Tovar, 2015). A large number of
clinical data from disease samples have been collected to calculate the potential MRGs
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in their pathological mechanisms. For example, in two breast cancer sample data sets,
a systematic implementation of a series of algorithms is used to analyze the MRGs in
potential primary breast cancer cells (Baca-López et al., 2012; Lim, Lyashenko & Califano,
2009; Tapia-Carrillo et al., 2019; Tovar et al., 2015). However, the definition of the MRG is
still indistinct and imperfect, and a systematic and comprehensive review about MRGs is
lacking. In this review, we proposed an updated definition and systematic classification of
MRGs, and summarized the role of MRGs in major clinical diseases. The subject presented
in this article is written in a descriptive manner instead of a systematic review so that
clinicians outside our professional field can understand the basic characteristics of MRGs
and their significant effects on clinical diseases.

WHAT IS THE MASTER REGULATOR GENE?
The term ‘‘master regulator gene’’ introduced by Susumu Ohno in 1978, refers to ‘‘the
gene at the top of the regulatory hierarchy, which should not be affected by the regulation
of any other genes’’ (Ohno, 1978). However, with the increasingly extensive and in-depth
study of master regulator genes (MRGs) in recent decades, this definition is no longer
an absolute. Many studies have shown that some MRGs can be regulated by others. For
example, mdm2 is the master regulator of tumor suppressor protein p53 (Momand, Wu &
Dasgupta, 2000), while the p53 gene is a master regulator of diverse cellular processes and
a potential therapeutic target for cancer (Farnebo, Bykov & Wiman, 2010); and snai1 is the
master regulator of epithelial-mesenchymal transition, but it is regulated by Pak1 through
phosphorylation (Takahashi et al., 2013), which implicates Pak1 as a master regulator of
epithelial-mesenchymal transition (Yang et al., 2005).

It has been reported thatMRGs play a key role viamultiple signal pathways. For example,
adenosine monophosphate-activated protein kinase (AMPK) regulates the energy balance
inside cells by inhibiting adenosine triphosphate (ATP) consumption in the anabolic
pathway and enhancing ATP synthesis in the catabolic pathway.When activated by external
metabolic pressure, AMPK regulates a complex downstream signal cascade, promoting
efficient energy production within the cells (Witczak, Sharoff & Goodyear, 2008). Another
example is the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian
target of rapamycin (mTOR) signaling pathway. Although this pathway is considered as a
master regulator for cancer (Schaefer, Steiner & Lengerke, 2020; Xia & Xu, 2015), mTOR is
also considered as a MRG of metabolism (Kim & Guan, 2015; Zeng, 2017). Furthermore,
it has been reported that the genes for the three transcription factors Sox2, Oct3/4,
and Nanog have been identified as the MRGs that regulate mammalian embryogenesis,
embryonic stem cell self-renewal, and pluripotency. These MRGs can bind to enhancer
elements in pluripotent embryonic stem cells (ESCs) and recruit mediators to form unusual
enhancer domains, which are called super-enhancers. When the MRGs and mediators are
simultaneously occupied, the expression programs for most genes in ESCs become co-
activated (Rizzino, 2008;Whyte et al., 2013). Phenotypic conditions in living cells are largely
determined by the interplay of a multitude of genes and their protein products, which form
a gene regulatory network (GRN), andMRGs are the key players in GRNs. Gene regulatory
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network analysis have shown that different levels of gene regulation are not only related but
strongly coupled (Hernández-Lemus, Baca-López & Tovar, 2015). To summarize, MRGs
can be updated as genes or signaling pathways that are expressed at the inception of a
developmental lineage or a specific cell type, participate in the specification of that lineage
by regulating multiple downstream genes’ expression either directly or via interacting with
other master regulator genes or signaling pathways to form super-enhancers, and critically,
when misexpressed, will lead to uncontrolled expression of downstream target genes and
MRGs, and have the ability to respecify the fate of cells destined to form other lineages,
causing more abnormal development of tissues and organs.

SURVEY METHODOLOGY
A survey of >2,000 articles was carried out using the National Center for Biotechnology
Information PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) by searching the
keyword ‘‘master regulator gene’’. After screening the contents of the abstracts of these
literatures, we found that more than 900 articles quoting MRGs covered most species. Key
words were extracted and recorded during the abstract reading, including the properties of
the MRGs, the signaling pathways involved, the tissues or organs involved, and the diseases
caused, etc. All the data was collated and considered effective. If multiple references
mentioned a same MRG, we selected recently published papers or well-known journals for
reference. These MRGs were systematically classified as either (1) whole-family MRGs, (2)
signal pathway MRGs, or (3) tissue- or organ-specific MRGs.

OVERVIEW OF MRGS
Family MRGs refer to a gene family where all members are MRGs. There are two types:
either all members have the same function, such as the HOX, MTA, and SREBP families; or
different members in the same family may possess different functions, such as the GATA
gene family. The HOX family MRGs are all involved in developmental processes, such
as embryogenesis and hematopoiesis (Candini et al., 2015; Grier et al., 2005; Magnusson
et al., 2007; McGonigle, Lappin & Thompson, 2008; Rice & Licht, 2007; Vogel et al., 2016;
Zhang et al., 2015). In mammals, the HOX network consists of 39 genes that exhibit a
high degree of sequence similarity, particularly in the homeobox domain. Homeobox
genes function as master regulatory transcription factors during development, and their
expression is often altered in cancer (Brotto et al., 2020;Li et al., 2020;Qu et al., 2019).Many
of the chromosomal translocations associated with acute leukemias involve HOX genes,
such as mixed lineage leukemia, which leads to the inappropriate expression of specific
HOX gene subsets (Collins & Thompson, 2018; Dickson, Lappin & Thompson, 2009). In
the GATA family, where each member has a different function, GATA1 and GATA2
regulate erythropoiesis and hematopoiesis as MRGs (Bresnick & Johnson, 2019; Castaño et
al., 2019; Gutiérrez et al., 2020; Kang et al., 2012; Katsumura et al., 2018; Katsumura et al.,
2014; Leonards et al., 2020; Philipsen, 2013; Siegwart et al., 2020), GATA3 is an immune
response MRG (El-Arabey et al., 2020; Li, Campos & Iida, 2015; Mirlekar, 2020; Nicol et
al., 2016; Nomura et al., 2019), and GATA4 regulates embryonic pancreas development
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(Kondratyeva et al., 2017). Table 1 lists 18 major family MRGs. Among them, the CDX,
CDK, HSF, MTA, SREBP, Rho, HNF, IL families and the Rab GTPase superfamily contain
genes with the same functions. In the PLK, PAX, TBX, SOX, RUNX, IRF, BCL, and C/EBP
families, each family member shares similar functions but also performs their own distinct
role. In Fig. 1, we have summarized typical family MRGs involved in regulation at the
cellular level, including CDK Family, Rho Family and PLK Family involved in cell cycle
regulation, and BCL Family involved in cell apoptosis, etc. Figure 2 summarizes the Family
MRGs involved in tissue and organ development, including PAX Family involved in eye
development, TBX Family involved in heart development, etc.

The second type of MRGs is signaling pathways MRGs. In this type, either one of
the members in the signal pathway is the MRG, such as AMPK from the AMPK signal
pathway, which is known as a master regulator of cellular energy metabolism due to
its role in regulating glucose, lipid, and protein metabolism. AMPK is an evolutionarily
conserved master regulator of metabolism and a therapeutic target in type 2 diabetes. As
an energy sensor, AMPK activity is responsive to both metabolic inputs, i.e., the ratio of
AMP to ATP and numerous hormonal cues (Cunningham et al., 2014; Witczak, Sharoff &
Goodyear, 2008). Or more commonly, members of the whole signaling pathway cooperate
with each other as MRGs to regulate the development of a series of tissues and organs. For
example, the mTOR signaling pathway is a master regulator of cell growth, proliferation
and survival, metabolism, and skeletal muscle production in eukaryotes (Donnelly et al.,
2017; Zeng, 2017). mTOR belongs to the PI3K-related protein kinase family. The mTOR
signaling pathway plays a crucial role in the functional recovery of central nervous system
trauma, especially for axon regeneration and autophagy, which has an extensive association
with apoptosis. Significantly, this pathway is receiving novel concern for its role in the
repair and regeneration of traumatic central nervous system injuries, such as traumatic
brain injury and spinal cord injury (Lin, Huo & Liu, 2017a). The novel concern for mTOR
is also because it is a master regulator of the inflammatory response in immune and
non-immune cells and implicated in a number of chronic inflammatory diseases, especially
rheumatic diseases, such as systemic lupus erythematosus, rheumatoid arthritis, systemic
sclerosis, sjogren syndrome and seronegative spondyloarthropathy (Suto & Karonitsch,
2020). mTOR signaling pathway acts as a master regulator in memory CD8+ T−cells,
Th17, and NK cells development and their functional properties (Rostamzadeh et al., 2019).
Researchers used RNAi system to specifically knockdown mTOR, raptor, S6K1, eIF4E, and
FKBP12 expressions in antigenmune CD8+T−cells and the results have demonstrated that
mTOR acts as the key regulator of memory CD8+T− cells differentiation. When mTOR or
raptor is knocked down, the expression levels of memory T− cell markers CD127, CD62L,
Bcl-2, and CD27 are remarkably elevated. Significant increases in memory CD8+T− cells
differentiation after knockdown of S6K1 and eIF4E showed that mTOR exerted its effect
through these two downstream molecules (Araki et al., 2009).

The major signaling pathways MRGs are presented in Table 2. For example, the
transforming growth factor (TGF) β signaling pathway is the master regulator of
the respiratory system, epithelial-mesenchymal transition and metastasis, and cancer
development; Hedgehog signaling is the master regulator of cell differentiation; and the
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Table 1 Summary of family MRGs and their related functions.

Family MRGs Members Functions

CDX Family all master regulator of HOX family gene (Frohling et al., 2007;
Rawat, Humphries & Buske, 2012; Shiotani et al., 2008)

CDK Family CDK1, CDK2, Cdc5 master regulator of cell cycle regulation (Botchkarev &
Haber, 2018; Hinds, 2003; Satyanarayana & Kaldis, 2009)

HSFs Family HSF1, HSF2, HSFA1 master regulator of heat shock reaction (Filone et al., 2014;
Liu & Charng, 2012; Qiao et al., 2017; Shinkawa et al., 2011

MTA Family all master regulator of the occurrence and metastasis of cancer
(Du et al., 2017; PA, 2014; Zhu et al., 2009)

SREBP Family all master regulator of lipid homeostasis (Gong et al., 2016;
Krycer et al., 2010;Madison, 2016)

Rho Family Including RhoA, Rac1 and
Cdc42 proteins, and so on

master regulator for a large number of cell functions,
including control of cell morphology, cell migration
and polarity, transcriptional activation and cell cycle
progression (Bai et al., 2015; Colomba & Ridley, 2014; Costa
et al., 2011; PA, 2014; Singh et al., 2019;Watanabe, Takano
& Endo, 2006; Zago et al., 2019)

HNF (Hepatocyte nuclear
factor) Family

IncludingHNF1A/B,
HNF4alpha, HNF6

master regulator of pancreas and liver differentiation (Alder
et al., 2014; Janky et al., 2016; Kondratyeva et al., 2017;
Odom et al., 2004; Sandovici et al., 2013)

IL(interleukin) Family Including IL-1, IL-2, IL-6,
IL-7, IL-10, IL-12, IL-21, IL-
23, IL-27, ILC3, and so on

master regulator of inflammation or immunity (Fry &
Mackall, 2001; Langrish et al., 2004; Neurath, 2007; Qin
et al., 2017; Rojas et al., 2017; Sharma, Fu & Ju, 2011;
Waldner & Neurath, 2014;Wilson & Esposito, 2009; Zhou &
Sonnenberg, 2020)

Rab GTPases Superfamily Including Rab5, Rab7b,
Rab11 GTPase, and so on

master regulator of cell membrane transport (Distefano et
al., 2015; Ishida, E. Oguchi & Fukuda, 2016; Pfeffer, 2017; Qi
et al., 2015;Wu et al., 2015)

The MiTF/TFE Fam-
ily of Transcription Factors

MITF, TFEB, TFE3, TFEC Master Regulators of Organelle Signaling, Metabolism, and
Stress Adaptation (Slade & Pulinilkunnil, 2017)

all master regulator of cell division
PLK1 master regulator of mitotic related kinases (Combes et al.,

2017)PLK Family

PLK4 master regulator of the formation of centrioles (Levine &
Holland Andrew, 2014; Shaheen et al., 2014)

all master regulator of development and tissue homeostasis
(Relaix, 2015)

Pax5 master regulator of b-cell development and leukemia
(Medvedovic et al., 2011; Nebral et al., 2009)PAX Family

Pax6 master regulator of ganglion cells of the retina and eye
development (Albert et al., 2013; Shubham &Mishra, 2012)

TBX1 master regulator of muscle differentiation (Chen et al.,
2009)

TBX5 master regulator of heart development (Boogerd & Evans,
2016)TBX Family

TBX21 master regulator of Th1 cell development (Nicol et al., 2016;
Stolarczyk, Lord & Howard, 2014;Wilkie et al., 2016)

(continued on next page)
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Table 1 (continued)

Family MRGs Members Functions

SOX2 master regulator of mammalian embryogenesis, embryonic
stem cell self-renewal and pluripotency (Rizzino, 2008;
Whyte et al., 2013)

SOX3 master regulator of innate immunity (Doostparast Torshizi
& Wang, 2017)

SOX4 master regulator of EMT (epithelial-mesenchymal
transition) (Lourenço & Coffer, 2017; Tiwari et al., 2013)

SOX5, SOX6 the interaction with SOX9 is a master regulator of
cartilage development (Ma et al., 2016; Suzuki et al.,
2012; Vivekanandan et al., 2015)
master regulator of testis differentiation pathway (Jakob &
Lovell-Badge, 2011;Mork & Capel, 2010; Kozhukhar, 2012)
master regulator of fibroblast differentiation (Noizet et al.,
2016)SOX9
master regulator of pancreatic program (Julian, McDonald
& Stanford, 2017; Seymour, 2014)

SOX Family

SOXB1, SOXE, SOXF master regulator of cell fate (Julian, McDonald & Stanford,
2017)

RUNX1 master regulator of adult hematopoiesis (Ichikawa et al.,
2004;Wehrspaun, Haerty & Ponting, 2015;Wu et al., 2014)

RUNX Family
RUNX2 master regulator of osteoblast lineage (Liu et al., 2017;

Wysokinski, Pawlowska & Blasiak, 2015)
IRF-1 master regulator of cross talk between macrophage and

L929 fibrosarcoma cells (Nascimento et al., 2015)
IRF4 master regulator of human periodontitis (Sawle et al., 2016)
IRF7 master regulator of IFN-I, virus-induced cytokine (Hu et

al., 2011; Lu et al., 2015;Wang et al., 2013)
IRF Family

IRF8 master regulator of monocytes and dendritic cells
development (Tamura, 2017)

BCL-2 master regulator of apoptosis (Chen et al., 2012; Häcker &
Vaux, 1995)

BCL-6 master regulator of Tfh cell differentiation (Matsumoto et
al., 2017)

BCL11B master regulator of T cell (Th) differentiation (Inoue et al.,
2016)

BCL Family

BCL–2–like 10 master regulator of Aurora kinase a mouse oocytes (Lee et
al., 2016)

C/EBPα master regulator of the bone marrow progenitor cells and
fat formation (Ding et al., 2011; Okuno, Inoue & Imai, 2013)

C/EBP Family
C/EBPbeta master regulator of physiological cardiac hypertrophy

(Molkentin Jeffery, 2011)
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Figure 1 Family MRGs associated with cellular level regulation. .
Full-size DOI: 10.7717/peerj.9952/fig-1

Figure 2 Family MRGs involved in tissue and organ development. .
Full-size DOI: 10.7717/peerj.9952/fig-2

NF-κB signaling pathway is the master regulator of innate immune and inflammatory
signals. It is noteworthy that the Wnt signaling pathway is not only the master regulator
of cell development, cell polarization, and brain invasion but also the master regulator of
liver-region and multiple renin-angiotensin system genes.

The third type of MRGs is tissue- or organ-specific MRGs that regulate the development
of different tissue and organ systems. Table 3 summarizes the MRGs associated with
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Table 2 Summary of the important signaling pathways MRGs.

Signaling pathway Master regulator gene Functions

TGF-β signaling pathway TGF-β signaling pathway master regulator of the respiratory system, epithelial-
mesenchymal transition and metastasis, and cancer de-
velopment, etc (Fazilaty et al., 2013; Solomon et al., 2010;
Zhou et al., 2014)

PI3K-AKT-mTOR signaling pathway PI3K-AKT-mTOR signaling pathway master regulator of cancer (Xia & Xu, 2015)
Hedgehog (Hh) signaling pathway Hedgehog (Hh) signaling pathway master regulator of cell differentiation (Peng & Joyner,

2015)
NF-kappaB signaling pathway NF-kappaB signaling pathway master regulator of innate immunity and inflammatory

signaling (Krappmann et al., 2004;Matroule, Volanti &
Piette, 2006; Schnappauf & Aksentijevich, 2020; Zeitz et
al., 2017)

Wnt signal pathway master regulator of cell development and cell polariza-
tion (Gómez-Orte et al., 2013)

Wnt5a master regulator of brain invasion (Binda et al., 2017)Wnt signaling pathway

Wnt/β-catenin master regulator of the liver region and multiple RAS
(renin-angiotensin system) genes (Torre, Perret & Col-
not, 2010)

Notch The fate of arteriovenous-lymphatic endothelial cells is
regulated by the master regulator of Notch, COUP-TFII,
and Prox1 (Kang et al., 2010)

Notch signaling pathway
Notch3 master regulator of neuroblastoma movement (Van Nes

et al., 2013)
Yap signaling pathway Yap1 master regulator of endometriosis (Lin et al., 2017b)

HIF1, HIF-1α
Hypoxia signaling pathway

HIF-2α

master regulators of the adaptive response to hypoxia
(Lu & Kang, 2010; Schönenberger & Kovacs, 2015; Xiao,
2015; Zhao et al., 2020)

tissue/organ specificity, among which SCL/TAL1, VEGF, and PU.1 are the MRGs of
hematopoiesis; Sim1 and Gcm are the MRGs of Drosophila neurodevelopment; FOXM1,
Blimp1, Oct4, and Myc are the MRGs that regulate the cell cycle, B-cell differentiation to
plasma cells, embryonic stem cells, and cell performance, respectively; CTCF is the MRG
of human epigenetic and genomic spatial tissue; and FOXj1 is the MRG of the ciliary
formation program. In bacteria, the MRGs include SinR, CtrA, FlhDC, Fur, CsgD, Spo0A,
CcpA, LuxR, and WOR1. Details and other tissue- and organ-specific MRGs are listed in
Table 3.

REGULATION OF MAJOR DISEASES BY THE MRGS
SinceMRGs can concurrently regulate the expression of hundreds of genes, their expression
levels must be tightly controlled, otherwise, misexpression or overexpression will exert a
considerable impact on the development of affected organisms, resulting in runaway or
uncontrolled metabolism and abnormal development in humans.

MRGs regulation of tumors
MRGs have been implicated in the occurrence of different tumors, including gum germ
cell tumors, ovarian cancer, colon cancer, rectal cancer, and lung cancer. For example,
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Table 3 Summary of reportedMRGs and their related functions.

MRGs Related functions

SCL/TAL1 master regulator of the adult hematopoietic (Courtial
et al., 2012;Wehrspaun, Haerty & Ponting, 2015)

VEGF master regulator of mucosal immunity driving angio-
genesis (Danese, 2008b)

PU.1 master regulator of hematopoiesis and bone marrow
(Yang et al., 2012)

Sim1 master regulator of Drosophila neurogenesis (Eaton &
Glasgow, 2006)

Gcm master regulator of nervous system development in
Drosophila, parathyroid development, master regu-
lator of expression and function regulation in mam-
mals (Cattenoz & Giangrande, 2016)

FOXM1 master regulator of different stages of the cell cycle
(Jeffery et al., 2017; Zona et al., 2014)

Blimp1 master regulator of B cell differentiation into plasma
cells (John & Garrett-Sinha, 2009; Vrzalikova, Wood-
man & Murray, 2012)

Oct4 master regulator of embryonic stem cell self-renewal
and pluripotency (Samardzija et al., 2017a)

Myc master regulator of cell performance (growth, prolif-
eration, stem cell pluripotency, ribosomal biogene-
sis, etc.) (Grifoni & Bellosta, 2015; Holmberg Olausson,
Nistér & Lindström, 2012; Kazan & Manners, 2013)

HIF master regulator of cellular responses to hypoxia (Liu,
Semenza & Zhang, 2015; Semenza, 2014; Semenza,
2017)

CTCF master regulator of human epigenetics and genomic
spatial organization (Golan-Mashiach et al., 2012)

FOXj1 master regulator of cilia generation program (Yu et
al., 2008)

SinR master regulator of Bacillus subtilis biofilm formation
(Chu et al., 2006; Stowe et al., 2014)

CtrA master regulator of the cell cycle of the bacillus (Gora
et al., 2010; Laub et al., 2002; Pini et al., 2015)

FlhDC master regulator of flagellar genes (Chatterjee, Cui
& Chatterjee, 2015; Cui et al., 2008; Stafford, Ogi &
Hughes, 2005)

Fur master regulator of iron metabolism in Gram-
negative bacteria (González et al., 2012; Huja et al.,
2014)

CsgD master regulator of E. coli biofilm formation (Oga-
sawara, Yamamoto & Ishihama, 2010;Wen et al.,
2017)

Spo0A master regulator of the pathogenesis of Bacillus sub-
tilis spore formation (Fujita & Losick, 2005;Wolański
& Jakimowicz, 2014)

(continued on next page)
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Table 3 (continued)

MRGs Related functions

CcpA master regulator of carbon catabolism regulation in
Bacillus (Muscariello et al., 2013;Weeks et al., 2012a;
Weeks et al., 2012b)

LuxR master regulator of quorum sensing (Ball, Chaparian
& van Kessel, 2017; Pompeani et al., 2008)

WOR1 master regulator of white and opaque phenotypes of
Candida albicans (Zhang et al., 2014)

P53 master regulator of human malignant tumors
(Farnebo, Bykov & Wiman, 2010; Resnick et al., 2005)

P63 master regulator of epidermal development and dif-
ferentiation (Soares & Zhou, 2018)

Nrf2 master regulator of redox homeostasis (Basak et al.,
2017; Cores et al., 2020; Hayes & Dinkova-Kostova,
2017)

MITF master regulator of melanocyte development (Levy,
Khaled & Fisher, 2006)

TFEB master regulator of lysosomal biogenesis and au-
tophagy (Medina et al., 2015; Settembre et al., 2011)

MyoD master regulator of skeletal muscle gene expression
programs (Aziz, Liu & Dilworth, 2010; Sunadome et
al., 2014)

MicroRNAs (miR-
10b*,miR21, miR-
31,miR153, miR156,
etc.)

master regulator of gene expression in many phys-
iological and pathological processes (Biagioni et al.,
2012; Datta & Paul, 2015; Kaul & Krams, 2015; Liang
et al., 2020;Miranda et al., 2010 Schmittgen, 2010;
Stief et al., 2014; Voorhoeve, 2010)

PGC-1 α master regulator of mitochondrial gene expression
(Fernandez-Marcos & Auwerx, 2011; Zhu et al., 2009)

Prox1 master regulator of lymphatic endothelial cell differ-
entiation (Hong & Detmar, 2003; Kang et al., 2010; Ke
& Yang, 2017)

AphA master regulator of quorum sensing (Sun et al., 2012;
Van Kessel et al., 2013)

PPARgamma master regulator of fat formation (Lehrke & Lazar,
2005a; Sunadome et al., 2014)

foxp3 master regulator of regulatory T (Treg)cell develop-
ment and function (Liston, 2010; Thornton & Shevach,
2019)

ComK master regulator of late competence genes (Jaskólska
& Gerdes, 2015; Ogura, Hashimoto & Tanaka, 2002)
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SOX9, GATA4, PDX1, PTF1a, HNF1b, and GRP78 are master regulators of pancreatic
cancer (Kondratyeva et al., 2017); while Srebp2 (Krycer et al., 2010) and E2F8 (Rohde et al.,
1996) are MRGs of prostate cancer; and CDX2 is the master regulator of gastric cancer
(Shiotani et al., 2008). Nuclear receptors are liver cancer-related (Jakobsson et al., 2012);
PD-L1, TGF-β1, and IL-10 are the master regulators of cervical cancer (Qin et al., 2017);
and Oct4A is the master regulator of ovarian cancer (Samardzija et al., 2017). Analysis of
master regulatory genes may help to understand the most upstream events in phenotypic
development, particularly those related to cancer biology.

The most extensively studied MRGs are associated with breast cancer and leukemia.
Breast cancer is the most common malignant tumor in women. It has been reported that
RUNX1 encodes the transcription factor of the RUNX family, a new mutation in RUNX
gene was discovered in human breast cancer. It was reported that RUNX1 was expressed
in all subpopulations of mouse mammary epithelial cells (MECs) except for secretory
alveolar cells. The conditional knockout of RUNX1 in the MECs resulted in the reduction
of luminal MECs. Mainly due to a significant reduction in estrogen receptors (ERs), this
phenotype could be rescued by the absence of Trp53 or Rb1. The underlying molecular
mechanism was explained by RUNX1 inhibiting the expression of Elf5 (the dominant gene
in alveolar cells) and regulating the involvement of mature transcription factor or cofactor
genes (such as Foxa1 and Cited1) in the processes of ER synthesis (Van Bragt et al., 2014).
Many other MRGs have been reported to be associated with the development of breast
cancer, including the HOX gene family, SOX4, RUNX2, AMPK, p53, TGF-β, microRNA,
KDM4B, p16INK4A, BACH1, Snai1, HMGA1, SATB1, HSP90, TRB3, Ddx5 and Ddx17,
FGFR2, and AGTR2 (Table S1).

Another type of widely studied cancer is leukemia, a malignant clonal disease of
hematopoietic stem cells. Due to uncontrolled proliferation, differentiation disorder, and
blocked apoptosis, clonal leukemia cells proliferate and accumulate in the bone marrow
and other hematopoietic tissues, infiltrate other non-hematopoietic tissues and organs,
and inhibit normal hematopoietic function. Acute lymphoblastic leukemia (ALL) is the
most common form of childhood cancer and is characterized by impaired lymphocyte
differentiation, resulting in the accumulation of immature progenitor cells in the bone
marrow, peripheral blood, and occasionally the central nervous system. Although ALL cure
rates are close to 90%, it remains the leading cause of cancer-related mortality in children
and young adults. Another extremely prevalent form of leukemia is B-cell precursor
(BCP)-ALL, which represents 85% of cases, while the remaining 15% involve T-cell
precursors. It was reported that BCP-ALL might be caused by the synergistic regulation of
transcription factors, such as RUNX1, IKZF1, E2A, EBF1, and PAX5 (Tijchon et al., 2012).
The other MRGs associated with leukemia include HOX, GATA, CDX, Pax, C/EBPistic
genetic lesions, and key transcriptional targets and pathways (Table S1).

Influence of MRGs on cardiovascular diseases
Because cardiovascular disease is the leading cause of death in humans, elucidation of the
associated role of MRGs is of immense clinical and social value for the effective prevention
and treatment of cardiovascular diseases. The MRGs related to heart disease (Table 4)
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Table 4 Summary of MRGs related to heart disease.

MRGs Cardiovascular disease type

TBX5, NuRD Congenital heart disease (Boogerd & Evans, 2016)
SREBP Treatment of cardiac metabolic diseases (Krycer et al., 2010)

VEGF Vascular disease (Danese, 2008b; Gianni-Barrera et al., 2014)

MyoD Heart disease (Kojima & Ieda, 2017)
PPAR γ Obesity, diabetes and cardiovascular disease (Lee & Ge,

2014; Lehrke & Lazar, 2005)
PKCδ Thrombosis complications (Fischer, 2009)
SCL/TAL1 Anemia patient (Fujiwara, 2017)
Class IB phosphoinositide 3-kinase p110s Heart disease (Perino, Ghigo & Hirsch, 2010)
PI3K Heart failure (Weeks et al., 2012a)
SOX9 and myocardin Atherosclerosis, vascular calcification (Xu et al., 2012)
Klotho Cardiovascular diseases (Moe Sharon, 2012)
PITX2 Atrial fibrillation (AF) is the most common persistent

Arrhythmia (Li, Dobrev & Wehrens, 2016)
FLYWCH1, PSORSIC3, G3BP1 Coronary artery disease (CAD) (Foroughi Asl et al., 2015
Thyroid hormones (THs) Cardiovascular diseases (Rajagopalan & Gerdes, 2015)
CST Cardiovascular diseases (CVD) (Sushil, Malapaka & Nitish,

2018)
Etv2 Chronic vascular disease (Garry, 2016)

include TBX5, NuRD, SREBP, MyoD, Class IB PI3K p110 genetic lesions, PI3K, and
PITX2, which mainly regulate congenital heart disease, metabolic heart disease, heart
failure, arrhythmia, etc. Vascular-related MRGs, which include PKCδ, VEGF, SCL/TAL1,
PPAR gamma, PGC-1alpha, SOX9, myocardin, FLYWCH1, PSORSIC3, G3BP1, and Etv2,
mainly regulate thrombosis, anemia, atherosclerosis, vascular calcification, coronary artery
disease, chronic vascular disease, etc. Others, like, Klotho, thyroid hormones and thyroid-
stimulating hormone, and CST were also reported as master regulators of cardiovascular
disease.

Influence of MRGs on Nervous system diseases
Nervous system diseases refer to the diseases that occur in the central nervous system,
peripheral nervous system and vegetative nervous system, with sensory, motor,
consciousness and vegetative nervous dysfunction as the main manifestations, among
which the central nervous system diseases are the most widely studied. The central nervous
system disease generally refers to the central nervous system degenerative disease, which
refers to a group of diseases produced by the chronic progressive degeneration of the central
nervous system. Pathologically, there are neuronal degeneration and neuron loss in the
brain and/or spinal cord. Major diseases include Parkinson’s disease, the overall ischemia,
stroke, epilepsy, Alzheimer’s disease andHuntington’s disease, etc. At present, many articles
have clarified the important role of master regulator genes in neurodegenerative diseases.
For example, REST, a major transcriptional regulator of neurodegenerative diseases, is
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a transcriptional suppressor that silences target genes through epigenetic remodeling.
REST and REST-dependent epigenetic remodeling provide a central mechanism critical to
the progressive neuronal degeneration associated with neurologic disorders and diseases
including global ischemia, stroke, epilepsy, Alzheimer’s and Huntington’s disease (Hwang
& Zukin, 2018). NRF2 regulation processes as a source of potential drug targets against
neurodegenerative diseases (Buendia et al., 2016; Cores et al., 2020). ZCCHC17 is a master
regulator of synaptic gene expression in Alzheimer’s disease (Tomljanovic et al., 2018).
ATF2 and PARK2 are transcription factors that act as MRGs in Alzheimer’s disease (Vargas
et al., 2018). The ubiquitin-proteasome system is a master regulator of neural development
and the maintenance of brain structure and function (Luza et al., 2020), etc. At present, it
has not been reported that there is a specific drug effective for various neurological diseases
in the world. For many patients, relevant drugs just only relieve symptoms rather than cure
diseases, causing indelible damage to patients’ physical and mental health. Exploring novel
MRGs working on the nervous system and disclosing the molecular mechanism of nervous
system diseases, may become the exciting expect to develop target drugs and therapeutic
schedule to achieve special purpose for the treatment of patients.

There are still many references on the research of master regulatory genes and other
human various diseases. For example, there are some reports on the progress of investigating
the influence of MRGs on diseases such as inflammatory bowel disease (Danese, 2008a),
cartilage disease (Ma et al., 2016), and human diseases related to fibroblasts (Shenoy et al.,
2014). Thus, the influence of MRGs on human diseases has permeated every aspect, and
MRGs play a vital role in the clinical research and treatment of human diseases. However,
how the MRGs can be used more comprehensively to solve the therapy problems in human
diseases is an arduous task at present.

OUTLOOK
With the sustained development in omics technologies, research pertaining to MRGs will
continue getting more concern and progress because the involvement of MRGs in all
aspects of an organism’s development is becoming apparent. Here we demonstrated that
MRGs fell within three operating motifs: (1) whole-family MRGs, (2) signaling pathway
MRGs, and (3) tissue- or organ-specific MRGs and updated the definition of MRGs as
genes or signaling pathways that are expressed at the inception of a developmental lineage
or a specific cell type, participates in the specification of that lineage by regulating multiple
downstream genes’ expression either directly or via interacting with other master regulator
genes or signaling pathways to form super-enhancers, and critically, when misexpressed,
will lead to uncontrolled expression of downstream target genes and MRGs, and have the
ability to respecify the fate of cells destined to form other lineages, causing more abnormal
development of tissues and organs. The formidable function of an MRG lies not only in its
regulation of the concurrent expression of hundreds of genes but also the diversity of its
functions on human diseases.

MRGs play important roles in the occurrence of various human diseases (such as
cancer, cardiovascular diseases and neurological diseases) and exhibit a great potential to
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be targets of gene therapies and drugs. Therefore, exploring the MRGs corresponding to
the pathological mechanisms of different diseases is particularly critical. At present, there
have been many reports on the analysis of potential MRGs through different calculation
methods, and subsequent experimental verification, which greatly improves the process of
discovering and determining MRGs in the pathogenesis. Of course, the use of MRGs for
gene therapy or targeted drugs is still a huge challenge, and its clinical application is also a
long process, which requires unremitting efforts of the medical research team. We believe
that the day of technological breakthroughs of MRGs will definitely come.
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