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flagging can help in identifying problematic records, but requires customization of which
tests and thresholds should be applied to the taxonomic group and geographic area under
focus. Our results stress the importance of thorough exploration of the meta-data
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ABSTRACT28

Species occurrence records provide the basis for many biodiversity studies. They derive from geo-referenced specimens

deposited in natural history collections and visual observations, such as those obtained through various mobile

applications. Given the rapid increase in availability of such data, the control of quality and accuracy constitutes

a particular concern. Automatic flagging and filtering are a scalable and reproducible means to identify potentially

problematic records in datasets from public databases such as the Global Biodiversity Information Facility (GBIF;

www.gbif.org). However, it is unclear how much data may be lost by filtering, whether the same tests should be applied

across all taxonomic groups, and what is the effect of filtering for common downstream analyses. Here, we evaluate

the effect of 13 recently proposed filters on the inference of species richness patterns and automated conservation

assessments for 18 Neotropical taxa including animals, fungi, and plants, terrestrial and marine, downloaded from GBIF.

We find that 29-90% of the records are potentially erroneous, with large variation across taxonomic groups. Tests for

duplicated information, collection year, basis of record as well as urban areas and coordinates for terrestrial taxa in the

sea or marine taxa on land have the greatest effect. While many flagged records might not be de facto erroneous, they

could be overly imprecise and increase uncertainty in downstream analyses. Automated flagging can help in identifying

problematic records, but requires customization of which tests and thresholds should be applied to the taxonomic group

and geographic area under focus. Our results stress the importance of thorough exploration of the meta-data associated

with species records for biodiversity research.
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INTRODUCTION45

Publicly available species distribution data have become a crucial resource in biodiversity research, including studies in46

ecology, biogeography, systematics and conservation biology. In particular, the availability of digitized collections from47

museums and herbaria, and citizen science observations has increased drastically over the last few years. As of today,48

the largest public aggregator for geo-referenced species occurrences data, the Global Biodiversity Information Facility49

(www.gbif.org), provides access to more than 1.3 billion geo-referenced occurrence records for species from across the50

globe and the tree of life.51

A central challenge to the use of these publicly available species occurrence data in research are erroneous geographic52

coordinates (Anderson et al. 2016). Errors mostly arise because public databases integrate records collected with53

different methodologies in different places, at different times; often without centralized curation and only rudimentary54

meta-data. For instance, erroneous coordinates caused by data-entry errors or automated geo-referencing from vague55

locality descriptions are common (Maldonado et al. 2015; Yesson et al. 2007) and cause recurrent problems such as56

records of terrestrial species in the sea, records with coordinates assigned to the centroids of political entities, or records57

of species in captivity (Zizka, Silvestro, et al. 2019).58

Manual data cleaning based on expert knowledge can detect these issues, but it is only feasible on small taxonomic59

or geographic scales, and it is time-consuming and difficult to reproduce. As an alternative, automated flagging methods60

to identify potentially problematic records have been proposed as a scalable option, as they are able to deal with datasets61

containing up to millions of records and many different taxa. Those methods are usually based on geographic gazetteers62

(e.g., Chamberlain 2016; Zizka, Silvestro, et al. 2019; Jin and Yang 2020) or on additional data, such as environmental63

variables (Robertson, Visser, and Hui 2016). Additionally, filtering procedures based on record meta-data, such as64

collection year, record type, and coordinate precisions have been proposed to improve the suitability of publicly available65

occurrence records for biodiversity research (Zizka, Silvestro, et al. 2019).66

Erroneous records are especially problematic in conservation, where stakes are high. Recently proposed methods67

for automated conservation assessments could support the formal assessment procedures for the global Red List of68

the International Union for the Conservation of Nature (IUCN) (Dauby et al. 2017; Bachman et al. 2011; Pelletier et69

al. 2018). These methods approximate species’ range size, namely the Extent of Occurrence (EOO, which is the area70

of a convex hull polygon comprising all records of a species), the Area of Occupancy (AOO, which is the sum of the71

area actually occupied by a species, calculated based on a small-scale regular grid), and the number of locations for a72

preliminary conservation assessment following IUCN Criterion B (“Geographic range”). These methods have been73

used to propose preliminary global (Stévart et al. 2019; Zizka, Azevedo, et al. 2019) and regional (Schmidt et al. 2017;74

Cosiaux et al. 2018) Red List assessments. However, all metrics but especially EOO, are sensitive to individual records75

with erroneous coordinates. Automated conservation assessments may therefore be biased, particularly if the number of76

records are few, as it is the case for many tropical species.77

While newly proposed methods for automated cleaning of species records hold great promise for biodiversity78

research, their use across taxonomic groups and datasets remains poorly explored. Here, we test the effect of automated79

filtering of species geographic occurrence records on the number of records available in different groups of animals,80

fungi, and plants. Furthermore, we test the impact of automated filtering procedures for the accuracy of preliminary81

automated conservation assessments compared to full IUCN assessments. Specifically, we evaluate a pipeline of 1382

automated filters to flag possibly erroneous records by using 1) record meta-data and 2) geographic gazetteers. We83

address three questions:84

1. Which filters lead to the biggest loss of data when applied?85

2. Does the importance of individual filters differ among taxonomic groups?86

3. Does automated filtering improve the accuracy of automated conservation assessments?87

MATERIAL AND METHODS88

Choice of study taxa89

This study is the outcome of a workshop held at the Federal University of Rio Grande do Norte in Natal, Brazil in90

October 2018 gathering students and researchers working with different taxonomic groups of animals, fungi, and plants91

across the Neotropics. Each participant analysed geographic occurrence data from their taxonomic group of interest and92

commented on the results for their group. Hence, we include groups based on the expertise of the participants rather93

than following some arbitrary choice of taxa and taxonomic ranks. We acknowledge a varying degree in documented94

expertise and number of years working on each group. We obtained public occurrence records for 18 taxa, including one95

2/18

PeerJ reviewing PDF | (2020:03:46428:0:1:NEW 17 Mar 2020)

Manuscript to be reviewed



plant family, nine plant genera, one genus of fungi, three families and one genus of terrestrial arthropods, one family of96

snakes, one family of skates, and one genus of bony fish (Table 1).97

Species occurrence data98

We downloaded occurrence information for all study groups from www.gbif.org using the rgbif v1.4.0 package99

(Chamberlain 2017) in R (GBIF.org, 2019a-p,2020a,b). We downloaded only records with geographic coordinates100

and limited the study area to latitudes smaller than 33◦ N and longitudes smaller than 35◦ W and larger than 120◦ W101

reflecting the Neotropics (Morrone 2014), our main area of expertise. The natural distribution of all included taxa are102

confined to the Neotropics except Arhynchobatidae, Diogenidae, Dipsadidae, Entomobryidae, Gaylussacia, Iridaceae,103

Neanuridae, and Tillandsia for which we only obtained the Neotropical occurrences.104

Automated cleaning105

We followed the cleaning pipeline outlined by Zizka, Silvestro, et al. (2019) and first filtered the raw data downloaded106

from GBIF (“raw”, hereafter) using meta-data for those records for which they were available, removing: 1) records107

with a coordinate precision below 100 km (as this represent the grain size of many macro-ecological analyses); 2) fossil108

records and records of unknown source; 3) records collected before 1945 (before the end of the Second World War,109

since coordinates of old records are often imprecise); and 4) records with an individual count of less than one and more110

than 99. Furthermore, we rounded the geographic coordinates to four decimal precision and retained only one record per111

species per location (i.e., test for duplicated records). In a second step, we used the clean coordinates function112

of the CoordinateCleaner v2.0-11 package (Zizka, Silvestro, et al. 2019) with default options to flag errors113

that are common to biological data sets (“filtered”, hereafter). These include: coordinates in the sea for terrestrial taxa114

and on land for marine taxa, coordinates containing only zeros, coordinates assigned to country and province centroids,115

coordinates within urban areas, and coordinates assigned to biodiversity institutions. See Table 2 for a summary of all116

flagging tests we used.117

Downstream analyses118

We first generated species richness maps using 100x100 km grid cells for the raw and filtered datasets respectively, using119

the package speciesgeocodeR v2.0-10 (Töpel et al. 2016). We then performed an automated conservation120

assessment for all study groups based on both datasets using the ConR v1.2.4 package (Dauby et al. 2017). ConR121

estimates the EOO, AOO, and the number of locations, and then suggests a preliminary conservation status based on122

Criterion B of the global IUCN Red List. While these assessments are preliminary (see IUCN Standards and Petitions123

Subcommittee 2017), they can be a proxy used by the IUCN to speed up full assessments. We then benchmarked the124

preliminary conservation assessments against the global IUCN Red List assessments as far as available for the same125

taxa, which we obtained from www.iucn.org via the rredlist v.0.5.0 package (Chamberlain 2018).126

Evaluation of results127

Each author provided an informed comment on the performance of the raw and cleaned datasets, concerning the number128

of flagged records and the accuracy of the overall species richness maps. We then compared the agreement between129

automated conservation assessments based on raw and filtered occurrences with the global IUCN Red List for those taxa130

where IUCN assessments were available (www.iucn.org).131

We did all analyses in the R computing environment (R Core Team 2019), using standard libraries for data handling132

and visualization (Wickham 2018; Garnier 2018; Ooms 2014, 2019; Hijmans 2019). All scripts are available from a133

zenodo repository (doi:10.5281/zenodo.3695102).134

RESULTS135

We retrieved a total of 218,899 species occurrence records, with a median of 2,844 records per study group and 10136

records per species (Table 3, Appendix 1). We obtained most records for Dipsadidae (64,249) and fewest for Thozetella137

(51). The species with most records was Harengula jaguana (19,878).138

Our automated tests flagged a total of 97,018 records (Fig. 2), with a median of 45% per group. Overall, the most139

important test was for duplicated records (on average 35.5% per taxonomic group). The filtering steps based on record140

meta-data that flagged the largest number of records were the basis of records (5.9%) and the collection year (3.4%).141

The most important automated tests were for urban area (8.6%) and the occurrence from records of terrestrial taxa in the142

sea and marine taxa on land (4.3%, see Table 3 and Appendix 1 in the electronic supplement for further details and143

3/18

PeerJ reviewing PDF | (2020:03:46428:0:1:NEW 17 Mar 2020)

Manuscript to be reviewed



the absolute numbers). Only a few records were flagged by the coordinate precision, zero coordinates and biodiversity144

institution tests (Fig. 3).145

Entomobryidae, Diogenidae, and Neanuridae had the highest fraction of flagged records (Table 3). In general, the146

different filters we tested were of similar importance for different study groups. There were few outstanding exceptions,147

including the particularly high proportions of records flagged on the “basis of record test” for Tityus (7.0%), Dipsadidae148

(5.6%), Prosthechea (5.0%) and Tillandsia (4.9%), by the collection year for Dipsadidae (11.3%), by the taxonomic149

identification level for Tityus (1.6%), by the capital coordinates for Oocephalus (6.1%) and Gaylussacia (3.2%), by the150

seas/land test for Diogenidae and Thozetella, and by the urban areas test for Oocephalus (13.3%) and Iridaceae (12.3%).151

Furthermore, Entomobryidae differed considerably from all other study taxa with exceptionally high numbers of records152

flagged by the “basis of record,”level of identification’ and urban areas” tests.153

Geographically, the records flagged by the “basis of record” and “individual count” tests were concentrated in154

Central America and southern North America, and a relatively high number of records flagged due to their proximity to155

the centroids of political entities were located on Caribbean islands (Fig. 3). See Appendix 2 for species richness maps156

using the raw and cleaned data for all study groups.157

We found IUCN assessments for 579 species that were also included in our distribution data from 11 of our study158

groups (Table 4, Appendix 3). The fraction of species evaluated varied among the study group, with a maximum of159

100% for Harengula and Lepismium and a minimum of 2.3% for Iridaceae (note that the number of total species varied160

considerably among groups). The median percentage of species per study group with an IUCN assessment was 15%. A161

total of 102 species were listed as Threatened by the IUCN global Red List (CR = 19, EN = 40, VU = 43) and 477 as162

Not Threatened.163

We obtained automated conservation assessments for 2,181 species in the filtered dataset. Based on the filtered data,164

the automated conservation assessment evaluated 1,382 species as possibly threatened (63.4%, CR = 495, EN = 577, VU165

= 310, see Appendix 3 for assessments of all species). The automated assessment based on the filtered dataset agreed166

with the IUCN assessment for identifying species as possibly threatened (CR, EN, VU) for 358 species (64%; Table 4).167

Filtering reduced the EOO by -18.4% and the AOO by -9.9% on median per group. For the raw dataset the agreement168

with IUCN was higher at 381 species (65.7%).169

DISCUSSION170

Automated flagging based on meta-data and automatic tests flagged on average 45% of the records per taxonomic171

group. The filters for basis of record, duplicates, collection year, and urban areas flagged the highest fraction of records172

(Question 1). The importance of different tests was similar across taxonomic groups, with exceptions especially for173

the tests on basis of record, collection year, capital coordinates, and urban areas (Question 2). The results for species174

richness were similar between the raw and filtered data with some improvements by the filters. We found little impact of175

filtering on the accuracy of the automated conservation assessments (Question 3).176

The relevance of individual filters177

The aim of automated filtering is to identify possibly problematic records that are unsuitable for particular downstream178

analyses. Hence, our tests may identify true errors (e.g., wrong coordinates such as those with exclusively zeros, equal179

latitude and longitude and records of terrestrial species in the sea or marine species on land) as well as records that are180

not necessarily erroneous, but have a low precision (e.g., collection year, coordinate precision, centroids of political181

units) or are redundant for certain analyses (duplicates). The importance of each test and the linked thresholds must182

be judged based on the specific downstream analyses. For instance, records assigned to country centroids might be183

acceptable for inter-continental comparisons, but can be considered erroneous for species distribution modelling on a184

local scale. As our results show, adapting automated tests to the geographic study area or the taxonomic study group can185

be warranted. For instance, the high number of records flagged for centroids on the Lesser Antilles (Fig. 3) might be186

overly strict, although we chose a conservative distance for the Political centroid test (1 km).187

Several reasons may explain the high proportion of records flagged as duplicates. First, the deposition of duplicates188

from the same specimen hosted at different collections is common practice, especially for plants, where a specimen189

duplication is easily feasible. Second, independent collections at similar localities may occur, in particular for local190

endemics. Third, low coordinate precision, for instance based on automated geo-referencing from locality descriptions,191

may lump records from nearby localities. Duplicated records do not represent errors per se, but may constitute an192

unnecessary computational burden for large-scale biodiversity analyses (Antonelli et al. 2018), which is often a193

bottleneck for analyses of datasets with millions of records.194
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Similarities and differences among taxa195

The number of records flagged by individual tests was similar across study groups, suggesting that similar error types196

might be relevant for collections of plants and animals. Therefore, the same tests can be used across taxonomic groups.197

Some notable exceptions stress the need to adapt each test to the taxonomic study group to balance data quality and198

data availability. The high fraction of records flagged by the “basis of record test” for Tityus, Dipsadidae, Prosthechea199

and Tillandsia, were mostly caused by a high number of records in these groups based on unknown collection methods,200

which might be caused by the contribution of specific datasets lacking this information for these groups. The high201

fraction of records flagged by the collection year test for Dispadidae was caused by a high collection effort already in202

the late 1880s and early 1900s, as can be expected for a charismatic group of reptiles, but also by 500 records dated to203

the year 1700. The latter records likely represent a data entry error: they are all contributed to GBIF from the same204

institution, and the institutions code for unavailable collection dates is 1700-01-01 - 2014-01-01, which has likely205

erroneously been converted to 1700. The high number of species flagged at capital coordinates and within urban areas206

for the plant groups Iridaceae and Oocephalus might be related to horticulture since at least some species in those groups207

are commonly cultivated as ornamentals.208

The general agreement between the species richness maps based on raw and filtered data was encouraging, for the209

use of this data for large-scale biogeographic research (Fig. 4, Appendix 2). The filter based on political centroids had210

an important impact on species richness patterns, which is congruent with the results from a previous study in the coffee211

family (Maldonado et al. 2015). Records assigned to country or province centroids are often old records, which are212

geo-referenced at a later point based on vague locality descriptions. These records are at the same time more likely to213

represent dubious species names, since they might be old synonyms or type specimens of species that have only been214

collected and described once, which are erroneously increasing species numbers.215

We overall consider the effect of the automated filters as positive since they identified the above-mentioned issues216

and increased the data precision and reduced computational burden (Table 3, Appendix 2). However, in some cases217

filters failed to remove major issues, often due to incomplete metadata. For instance, for Diogenidae we found at least218

two records of an extinct species (Paguristes mexicanus) which slipped the “basis of record” test because they were219

marked as “preserved specimen” rather than “fossil specimen”. Furthermore, for Entomobryidae we found that for220

1,996 records the meta-data on taxonomic rank was “UNRANKED” despite all of them being identified to species level,221

leading to a high fraction of records removed by the “Identification level” filter. Additionally automated filters might be222

overly strict or unsuitable for certain taxa. For instance, in Entomobryidae, 2,004 samples were marked as material223

samples, and therefore removed by our global filter retaining only specimen and observation data, which in this case was224

overly strict.225

It should be noted, that while in this study we focused on meta-data and geographic filtering, taxonomic cleaning—226

the resolution of synonymies and identification of accepted names—is another important part of data curation, but227

depends on taxon-specific taxonomic backbones and synonymy lists which are not readily available for many groups.228

The impact of filtering on the accuracy of automated conservation assessments229

The accuracy of the automated conservation assessment was in the same range as found by previous studies (Nic230

Lughadha et al. 2019; Zizka, Azevedo, et al. 2019). The similar accuracy of the raw and filtered dataset for the231

automated conservation assessment was surprising, in particular given the EOO and AOO reduction observed in the232

filtered dataset (Table 4) and the impact of errors on spatial analyses observed in previous studies (Gueta and Carmel233

2016). The robustness of the automated assessment was likely due to the fact that the EOO for most species was large,234

even after the considerable reduction caused by filtering. This might be caused by the structure of our comparison,235

which only included species that were evaluated by the IUCN Red List (and not considered as Data Deficient) and at the236

same time had occurrences recorded in GBIF. Those inclusion criteria are likely to have biased the datasets towards237

species with large ranges, since generally more data for them are available. The robustness of automated conservation238

assessments to data quality is encouraging, although these methods are only an approximation (and not replacements) of239

full IUCN Red List assessments, especially for species with few collection records (Rivers et al. 2011).240

CONCLUSIONS241

Our results suggest that between one to two thirds of the occurrence records obtained from public databases might be242

unsuitable for downstream biodiversity analyses. While the majority of these records might not be erroneous per se,243

they might be overly imprecise and thereby increase uncertainty of downstream results or add computational burden on244

big data analyses.245
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Our results stress the importance of (meta-)data exploration prior to most biodiversity analyses. Automated flagging246

can help to identify problematic records, but also highlight the necessity to customize tests and thresholds to the specific247

taxonomic groups and geographic area of interest. The putative errors we encountered point to the importance to train248

researchers and students to curate species occurrence datasets and to allow users to provide data aggregators such as249

GBIF with feedback for particular records, thus contributing to overall accuracy and precision of public biodiversity250

databases.251
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Table 1. The study groups and their taxonomy. This study includes three marine and 15 terrestrial taxa, seven of them animals, one group of fungi and ten plants,

belonging to 16 different orders.

Taxon Taxon rank Realm Common name ’Phylum’ Order Family

Diogenidae Family Marine Hermit crabs Arthropoda Decapoda Diogenidae

Entomobryidae Family Terrestrial Springtails Arthropoda Entomobryomorpha Entomobryidae

Neanuridae Family Terrestrial Springtails Arthropoda Poduromorpha Neanuridae

Tityus Genus Terrestrial Scorpions Arthropoda Scorpiones Buthidae

Arhynchobatidae Family Marine Skates Chordata Rajiformes Arhynchobatidae

Dipsadidae Family Terrestrial Snakes Chordata Squamata Dipsadidae

Harengula Genus Marine Herrings Chordata Clupeiformes Clupeidae

Thozetella Genus Terrestrial Sac fungi Ascomycota Chaetosphaeriales Chaetosphaeriaceae

Conchocarpus Genus Terrestrial NA Angiosperms Sapindales Rutaceae

Gaylussacia Genus Terrestrial Huckleberries Angiosperms Ericales Ericaceae

Harpalyce Genus Terrestrial NA Angiosperms Fabales Fabaceae

Iridaceae Family Terrestrial NA Angiosperms Asparagales Iridaceae

Lepismium Genus Terrestrial Cacti Angiosperms Caryophyllales Cactaceae

Oocephalus Genus Terrestrial NA Angiosperms Lamiales Lamiaceae

Pilosocereus Genus Terrestrial NA Angiosperms Caryophyllales Cactaceae

Prosthechea Genus Terrestrial Orchids Angiosperms Asparagales Orchidaceae

Tillandsia Genus Terrestrial Bromeliads Angiosperms Poales Bromeliaceae

Tocoyena Genus Terrestrial NA Angiosperms Gentianales Rubiaceae
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Table 2. The automated filters used in this study.

Test Type Rationale

Basis of record Meta-data Records might be unsuitable or unreliable for certain analyses dependent on

their source, e.g. ”fossil” or ”unknown”

Collection year Meta-data Coordinates from old records are more likely to be imprecise or erroneous

coordinates since they are derived from geo-referencing based on the locality

description. This is more problematic for older records, since names or borders

of places may change

Coordinate

precision

Meta-data Records may be unsuitable for a study if their precision is lower than the study

analysis scale

Identification

level

Meta-data Records may be unsuitable if they are not identified to species level.

Individual

count

Meta-data Records may be unsuitable if the number of recorded individuals is 0 (record of

absence) or if the count is too high, as this is often related to records from

barcoding or indicative of data entry problems.

Biodiversity

institutions

Gazetteer-based Records may have coordinates at the location of biodiversity institutions, e.g.

because they were erroneously entered with the physical location of the

specimen or because they represent individuals from captivity or horticulture

Duplicates Gazetteer-based Duplicated records may add unnecessary computational burden, in particular for

large scale biodiversity analyses and distribution modelling for many species

Equal lat/lon Gazetteer-based Coordinates with equal latitude and longitude are usually indicative of data entry

errors

Capitals Gazetteer-based Records may be assigned to the coordinates of country capitals based on a vague

locality description

Political

centroids

Gazetteer-based Records may be assigned to the coordinates of the centroids of political entities

based on a vague locality description

Sea Gazetteer-based Coordinates from terrestrial organisms in the sea are usually indicative of data

entry errors, e.g. swapped latitude and longitude

Urban areas Gazetteer-based Records from urban areas are not necessarily errors, but often represent

imprecise records automatically geo-referenced from vague locality descriptions

or old records from different land-use types

Zeros Gazetteer-based Coordinates with plain zeros are often indicative of data entry errors
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Table 3. The impact of automated filtering on occurrence records for 18 Neotropical taxa downloaded from www.gbif.org. From column four onwards the numbers

show the percentage of records flagged by the respective test. Only tests that flagged at least 0.1% of the records in any group are shown. Individual records can be

flagged by multiple tests, therefore the sum of percentage from all tests can supersede the total percentage.

Summary Meta data filters Gazetteer-based filters

Taxon Total

records

Records

flagged

Fraction

flagged

[%]

Basis

of

record

[%]

Collection

year

[%]

Coordinate

preci-

sion

[%]

Id-level

[%]

Individual

count

[%]

Biodiversity

Institu-

tions

[%]

Capitals

[%]

Duplicates

[%]

Political

cen-

troids

[%]

Sea/land

area

[%]

Urban

areas

[%]

Zeros [%]

Diogenidae 13,840 9,508 68.7 1.7 2.5 0.0 0.0 0.0 0.0 0.7 33.8 0.2 44.3 1.3 0.0

Entomobryidae 2,767 2,498 90.3 72.9 2.0 0.0 72.1 0.0 0.1 0.1 85.5 0.0 0.0 70.1 0.0

Neanuridae 689 461 66.9 2.9 1.3 0.0 0.0 0.0 0.0 0.0 62.4 0.0 0.0 2.0 0.0

Tityus 1,018 562 55.2 7.0 0.4 1.8 1.6 0.0 0.5 1.2 43.5 0.1 0.0 6.9 0.0

Arhynchobatidae 14,633 5,635 38.5 1.7 1.3 0.0 0.9 0.0 0.0 0.0 35.4 0.0 3.8 1.9 0.0

Dipsadidae 64,249 37,058 57.7 5.6 11.3 0.8 0.0 0.1 0.3 1.8 46.3 0.4 0.0 8.5 0.0

Harengula 36,697 11,384 31.0 1.0 0.4 0.0 0.3 0.0 0.0 0.2 27.0 0.1 5.5 0.2 0.0

Thozetella 51 18 35.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.5 0.0 23.5 2.0 0.0

Conchocarpus 1,551 670 43.2 0.5 1.9 0.1 0.0 0.0 0.1 0.0 39.6 0.9 0.4 2.3 0.0

Gaylussacia 3,998 1,887 47.2 0.7 4.4 0.6 0.0 0.0 0.1 3.2 41.8 1.1 0.1 5.2 0.0

Harpalyce 870 288 33.1 0.5 5.5 0.7 0.0 0.9 0.0 1.0 26.0 1.3 0.0 3.8 0.0

Iridaceae 23,127 7,774 33.6 0.9 4.7 0.1 0.0 1.3 0.4 1.0 17.1 0.4 0.1 12.3 0.0

Lepismium 825 245 29.7 0.0 2.1 0.0 0.0 0.0 0.0 0.1 21.9 0.1 0.0 7.8 0.0

Oocephalus 883 435 49.3 0.0 0.7 0.3 0.0 0.1 0.0 6.1 41.9 0.8 0.0 13.3 0.0

Pilosocereus 1,940 501 25.8 1.8 7.0 0.0 0.0 0.9 0.2 0.5 16.8 0.5 0.0 2.1 0.0

Prosthechea 6,617 2,088 31.6 5.0 8.3 0.1 0.0 0.2 0.0 0.4 19.6 1.7 0.0 0.9 0.1

Tillandsia 42,222 14,908 35.3 4.9 5.1 0.1 0.0 1.0 0.3 0.7 19.8 0.7 0.0 9.2 0.0

Tocoyena 2,922 1,098 37.6 0.1 1.9 0.2 0.0 0.5 0.0 0.8 32.3 0.8 0.2 5.0 0.0

Total 218,899 97,018 44.3 4.2 5.6 0.3 1.0 0.4 0.2 1.0 32.3 0.4 4.0 7.1 0.0
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Table 4. Conservation assessment for 11 Neotropical taxa of plants and animals based on three datasets. IUCN: global red list assessment obtained from

www.iucn.org; GBIF Raw: Preliminary conservation assessment based on IUCN Criterion B using ConR and the raw dataset from GBIF; GBIF filtered: Preliminary

conservation assessment based on IUCN Criterion B using ConR and the filtered dataset. Only taxa with at least on species evaluated by IUCN shown.

IUCN GBIF Raw GBIF Filtered

Taxon n taxa Evaluated

[%]

Threatened

[%]

n taxa Threatened

[%]

Match

with

IUCN

[%]

n taxa Threatened

[%]

Match

with

IUCN

[%]

EOO

change

compared

to raw [%]

AOO

change

compared

to raw [%]

Arhynchobatidae 37 51.3 17.9 39 35.9 45.0 39 41.0 40.0 -32.7 -18.5

Dipsadidae 520 68.0 8.8 638 58.3 63.0 598 59.9 61.2 -2.3 -15.6

Harengula 4 100.0 0.0 4 0.0 100.0 4 0.0 100.0 -38.0 -36.9

Conchocarpus 4 8.7 0.0 46 63.0 100.0 45 62.2 100.0 -15.3 -7.1

Gaylussacia 2 3.3 0.0 61 59.0 50.0 58 60.3 50.0 -22.5 -8.6

Harpalyce 3 15.0 5.0 20 65.0 66.7 17 58.8 50.0 -18.4 -16.5

Iridaceae 13 2.3 0.2 531 64.4 50.0 466 62.9 62.5 -18.2 -12.3

Lepismium 6 100.0 0.0 6 16.7 83.3 6 16.7 83.3 -33.9 -7.9

Pilosocereus 41 80.9 19.1 47 55.3 73.7 46 56.5 71.1 -8.5 -5.8

Tillandsia 54 11.6 6.0 464 61.4 85.2 453 62.7 83.3 -13.7 -9.9

Tocoyena 3 13.6 4.5 22 31.8 66.7 21 38.1 66.7 -23.0 -9.5

1
0

/1
8

PeerJ reviewing PDF | (2020:03:46428:0:1:NEW 17 Mar 2020)

Manuscript to be reviewed



FIGURES268

11/18

PeerJ reviewing PDF | (2020:03:46428:0:1:NEW 17 Mar 2020)

Manuscript to be reviewed



A B C

D E
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Figure 1. Examples for taxa included in this study. A) Pilosocereus pusillibaccatus (Pilosocereus), B) Conchocarpus

macrocarpus (Conchocarpus); C) Tillandsia recurva (Tillandsia); D) Oxyrhopus guibei (Dipsadidae); E) Aethiopella

ricardoi (Neanuridae); F) Tocoyena formosa (Tocoyena); G) Harengula jaguana (Harengula); H) Gaylussacia

decipiens (Gaylussacia); I) Oocephalus foliosus (Oocephalus); J) Tityus carvalhoi (Tityus); K) Prosthechea vespa

(Prosthechea), Image credits: A) Pamela Lavor, B) Juliana El-Ottra, C) Eduardo Tomaz, D) Filipe C Serrano, E) Raiane

Vital da Paz, F) Fernanda GL Moreira, G) Thais Ferreira-Araujo, H) Luiz Menini Neto, I) Arthur Soares, J) Renata C

Santos-Costa, K) Tiago Vieira
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Figure 2. The difference in records available between the raw and filtered dataset of 18 Neotropical taxa including

animals, fungi, and plants, plotted in a 100x100 km grid across the Neotropics.
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Figure 3. Geographic location of the occurrence records flagged by the automated tests applied in this study. Only

filters that flagged at least 0.1% of records in any taxon are shown.
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Figure 4. Illustrative examples for the difference in species richness between the raw and filtered dataset (raw -

filtered) from four of the study taxa. Photo credits for C) by Tiago Andrade Borges Santos, otherwise as in Figure 1.
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Baker, and Thomas L. P. Couvreur. 2018. “Low extinction risk for an important plant resource: Conservation286

assessments of continental African palms (Arecaceae/Palmae).” Biological Conservation 221 (May): 323–33. https:287

//doi.org/10.1016/j.biocon.2018.02.025.288
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