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ABSTRACT
As more than 90% of species in a microbial community could not be isolated and
cultivated, the metagenomic methods have become one of the most important
methods to analyze microbial community as a whole. With the fast accumulation of
metagenomic samples and the advance of next-generation sequencing techniques,
it is now possible to qualitatively and quantitatively assess all taxa (features) in
a microbial community. A set of taxa with presence/absence or their different
abundances could potentially be used as taxonomical biomarkers for identification
of the corresponding microbial community’s phenotype. Though there exist some
bioinformatics methods for metagenomic biomarker discovery, current methods
are not robust, accurate and fast enough at selection of non-redundant biomarkers
for prediction of microbial community’s phenotype. In this study, we have proposed
a novel method, MetaBoot, that combines the techniques of mRMR (minimal
redundancy maximal relevance) and bootstrapping, for discover of non-redundant
biomarkers for microbial communities through mining of metagenomic data.
MetaBoot has been tested and compared with other methods on well-designed
simulated datasets considering normal and gamma distribution as well as publicly
available metagenomic datasets. Results have shown that MetaBoot was robust across
datasets of varied complexity and taxonomical distribution patterns and could also
select discriminative biomarkers with quite high accuracy and biological consistency.
Thus, MetaBoot is suitable for robustly and accurately discover taxonomical
biomarkers for different microbial communities.
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INTRODUCTION
The approximate estimation of microbial cells on earth is 1030 (Proctor, 1994), which is

huge, and a large number of novel genes with useful functions might be contained within

the genomes of these unknown communities of microbes. However, it was estimated that

more than 90% of species in the microbial communities are unknown and uncultivable

(Jurkowski, Reid & Labov, 2007). Therefore, the traditional processes for isolation and

cultivation of microbes are not applicable for the analyses of many microbial communities.

Based on the development of Next Generation Sequencing (NGS), the metagenomic

method become one of the important methods that could provide direct access to

genomes of as-yet-uncultivated microorganisms in native environments (Eisen, 2007).

Metagenomics makes it possible to better understand microbial diversity as well as their

functions. Metagenomics has become an increasingly popular research area when its

diverse and multiplicity of metagenomics and its potential applications in environmental

sciences, bioenergy and human health is considered.

One of the most broadly applicable and successful means of translating molecular

and genomic data into applications such as clinical practice (Segata et al., 2011) and

environmental monitoring (Lam & Gray, 2003) is the identification of biomarkers.

Comparisons among different types of tissues or samples have highlighted the importance

of detecting novel subtypes of a disease or determining the subtype of a new sample (Golub

et al., 1999; Tothill et al., 2008). In any genomic dataset, identifying the most biologically

informative features which can differentiate two or more sets of samples remains an

obstacle, and for metagenomic biomarkers this is particularly true.

Other than the challenges associated with high-dimensional data which includes

different meta data or data type, metagenomic analysis additionally presented their own

specific issues, including sequencing errors, chimeric reads (Swan et al., 2002; Wooley

& Ye, 2010) and complex underlying biology (multiple species and their uniqueness,

relative abundances, complex functions, etc.). Remarkable inter-subject variability would

usually present a profound property of many microbial communities as well, which has

made biomarker identification a big hurdle. For instance, both environmental and human

microbiomes might be subjected to a long tail distribution of rare organisms (Liao et

al., 2011; Pedrós-Alió, 2006). Therefore, robust and efficient bioinformatics tools that

could ensure the reproducibility of biomarker identification from metagenomic data,

which is crucial for its applications, are needed. Further, as mentioned in Segata et al.

(2011), elucidating the biological consistency and roles of selected biomarker, especially

non-redundant biomarkers, is a crucial step to understand the underlying mechanisms of

community–community or host-community interactions.

A number of methods have been developed for comparison of different metage-

nomic samples from different angles. Firstly, there are methods that could assess

whether communities differ, but not the quantitative assessment of differences

and what make the differences. DOTUR (Schloss & Handelsman, 2005) and SONS

(Schloss & Handelsman, 2006a) cluster sequences into operational taxonomic units (OTUs)

and, by estimating the diversity of a microbial population, provide a coarse measure for
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comparing different communities. TreeClimber (Schloss & Handelsman, 2006b), UniFrac

(Lozupone & Knight, 2005) and Meta-Storms (Su, Xu & Ning, 2012) compare sets of

metagenomics in a phylogenetic context. Secondly, there are tools for comparing two

sets of samples. MEGAN (Huson et al., 2007) is a metagenomic analysis tool providing a

graphical interface that allows users to compare the taxonomic composition of samples,

with additions for phylogenetic comparisons and statistical analyses. MEGAN, however,

can only compare single pairs of metagenomic samples, which is also the case with

STAMP (Parks & Beiko, 2010). Thirdly, statistical model based methods were developed

for the comparison of samples. MG-RAST (Meyer et al., 2008), ShotgunFunctionalizeR

(Kristiansson, Hugenholtz & Dalevi, 2009), Mothur (Schloss et al., 2009) and METAREP

(Goll et al., 2010) all compare metagenomic samples through standard statistical tests.

However, none of these methods directly identify biological features responsible for group

relationships (Gower, 1966).

The identification of biomarkers for metagenomic data could illustrate the reason for

metagenomic sample differences. There are two general approaches for metagenomic

biomarker discovery: bottom-up and top-down. The bottom-up method is the one

that tested each taxa and selected ones that would led to the variations between groups.

Typical bottom-up methods include Wilcoxon rank-sum test (Wilcoxon) (Bauer, 1972).

The top-down method is based on statistical analysis of the overall distribution of

taxon in the metagenomic samples. Currently, Metastats (White, Nagarajan & Pop,

2009) and LEfSe (Segata et al., 2011) are the only two available methods that explicitly

apply statistical assessment of metagenomic difference for metagenomic biomarker

discovery. LEfSe further considered biological relevance, biological consistency and effect

size estimation of predicted biomarkers. As pointed out by LEfSe (Segata et al., 2011),

to ensure reproducibility of biomarker identification from metagenomic data, robust

statistical tools are needed, which is also critical for clinical applications. However, none

of the aforementioned two methods have addressed the issue of robustness. In addition,

redundancy is a serious issue for metagenomic data analysis, especially for biomarker

discovery. Taxonomically, as microbial community is dynamic, it is very common that

there exist many similar strains as well as multiple similar mutants of the same strain.

However, to maximize the power of biomarkers for clinical diagnostic application, it is

desirable to find biomarkers that are both distinguishable and representative. Therefore,

biomarkers from the same strain and its mutants or from similar strains are considered as

redundant biomarkers since they contain similar genetic and/or clinical information. Note

that redundancy in biomarker discovery from gene expression data is less of an issue in that

even though two or more genes might be similar, they might play significantly different

roles in the biological system (biological importance). Additionally, the evolutionary

relationship among similar genes might not be that close enough to treat them as the

redundant biomarker.

In this work, we present a top-down strategy, MetaBoot, which uses mRMR (Ding

& Peng, 2005) and Bootstrap for feature selection from microbial community samples.

Strategically, it is a top-down approach in the sense that it first analyzed the overall
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structure of the microbial community, and then summarized such property for biomarker

identification. The MetaBoot framework is based on taxonomical profiles generated from

the microbial community’s 16S rRNA gene sequences. It selects discriminative features

as candidate features through bootstrap resampling. This general procedure is simple in

principle, yet it is significantly different from previous biomarker discovery methods: the

final results would be a set of non-redundant and informative features (genes) selected by

mRMR, rather than a complex taxonomy structure or a set of many biologically redundant

features. Also, it introduces bootstrap resampling procedure to ensure the robustness and

reproducibility.

MetaBoot has been put to the test and compared with other methods on well-designed

simulated metagenomic datasets with known biomarkers and realistic taxonomical

distribution properties. Results have shown that MetaBoot was robust for biomarker

discovery across datasets of varied complexity and taxonomical distribution patterns.

On real oral and soil metagenomic datasets, MetaBoot could also select discriminative

biomarkers with high specificity and clear biological meaning.

MATERIALS AND METHODS
Data description
Synthetic datasets
We generated three collections of artificial datasets in order to compare MetaBoot with

other methods.

Synthetic dataset S1 (normal dataset). To demonstrate the ability of our method to select

features with lower redundancy compared with LEfSe, Metastats and Wilcoxon, we built

synthetic dataset S1 (Fig. 1). Dataset S1 includes 2 classes with three subclasses each, and

each subclass has 20 samples. For each sample, there are 10 feature groups (with 10 features

in each group) for positive biomarkers and 1 feature group (with 900 features) for negative

biomarkers. Therefore, there are 1,000 features and 120 samples in total. For each of the

1,000 features, the values is sampled from a Gaussian normal distribution as described in

Fig. 1. Dataset S1 has two properties: first, for positive marker groups, features in class 1

and class 2 have clear difference in mean values, and the between-class differences are larger

than between-subclass differences. Secondly, there are feature-to-feature variations within

the same feature group due to random distribution function. Nevertheless, features within

the same feature groups are considered as redundant features in the dataset.

In the process of analyzing real data (16S rRNA sequencing data from oral samples),

we found that the distribution of many features (taxas) conformed a mixture of normal

and gamma distribution or gamma distribution (Fig. 3). For some real data, the defects

of measurement could lead to this result. But there is the possibility that features whose

distribution conform gamma distribution in real data do exist. Therefore, we built the

synthetic dataset S2 (mixture dataset) and S3 (gamma dataset). There are two important

parameters, shape and rate, in gamma distribution and both parameters are positive real

numbers. Because the change of shape parameter has a greater impact upon the shape
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Figure 1 The structure of synthetic dataset S1 (dataset with normal distributions). There is a 20(sam-
ples)*10(features) matrix in each subclass and positive marker group. And data in each matrix was
generated by the normal distribution function (rnorm in R) . More specifically, for group 1–5, the mean
parameters for subclass 1, 2, 3 were randomly sampled from the vector (11, 12, 13 and 14); while the
mean parameters for subclass 4, 5, 6 were randomly sampled from the vector (17, 18, 19 and 20). Data
in group 6–10 were generated in a similar way by using these two vectors reversely. The 900 features in
negative marker group all had the same mean value of 15. All features had the same standard deviation
(sd) parameters.

of gamma distribution than that of rate parameter, most of the positive markers among

subclasses have different shape parameter. The biomarkers that could differentiate “class 1”

and “class 2” samples were the subject of biomarker identification.

Synthetic dataset S2 (mixture dataset). The detailed parameter settings were shown

in Table 1. For positive marker groups 1–5, features in class 1 and class 2 have clear

difference in shape values. And for positive marker groups 6–10, features in class 1 (gamma

distribution) and class 2 (normal distribution) have clear difference in mean values. (The

mean and sd values of features in class 2 are determined based on mean and sd values from

corresponding features in class 2 with gamma distribution.) Dataset S2 (mixture dataset)

has three properties: first, for positive marker groups, features in class 1 and class 2 have

clear difference in shape or mean values, and the between-class differences are larger than

between-subclass differences. Secondly, for negative marker groups, there is no difference

between classes in mean values. Thirdly, there are feature-to-feature variations within the

same feature group due to random distribution function. Nevertheless, features within the

same feature groups are considered as redundant features in the dataset S2. The biomarkers

that could differentiate “class 1” and “class 2” samples were the subject of biomarker

identification.

Synthetic dataset S3 (gamma dataset). The detailed parameter settings were shown in

Table 2. Dataset S3 (gamma dataset) has three properties: first, for positive marker
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Table 1 The structure of synthetic dataset S2 (dataset with mixture distributions). In positive marker group, each square is a 25(sam-
ples)*10(features) matrix in which each feature was generated by gamma (the red cells) or normal (the green cells) distribution function (generated
by rgamma or rnorm in R). But in negative marker group, each square is a 25(samples)*900(features) matrix in which each feature was also generated
by normal distribution function.

Class Sub-
class

Positive marker group Negative
marker group

1 2 3 4 5 6 7 8 9 10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Mean

7.18 0.61 1.70 0.81 2.36 7.18 0.61 1.70 0.81 2.36 0.14

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate sd
1

44.38 71.12 517 79.70 316 44.38 71.12 517 79.70 316 0.06

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Mean

6.98 0.51 1.80 0.91 2.46 6.98 0.51 1.80 0.91 2.46 0.14

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate sd

Class 1

2

44.38 71.12 517 79.70 316 44.38 71.12 517 79.70 316 0.06

Shape Shape Shape Shape Shape Mean Mean Mean Mean Mean Mean

5.70 0.85 1.32 0.33 2.88 0.14 0.009 0.005 0.004 0.009 0.14

Rate Rate Rate Rate Rate sd sd sd sd sd sd
3

44.38 27.40 210 91.20 507 0.06 0.007 0.002 0.006 0.06 0.06

Shape Shape Shape Shape Shape Mean Mean Mean Mean Mean Mean

6.60 0.75 1.22 0.43 2.98 0.13 0.010 0.004 0.003 0.010 0.14

Rate Rate Rate Rate Rate sd sd sd sd sd sd

Class 2

4

44.38 27.40 210 91.20 507 0.06 0.007 0.002 0.006 0.06 0.06

groups, features in class 1 and class 2 have clear difference in shape values, and the

between-class differences are larger than between-subclass differences. Secondly, for

negative marker groups, there is no difference between classes in shape values. Thirdly,

there are feature-to-feature variations within in the same feature group due to random

function. Nevertheless, features within the same feature groups are considered as

redundant features in the dataset S3. The biomarkers that could differentiate “class 1”

and “class 2” samples were the subject of biomarker identification.

Real datasets

Oral dataset1: oral samples from Huang et al. (2014). Supragingival plaques were sampled

from fifty volunteers recruited at Day-21, Day 0 (Baseline) and Day-21 (different from

the previous Day-21). In this experiment, based on these three time-points, we have

generated two groups of samples: (1) The “oral hygiene phase” (Day-21 to Day 0) group,

also referred to as EG group. (2) The “experimental gingivitis phase” (Day 0 to Day 21)

group, also referred to as NG group. Totally, oral dataset1 includes 100 samples (50 samples

for each group). For each of samples, 16S rRNA gene sequencing data were generated, and

microbial community structure were then analyzed by Mothur (Schloss et al., 2009) for

taxa and their relative abundances in the sample. The biomarkers that could differentiate

“oral hygiene phase” and “experimental gingivitis phase” were the subject of biomarker

identification.
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Table 2 The structure of synthetic dataset S3 (dataset with gamma distributions). In positive marker group, each square is a 20(sam-
ples)*10(features) matrix in which each feature was generated by gamma distribution function (rgamma in R). But in negative marker group,
each square is a 20(samples)*300(features) matrix in which each feature was also generated by gamma distribution function.

Class Sub-
class

Positive marker group Negative marker
group

1 2 3 4 5 6 7 8 9 10 1 2 3

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

7.18 0.61 2.22 1.70 1.29 0.87 0.81 2.56 1.50 1.66 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate
1

44.38 71.12 33.40 517 94.70 203 79.70 316 44.4 66.16 24.30 66.40 71.10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

7.38 0.71 2.12 1.80 1.19 0.67 0.91 2.46 1.50 1.56 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate
2

44.38 71.12 33.40 517 94.70 203 79.70 316 44.4 66.16 24.30 66.40 71.10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

6.98 0.51 2.02 1.90 1.09 0.77 1.01 2.36 1.50 1.46 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate

Class 1

3

44.38 71.12 33.40 517 94.70 203 79.70 316 44.4 66.16 24.30 66.40 71.10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

5.70 0.85 1.72 0.92 0.50 1.37 0.53 3.28 0.91 2.49 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate
4

44.38 27.40 37.68 210 66.20 734 91.20 507 42.32 171 24.30 66.40 71.10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

5.60 0.75 1.62 0.82 0.40 1.47 0.43 3.28 0.81 2.39 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate
5

44.38 27.40 37.68 210 66.20 734 91.20 507 42.32 171 24.30 66.40 71.10

Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape Shape

5.80 0.95 1.52 0.72 0.60 1.57 0.33 3.28 0.71 2.59 6.20 3.10 0.61

Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate Rate

Class 2

6

44.38 27.40 37.68 210 66.20 734 91.20 507 42.32 171 24.30 66.40 71.10

Oral dataset2. Oral dataset2 from Human Microbiome Project (HMP, http://www.

hmpdacc.org) includes 812 samples in which 344 samples are from saliva and other 468

samples are from subgingival plaque. Oral dataset2 includes 44, 69 and 96 features at

order, family and genus level, respectively. For each of samples, 16S rRNA sequencing data

were generated, and microbial community structure were then analyzed by Parallel-Meta

(Su et al., 2014) for taxa and their relative abundances in the sample. The biomarkers that

could differentiate “saliva” and “subgingival plaque” origins were the subject of biomarker

identification.

Soil dataset: soil samples from Caporaso et al. (2011). Soil dataset includes 14 samples for

which 7 samples were collected from two kinds of soil environment each with different pH

values (pH = 4.9 and 8.4, respectively). For each of samples, 16S rRNA sequencing data

were generated, and microbial community structure were then analyzed by Parallel-Meta
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for taxa and their relative abundances in the sample. The biomarkers that could

differentiate “pH = 4.9” and “pH = 8.4” were the subject of biomarker identification.

MetaBoot algorithm
The overall MetaBoot algorithm includes (1) normalization step, (2) first feature selection

step, (3) bootstrap and feature selection step and (4) feature rank step. Figure 2 is the flow

chart of MetaBoot process.

Data normalization
To account for difference of read counts across multiple samples in magnitude, we

pre-process the data and convert the raw read counts into relative abundances with

per-sample normalization to sum to one (raw read counts/total counts in each sample).

And the feature whose 80% values are 0 should be deleted. Notice that for each of samples

from real datasets, 16S rRNA sequencing data analyzed by Parallel-Meta (Su, Xu & Ning,

2012) for taxa and their relative abundances in the sample. Every taxa’s relative abundances

were already normalized by Parallel-Meta as default setting.

Dataset is discretized before input into mRMR feature selection process. The discretiza-

tion of the data into categorical data not only helps reduce the substantial noise contained

in raw data but also increases the power of mRMR method selecting discriminative

features. In our method, we use the method mentioned in previous work (Ding & Peng,

2003) to discretize our data into categorical data. Each feature (also called attribute or

variable) of data is discretized using its µ (mean) and σ (standard deviation): any data

larger than µ + σ/2 are converted into 1; any data smaller than µ − σ/2 are converted into

−1; otherwise, data are converted into 0.

Main process
The input dataset for feature selection are required to be normalized data.

(1) In the first feature selection step, a number of candidate features (Parameter 1, M. M

represents the number of features in the first feature selection step.) would be selected

by mRMR that could discriminate different samples, but might include many redundant

features. Therefore, we employed the following two steps to minimize redundancy. The

dataset which included M selected features would be used in the subsequent steps.

(2) The bootstrap process (parameter 2, B. B represents the number of bootstrapping

process in this step) is employed to eliminate negative markers and redundant positive

markers. Here we have implemented bootstrapping with a principle that the number of

samples in each subclass (For example, subclass 1 in Fig. 1; or, alternatively, class when the

original data has no subclasses) of the bootstrapped dataset must be equal to that in the

same subclass (or class) of original dataset. In other words, we require that the new dataset

generated by bootstrapping has the same structure as original dataset. The only difference

between original datasets and bootstrapped datasets would be that some samples may

appear more than once and some samples may not appear in new dataset.

(3) At the feature rank step, the top N (Parameter 3, M′. M′ represents the number

of final features selected) discriminative features from each bootstrapped dataset will
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Figure 2 The flow chart of MetaBoot process.
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Figure 3 The distribution plot of taxon Leptotrichia and Actinonyces. (A) The distribution of relative
abundances for taxon Leptotrichia based on all samples in two categories (EG and NG) from Oral dataset1
(refer to “Materials and Methods” for details). The x-axis is relative abundance, and y-axis represents
the number of samples. (B) The QQ plot of class EG (the red line in (A)) in taxon Leptotrichia. The
p-value of Shapiro–Wilk Normality Test (Shapiro & Wilk, 1965) is 0.93. (C) The QQ plot of class NG
(the green line in (A)) in taxon Leptotrichia. The p-value of Shapiro–Wilk Normality Test is 0.02. But the
p-value of Kolmogorov–Smirnov Tests (Birnbaum & Tingey, 1951) (KS test) is 0.46 when testing whether
the distribution of class NG (the green line in (A)) in taxon Leptotrichia conform gamma distribution.
(D) The distribution of EG and NG for taxa Actinonyces. The x-axis is relative abundance, and y-axis
represents the number of samples.

be selected by mRMR. All selected features were ranked according to the number of

occurrences. M′ of the top ranked features will be selected as our final biomarkers.

The 3 parameters involved in this process could be adjusted according to each project’s

requirement and specific metagenomic data. Yet it should be emphasized that M must be

greater than M′.
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Assessment methods for comparison of different biomarker
identification methods
To evaluate and compare different biomarker identification methods, we have defined the

redundancy rate, non-redundancy rate, error rate, and classification accuracy as follows:

Redundancy rate =
# redundancy features

# features selected
∗ 100% (1)

Non-redundancy rate = 1 − Redundancy rate (2)

Error rate =
# negative features

# features selected
∗ 100% (3)

Classification accuracy =
# samples correctly classified

# samples in testing dataset
∗ 100%. (4)

Implementation and availability of the method
The MetaBoot method is implemented in MATLAB. The software and simulated data

that used in this paper could be found online at http://www.computationalbioenergy.org.

/metaboot.html. The original mRMR codes are wrapped for feature selection module

within MetaBoot. Therefore, MetaBoot cannot be used for commercial application

without consent from the author of mRMR and MetaBoot.

The selection standard or parameter setting for different methods

LEfSe: Selecting the features with (1) lower p-value and (2) higher effect size (Segata et al.,

2011). About parameter setting, we used the default parameters.

Metastats: Selecting the features with lower p-value (White, Nagarajan & Pop, 2009).

About parameter setting, we used the default parameters.

Wilcoxon: Selecting the features with lower p-value.

MetaBoot: Selecting the features with higher bootstrapping frequency.

LIBSVM: optimizing the parameters by using the script (easy.py) to achieve the best

classification accuracy. Therefore, for different datasets, the parameters might be different.

mRMR: the feature selection scheme we used was MID (Mutual Information Difference)

(Ding & Peng, 2005).

RESULTS AND DISCUSSIONS
One bottleneck for assessment of the effectiveness of MetaBoot for identifying biomarkers

from microbial community data is the lack of “ground truth.” To overcome this problem,

we have first analyzed taxonomical distribution properties of real metagenomic samples,

and generated sets of synthetic datasets with known ground truth biomarkers and

distribution properties learned from real data. Secondly, we have analyzed the effects

of different parameters on MetaBoot results, using synthetic datasets. Thirdly, we have

evaluated the overall performance of MetaBoot by comparing with other methods. Finally,

we have assessed the effectiveness of MetaBoot on real datasets.
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Taxonomical distribution patterns of real metagenomic samples
One of the most critical problems in identification of biomarkers from microbial

community data is the lack of “ground truth.” Although a simulated synthetic dataset

could contain such “ground truth,” simulating taxonomical distribution properties of real

metagenomic samples is critical for the validity of such synthetic dataset.

In this work, we used oral dataset1 to analyze distribution properties of real metage-

nomic samples. Also, we have generated 3 sets of synthetic metagenomic datasets. Firstly,

some literatures suggested the taxonomical distribution of microbial community conform

to normal distribution (Segata et al., 2011). Therefore, we have generated synthetic datasets

S1 (Normal dataset) based on normal distributions (see ‘Materials and Methods’ for

details).

Secondly, we have evaluated the taxonomical distribution properties for taxa at genus

level as features. Based on the analysis of the distribution of oral microbial community

dataset (dataset described in “Materials and Methods”), we observed that the distribution

of a couple of features (about 10% taxa) conformed a mixture of normal and gamma

distribution. For example, taxon Leptotrichia and its mixture of distributions were shown

in Figs. 3A–3C. Therefore, we generated synthetic dataset S2 (Mixture dataset) based on

the mixture of normal and gamma distribution (see “Materials and Methods” for details).

Thirdly, we have found that the distribution of over 40% taxa (one example for taxon

Actinonyces shown in Fig. 3D) in oral dataset1 conformed gamma distribution tested

by the Kolmogorov–Smirnov Tests (Birnbaum & Tingey, 1951) (function ks.test in R).

The p-values of KS test were 0.78 and 0.93, respectively, for the two sets (EG and NG) of

samples. Therefore, we generated synthetic dataset S3 (Gamma dataset) based on gamma

distribution (see “Materials and Methods” for details).

MetaBoot analysis
Here we chose taxa at genus level for analysis, which could be accurately identified by

Mothur (Schloss et al., 2009) and Parallel-Meta (Su, Xu & Ning, 2012) software based on the

OralCore (Griffen et al., 2011) and GreenGenes (DeSantis et al., 2006) databases, and are

detailed enough and widely used for differentiating ingredients of communities. For each

synthetic datasets (S1, S2 and S3), we aimed to differentiate “class 1” and “class 2” samples

using MetaBoot (see “Materials and Methods” for details).

The MetaBoot process includes 3 major steps: first feature selection step, bootstrap and

feature selection step, feature rank step. Throughout the entire workflow of MetaBoot, 3

parameters (M, M′ and B, see “Materials and Methods” for details) are most important for

the quality of selected biomarkers.

For synthetic dataset S1, M was set to be 50, because we observed that when M was set to

50, enough or all unique positive features could be obtained from 1,000 features using

mRMR (Fig. 4A). Notice that we treated features from the same group as redundant

features. After eliminating redundant features, the remaining features were unique

features. If the unique features were from positive marker groups, we called those as

unique positive features. Since synthetic dataset S1 only includes 10 positive marker
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Figure 4 Plots for selecting M and B for MetaBoot analysis of synthetic data S1. (A) The x-axis is the
values of M, and the y-axis is the number of unique positive features selected by mRMR for each given M.
(B) The x-axis is the number of bootstraps B, and the y-axis is the number of unique features selected by
all bootstrap processes. Both (A) and (B) considered different standard deviations (sd) used in synthetic
dataset S1.
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Figure 5 Comparison of results by 4 methods for synthetic dataset S1 in selecting non-redundant
features. The x-axis is the standard deviation (sd) representing the parameter sds in synthetic dataset
S1. The y-axis is the non-redundancy rate Eq. (2) in 10 selected features. The error bar represents 95%
confidence interval.

groups, we set M′ to be 10. In order to determine parameter B, we set a series gradient of

the bootstrap process. We observed that when B was more than 40, the number of total

unique features selected did not increase. Therefore, the B value was set to 40 (Fig. 4B).

For synthetic dataset S2 and S3, we have observed similar patterns (see Supplemental

Information 1 for details). Therefore, in this work, parameters M,B and M′ were set to be

50, 40 and 10, respectively, for all datasets.

A comparison with current tools using synthetic data
Redundancy analysis based on synthetic datasets
For comparison of 4 methods as regard to redundancy rate (Eq. (1)), non-redundancy

rate (Eq. (2)) and error rate (Eq. (3)), we applied LEfSe, Metastats, a bottom-up method

Wilcoxon rank-sum test (Wilcoxon) and our method (MetaBoot) on synthetic dataset S1

(There are 10 positive biomarker groups and each group has 10 redundant biomarkers.),

respectively. As shown in Fig. 5, MetaBoot can select more non-redundant positive features

than LEfSe, Metastats and Wilcoxon. Additionally, because the 100 positive markers have

the same p-value (see “Materials and Methods” for details), Metastats in Fig. 5 does not

include error bars which indicate that the 10 selected features are from the same positive

marker group (the first positive maker group). Therefore, Metastats could not eliminate

redundant features when analyzing synthetic dataset S1.

For synthetic dataset S2 (Table 3), MetaBoot could select at least 4 out of 10

non-redundant positive biomarkers which was better than other three methods. For
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Table 3 Results about redundancies when applied these methods on synthetic dataset S2 (Mixture
dataset) and S3 (Gamma dataset) to select 10 features. In columns for “LEfSe,” “Metastats,” “Wilcoxon”
and “MetaBoot,” the values were the non-redundancy rate (Eq. (2)) of non-redundant biomarkers with
standard deviation of 1.

Dataset LEfSe Metastats Wilcoxon MetaBoot

S2 (Mixture dataset) 36.0 ± 5.5 26.0 ± 5.5 38.0 ± 8.4 42.0 ± 4.5

S3 (Gamma dataset) 46.0 ± 11.4 31.4 ± 9.0 50.0 ± 12.2 50.9 ± 8.1

Table 4 Results about robustness when applied these methods on synthetic dataset S2 (Mixture
dataset) and S3 (Gamma dataset) to select 100 positive features. In columns for “LEfSe,” “Metastats,”
“Wilcoxon” and “MetaBoot,” the values were “# of positive features” with standard deviation of 1.

Dataset LEfSe Metastats Wilcoxon MetaBoot

S2 (Mixture dataset) 67.2 ± 2.6 48.6 ± 4.0 69.0 ± 2.5 70.1 ± 1.1

S3 (Gamma dataset) 70.4 ± 5.5 73.3 ± 2.9 83.4 ± 2.3 81.6 ± 2.8

synthetic dataset S3 (Table 3), LEfSe and Metastats could only select less than 5 out of 10

non-redundant positive features on average. Both Wilcoxon and MetaBoot outperformed

LEfSe and Metastats in that they both can select at least 5 out of 10 non-redundant positive

biomarkers. Among these two, MetaBoot was slightly better than Wilcoxon in selecting

non-redundant positive markers.

When we further analyzed the differences between MetaBoot and mRMR, we could

observe that MetaBoot had similar ability with mRMR in selecting unique positive

markers based on synthetic dataset S1 (see Fig. S2 for details), S2 (non-redundancy rate:

48.0% ± 11.0) and S3 (non-redundancy rate: 53.6% ± 10.1). However, for most synthetic

datasets from S1, S2 and S3, mRMR usually had about 10% error rate (Eq. (3)), while

MetaBoot had much lower error rate (details of results not shown here).

Robustness analysis based on synthetic datasets
We have applied LEfSe, Metastats, Wilcoxon and MetaBoot on synthetic dataset S1, S2 and

S3 to study their robustness defined by their ability to differentiate positive and negative

biomarkers, respectively. For each method, 100 features (equal to the number of redundant

positive markers in synthetic datasets) were selected as biomarkers; then, the correctly

detected biomarkers were counted. Results (Table 4 and Fig. 6) have shown that MetaBoot

and Wilcoxon method can detect larger number of correct biomarkers compared to other

methods. Although all four methods were shown to be robust on synthetic dataset S1

(based on normal distribution), Wilcoxon and MetaBoot outperformed Metastats and

LEfSe greatly on synthetic dataset S2 (based on the mixture of normal and gamma

distribution) and S3 (based on gamma distribution), indicating the superiority of

Wilcoxon and MetaBoot methods as regard to robustness.

As regard to robustness, MetaBoot was slightly better than mRMR in selecting positive

markers based on synthetic dataset S1 (see Fig. S2 for details), S2 (#positive features:
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Figure 6 Comparison of results by 4 methods for synthetic dataset S1 in selecting positive fea-
tures. The x-axis is the standard deviation (sd) representing the parameter sds in synthetic dataset S1.
The y-axis is the number of positive features in 100 selected features. The error bar represents standard
deviation of 1.

67.4 ± 3.6) and S3 (#positive features: 80.2 ± 3.0). The built-in bootstrap process in

MetaBoot might attribute to MetaBoot’s advantage in selecting more positive biomarkers

compared to mRMR.

Classification accuracy analysis based on synthetic datasets
For comparison of different methods in classification accuracy (Eq. (4)), we have applied

LEfSe, Metastats, Wilcoxon and MetaBoot on synthetic dataset S3 to select 10 features by

each of the methods. We then used these 10 features to perform classification by utilizing

Support Vector Machine (SVM) implemented by LIBSVM (Chang & Lin, 2011). The

reason that we have not done classification based on synthetic dataset S1 was the large

difference between 2 classes, making classification easy-proof by all methods.

Each class has 60 samples in synthetic dataset S3. We have performed 6-fold cross-

validation to estimate the classification accuracy. Therefore, in the aforementioned

formula, the average classification accuracy is shown in Fig. 7. The highest accuracy was

obtained when using 10 features selected by MetaBoot. We also observed that MetaBoot

had the most stable classification performance (Fig. 7). We obtained similar results for

synthetic dataset S2 (see Fig. S3 for details).

Biomarker identification based on real metagenomic datasets
Results on oral dataset1
For this dataset, we aim to identify biomarkers that could differentiate “oral hygiene phase”

and “experimental gingivitis phase” from 16S rRNA gene sequencing data (details in

Wang et al. (2015), PeerJ, DOI 10.7717/peerj.993 16/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.993/supp-1
http://dx.doi.org/10.7717/peerj.993/supp-1
http://dx.doi.org/10.7717/peerj.993


Figure 7 Comparison of accuracies when using 10 features selected by 4 methods based on synthetic
dataset S3. The x-axis represents 4 methods and y-axis represents classification accuracy by SVM.

“Materials and Methods”). We have applied the same four methods on oral dataset1 to

select 10 features. Biomarker identification results were shown in Fig. 8.

From Fig. 8A, we observed that MetaBoot selected similar features (9 overlaps) with

Wilcoxon, while only 4 and 5 feature overlapping with MetaBoot were found for LEfSe

and Metastats, respectively. As shown in Fig. 8B, the 10 features selected by each of these

methods could be assigned to 6–7 phyla which are mostly overlapping. As shown in Fig. 8,

we observed that Streptococcus were selected by MetaBoot, as well as LEfSe and Metastats.

Streptococcus was linked with all kinds of oral problems (Munro & Grap, 2004; Fitzgerald,

1960; Jenkinson & Lamont, 2005). Therefore, Streptococcus can serve as biomarker to

distinguish different samples and be used for oral diagnosis (Bisno et al., 1997). Rothia were

selected by Wilcoxon, as well as LEfSe. Rothia is part of the normal community of microbes

residing in the mouth. Previous work found Rothia in 3% of isolates of nitrate-reducing

bacteria from the mouth (Doel et al., 2005).

To compare the discriminations accuracy of 10 features selected by different methods,

we performed classification by LIBSVM (Chang & Lin, 2011). Each class in oral dataset1

has 50 samples. And we did 5-fold cross-validation (40 samples are used as training

datasets) to estimate the classification accuracy. The classification results were shown in

Fig. 9, from which we could observe that MetaBoot still had the highest accuracy and the

most stable classification performance.

In order to evaluate the added value of bootstrap on mRMR (as realized in MetaBoot),

we have also compared the results of mRMR vs. MetaBoot. Streptococcus (mentioned

above) was linked with various oral problems. On the other hand, Cardiobacterium,

selected only by mRMR as biomarker, was reported to be a rare cause of endocarditis

(Han & Falsen, 2005; Slotnick & Dougherty, 1964), but it was not reported as oral related

microbial biomarker in any known studies. The difference between mRMR and MetaBoot
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Figure 8 Biomarker identification results on oral dataset1. (A) The Venn diagram when we selected 10
features from oral dataset1 using four methods. (B) Circular phylogenetic (continued on next page...)
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Figure 8 (...continued)

tree of oral dataset1 at genus level. The tree was generated with RAxML and viewed in ITOL (Letunic &
Bork, 2007). Genera are color-coded by phyla, except for the Firmicutes and Proteobacteria, which are
shown at class level. We used the same phylogenetic tree plot from microbiome.osu.edu (Griffen et al.,
2011), and we added legends onto this tree to show biomarkers selected by different methods.

Figure 9 Comparison of accuracies when using 10 features selected by 4 methods based on oral
dataset1. The x-axis represents 4 methods and the y-axis represents the classification accuracy by SVM.

can be attributed to the bootstrap process included in MetaBoot. Therefore, apart

from advantage in robustness, biomarkers selected by MetaBoot were considered more

biologically meaningful comparing to mRMR (see Fig. S4 for details).

Results on oral dataset2
For this dataset, we aim to identify biomarkers that could differentiate “saliva” and “sub-

gingival plaque” from 16S rRNA sequencing data (details in “Materials and Methods”).

We have applied the same four methods on oral dataset2 at order, family and genus level

to select 10 features, respectively. As shown in vennplot (Fig. 10A), at the level of genus

and family, LEfSe, Wilcoxon and MetaBoot had good coherence. Yet at order level, there

were larger differences among results from different methods. In addition, considering

the complexity of the data, studies of microbial community biomarker at order level

would not be as reliable as on genus and family levels and seldom used. Therefore, we

only focused on the difference among different methods at the level of genus and family.

At the genus level (Fig. 10A genus), Peptostreptococcus (Fig. 10B), which was selected by

MetaBoot, has been isolated from a wide range of human oral infections (Downes & Wade,

2006) and implicated in human gingivitis and periodontitis (Riggio & Lennon, 2003). At

family level (Fig. 10A family), Spirochaetaceae (Fig. 10B) was selected by MetaBoot but

not other method. It was also interesting to observe that all oral spirochetes (belonging

to Spirochaetaceae family) were classified in the genus Treponema (Chan & McLaughlin,
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Figure 10 Biomarker identification results on oral dataset2. (A) The Venn diagram when 10 features
were selected at different level from oral dataset2 using the methods. (B) The bar-chart of average relative
abundance of the features selected by MetaBoot or LEfSe and Wilcoxon.
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2000), and Treponema was reported to be associated with periodontal diseases (Chan &

McLaughlin, 2000; Sela, 2001). But for Propionibacteriaceae (Fig. 10B), which was selected

by LEfSe and Wilcoxon, though this species could be isolated from normal, gingivitis

and periodontitis sample with small amount (Riggio et al., 2011), there was few report

about the relationship between oral disease and Propionibacteriaceae. Therefore, these

results on real oral samples have clearly shown the advantage of MetaBoot on discovery of

biologically meaningful biomarkers.

Results on soil samples
For this dataset, we aim to identify biomarkers that could differentiate “pH = 4.9” and

“pH = 8.4” from 16S rRNA sequencing data (details in “Materials and Methods”). Unlike

two previous oral datasets that we have used in “Results on oral dataset1” and “Results on

oral dataset2,” each class in soil dataset only has 7 samples. Therefore, we focused on the

different features selected by different methods not the distribution properties of features.

(The sample size is small for distribution analysis). Due to the complexity of soil microbial

community samples, we chose taxa at phylum level for analysis.

When we performed classification by LIBSVM (Chang & Lin, 2011), the classification

accuracy was always 100% regardless of either of the 5 or 10 features (selected by the four

different methods) we used. For soil dataset, features selected by the four different methods

all had distinguishing ability to identify different samples. However, biological explanation

of features selected by the four different methods needed further research.

Based on the above results for soil samples, we could observe that features selected by

the four different methods were quite different (Fig. 11A), yet most of these features had

distinguishing power to identify different samples. Further investigation and interpretation

of these features might provide more biological insights for the underline functionality of

microbial community.

As shown in Fig. 11B, Burkholderiaceae (selected by the four methods) was enriched

in acidic condition (pH = 4.9). But when pH of soil was 8.5, its relative abundance was

low. And from different pH samples, the relative abundance of Burkholderiaceae had a

significant difference (p-value = 0.00058). Therefore, Burkholderiaceae could serve as

marker to differentiate soil samples with different pH values. Previous work has reported

that Burkholderiaceae needs oxalic acid as its source of carbon (Garrity, Bell & Lilburn,

2004), which partially support this finding.

CONCLUSIONS
The research in metagenomics becomes more and more popular as microbial communities

were found to play important roles in many areas such as bioenergy, bioremediation and

human health. The discovery of biomarker taxa for metagenomic datasets could facilitate

identification of microbial community’s phenotype, thus making them important for

community identification and even monitoring of the host or environment within which

the community live.

However, current metagenomic datasets lack “ground truth” of biomarkers, making it

hard for the assessment of computationally predicted metagenomic biomarkers by various
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Figure 11 Biomarker identification results on soil dataset. (A) The Venn diagram when we selected top
10 features from soil dataset using the four methods. (B) The bar-chart of average relative abundance of
5 features selected by MetaBoot under different pH values. The values for “Others” are computed as the
average for other taxa. The dataset is small for standard parametric approaches. Therefore, the p-values
(*, 0.01 ≤ p-value < 0.05; **, p-value < 0.01) were calculated through permutation tests (a one-way
exact test) (Kabacof, 2011). For these five features selected, the exact test indicates a significant difference
(p-values are all less than 0.01) between two different pH samples.

methods. A properly generated synthetic dataset with embedded “ground truth” and taxo-

nomical distribution properties similar to those of real metagenomic samples could make

such assessment fair and easy. In this study, we have evaluated taxonomical distribution

properties for different microbial communities, and found that their taxonomical distri-

butions follow either normal distribution, gamma distribution, or the mixture of normal

and gamma distribution. Therefore, in this work, synthetic datasets have been generated

accordingly that could facilitate the assessment of biomarker identification methods.
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We have proposed the MetaBoot method for metagenomic biomarker identification,

which is a top-down method based on mRMR strategy and bootstrapping technique. The

use of mRMR could reduce redundancies, while the use of bootstrapping could improve

robustness of the MetaBoot method. It has been compared with two top-down methods

(Metastats and LEfSe) and one bottom-up method (Wilcoxon rank-sum test) on simulated

datasets, with results indicating that MetaBoot could identify more non-redundant

biomarkers with high accuracy and robustness. On real oral and soil metagenomic

datasets, it was also observed that MetaBoot could identify more reliable biomarkers for

distinguish different types of microbial communities, showing that the results of MetaBoot

were more biologically meaningful. Therefore, MetaBoot could serve well for metagenomic

biomarker discovery.

Current taxonomical biomarker discovery methods still face several obstacles: Firstly

most of them could identify biomarkers from only two groups of microbial communities,

while biomarkers for a set of different groups could be more useful in several circum-

stances. Secondly, the biomarker sets (with multiple biomarkers) might be useful for

complex samples such as microbial community, yet none has been done on how such

sets could be optimized. Thirdly, with the advancement of whole genome sequencing,

important functional biomarker identification using not only taxa but also genes would

become feasible as well, yet current methods cannot identify functional biomarkers well.

All these analytical bottlenecks will be addressed in the future development of MetaBoot

and companion tools, and they in turn will help for better understanding of microbial

communities and their impacts on our environment.
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