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ABSTRACT
Objectives: Coronavirus Disease 2019 (COVID-19) has become a pandemic
outbreak. Risk stratification at hospital admission is of vital importance for medical
decision making and resource allocation. There is no sophisticated tool for this
purpose. This study aimed to develop neural network models with predictors selected
by genetic algorithms (GA).
Methods: This study was conducted in Wuhan Third Hospital from January 2020 to
March 2020. Predictors were collected on day 1 of hospital admission. The primary
outcome was the vital status at hospital discharge. Predictors were selected by using
GA, and neural network models were built with the cross-validation method.
The final neural network models were compared with conventional logistic
regression models.
Results: A total of 246 patients with COVID-19 were included for analysis.
The mortality rate was 17.1% (42/246). Non-survivors were significantly older
(median (IQR): 69 (57, 77) vs. 55 (41, 63) years; p < 0.001), had higher high-sensitive
troponin I (0.03 (0, 0.06) vs. 0 (0, 0.01) ng/L; p < 0.001), C-reactive protein (85.75
(57.39, 164.65) vs. 23.49 (10.1, 53.59) mg/L; p < 0.001), D-dimer (0.99 (0.44, 2.96) vs.
0.52 (0.26, 0.96) mg/L; p < 0.001), and a-hydroxybutyrate dehydrogenase (306.5
(268.75, 377.25) vs. 194.5 (160.75, 247.5); p < 0.001) and a lower level of lymphocyte
count (0.74 (0.41, 0.96) vs. 0.98 (0.77, 1.26) × 109/L; p < 0.001) than survivors.
The GA identified a 9-variable (NNet1) and a 32-variable model (NNet2).
The NNet1 model was parsimonious with a cost on accuracy; the NNet2 model had
the maximum accuracy. NNet1 (AUC: 0.806; 95% CI [0.693–0.919]) and NNet2
(AUC: 0.922; 95% CI [0.859–0.985]) outperformed the linear regression models.
Conclusions:Our study included a cohort of COVID-19 patients. Several risk factors
were identified considering both clinical and statistical significance. We further
developed two neural network models, with the variables selected by using GA.
The model performs much better than the conventional generalized linear models.
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INTRODUCTION
The Coronavirus Disease 2019 (COVID-19) pandemic outbreak has become a global
health emergency since its outbreak in Wuhan, China, and it is now spreading rapidly
across the world (Huang et al., 2020; Ren et al., 2020). More recently, the World Health
Organization declared it to be a pandemic outbreak due to its capability of human-to-
human transmission and rapid spread over the globe. The COVID-19-specific mortality
rate has been reported to be from 2% to 20% (Sun, Chen & Viboud, 2020; Yang et al., 2020;
Chen et al., 2020b), depending on the availability of medical resources and economic
status. One of the most important issues in managing COVID-19 is the accurate and early
identification of high-risk patients. Early risk stratification can help medical decision
making and resource allocation, for example, high-risk patients can be transferred to the
intensive care unit for close monitoring and organ support. Although several studies
have investigated the risk factors for mortality in COVID-19 (Liu et al., 2020;Wang et al.,
2020), there has been no systematic effort to develop a prediction tool for risk stratification
at an early stage.

Conventionally, prediction models are developed with generalized linear models, which,
however, cannot capture the non-linear association between covariates (Friedman, 2010;
Tolles & Meurer, 2016). In the era of big data, a large volume of data can be obtained
from electronic healthcare records (EHR), which causes the curse of dimensionality. In this
study, we extracted variables from the EHR and developed a neural network model with
covariates selected by genetic algorithms (GA) (Tolvi, 2004). The benefit of using this
approach is that it automatically captures the non-linear and interaction terms. We also
showed that the neural network models performed better than conventional generalized
linear models.

METHODS
Study design and setting
The study was conducted in Wuhan Third Hospital from January 2020 to February 2020.
All COVID-19 patients treated in our hospital during the study period were considered
for inclusion. No further new cases were enrolled after February 2020. The EHRs of
subjects with confirmed COVID-19 were reviewed retrospectively. Patients were divided
into the survival and non-survival groups depending on vital status at hospital discharge.
Patients were followed for 30 days for their vital status if they discharged earlier than
30 days. All-cause mortality was considered as the study end point. All laboratory tests and
baseline medical history were extracted on day 1 of hospital admission. Neural network
models were developed to predict in-hospital mortality. The study has been approved by
the ethics committee of Wuhan Third Hospital (KY2020-007). Informed consent was
waived as determined by the institutional review board due to the retrospective study
design. The study was conducted in accordance to the Helsinki Declaration. The study was
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reported as per the STrengthening the Reporting of OBservational studies in Epidemiology
(STROBE) checklist (Von Elm et al., 2007).

Participants
All patients confirmed to have COVID-19 were included for analysis. A patient was
suspected to have COVID-19 if he/she satisfied the diagnostic criteria by clinical features
and epidemiological risks. Clinical criteria included fever and signs/symptoms (e.g., cough
or shortness of breath) consistent with a lower respiratory illness. Epidemiologic risks
were (1) within 14 days of symptom onset, there is evidence of close contact with a
laboratory-confirmed 2019-nCoV patient; (2) a traveling history to Hubei Province within
14 days of symptom onset. A patient with above mentioned evidence could be further
confirmed to have COVID-19 if one of the following criteria was satisfied: (1) positive
nucleic acid test for novel coronavirus by real-time (RT)-PCR in blood or respiratory
specimens; and (2) a homogenous sequence consistent with the novel coronavirus as
identified by genetic sequencing (Jin et al., 2020). The inclusion criteria were described
before (Hong et al., 2020). Patients who had missing values on >80% of variables, had
severe trauma injury, signed a do-not-resuscitate order or were younger than 18 years old
were excluded from analysis.

Variables
Demographic data such as sex, age, weight and height were collected. Comorbidities were
classified by system such as respiratory system, digestive system, endocrinology and
metabolism, muscle and skeleton, and reproductive system. Medical histories of surgery
and infectious disease were extracted. Vital signs such as respiratory rate, temperature,
pulse rate and blood pressure were recorded on admission. Laboratory tests such as routine
blood count, chemistry profile, coagulation profile, electrolytes and brain natriuretic
peptide (BNP) were included. All variables were extracted during the first 24 h following
hospital admission. If there were multiple measurements of a variable, the earliest one was
used for analysis. Variables with more than 30% missing values across patients were
excluded. The remaining variables with missing values were imputed with a random
sample of the remaining complete values (Zhang, 2016a).

Statistical analysis
Descriptive statistics were performed by conventional methods. Briefly, mean and
standard distribution were used for the expression of normally distributed data and
the survival and non-survival groups were compared for these variables with t tests.
Median and interquartile range (IQR) were used for non-normal data and between-group
comparisons were performed with the rank-sum test. Categorical variables were compared
between groups using Chi-square or Fisher’s exact test as appropriate. The analyses
were performed as described before (Zhang et al., 2017; Hong et al., 2020).

A genetic algorithm is a type of evolutionary computer algorithm in which
symbols (i.e., “genes” or “chromosomes”) representing possible solutions are “bred”.
This “breeding” of symbols includes the utilization of crossing-over process in genetic
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recombination and an adjustable mutation rate. A fitness function is then used to gradually
improve the solutions on each generation of algorithms in analogy to the process of natural
selection (Tolvi, 2004; Trevino & Falciani, 2006). The process of evolving the GA and
automating the selection is known as genetic programing. In the present study, each
clinical variable was a gene and formed a chromosome (i.e., a combination of variables)
(Fig. 1). The fitness function is the accuracy, which is calculated by the correctly predicted
samples divided by the total samples. Details of GA can be found in the supplemental
digital content (SDC).

Variables selected by the GA were used to develop a neural network model (Patel &
Goyal, 2007; Zhang, 2016b). A neural network can be thought of as a network of “neurons”
that are organized in layers. The predictors (or inputs) form the bottom layer, and the
forecasts (or outputs) form the top layer. There may also be intermediate layers containing
“hidden neurons”. Details of hyperparameter tuning and construction can be found in
the SDC (Fig. S7). Five-fold cross-validation was employed to prevent overfitting of the
model. The variables selected by the GA were also used to construct a conventional
logistic regression model, and the predictive performance was compared with the neural
network models. The comparison was performed by using 70% samples as the training
set and the remaining 30% samples as the validation set. That is, four models were trained
on the training set, and they were validated on the remaining 30% samples to calculate

Figure 1 Flowchart of genetic algorithms. One cycle of the GA represents an evolution cycle that
comprised seven stages, as shown in the figure. Each cycle developed the best model. Our study ran 300
evolutionary cycles, resulting in the 300 best fitting chromosomes (neural network models). Each model
contained five predictors. Forward selection was performed to develop a representative model(s). Finally,
the representative model(s) were validated and compared with conventional logistic regression models.

Full-size DOI: 10.7717/peerj.9885/fig-1
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the area under the receiver operating characteristic curve (AUC). Delong’s method was
used to compare the AUCs (DeLong, DeLong & Clarke-Pearson, 1988).

Finally, the neural network models were interpreted by using local interpretable
model-agnostic explanations (LIME). Essentially, LIME interprets complex models by
providing a qualitative link between the predictors and the outcome. The LIME algorithm
is accomplished by locally approximating the more complex model with simpler models,
such as generalized linear models. The simpler models are conceptually easier to
understand for subject-matter audience (Ribeiro, Singh & Guestrin, 2016; Zhang et al.,
2018).

RESULTS
Participants and descriptive data
We initially identified 276 patients who had a confirmed diagnosis of COVID-19.
After excluding 30 patients with missing values, we ultimately obtained 246 subjects for
analysis.

The overall mortality rate was 17.1% (42/246) in the study cohort. Non-survivors
were significantly older (median (IQR): 69 (57, 77) vs. 55 (41, 63) years; p < 0.001),
had higher high-sensitivity troponin I (0.03 (0, 0.06) vs. 0 (0, 0.01) ng/l; p < 0.001),
C-reactive protein (85.75 (57.39, 164.65) vs. 23.49 (10.1, 53.59) mg/l; p < 0.001), D-dimer
(0.99 (0.44, 2.96) vs. 0.52 (0.26, 0.96) mg/L; p < 0.001), and a-hydroxybutyrate
dehydrogenase (306.5 (268.75, 377.25) vs. 194.5 (160.75, 247.5) mmol/L; p < 0.001) and a
lower lymphocyte count (0.74 (0.41, 0.96) vs. 0.98 (0.77, 1.26) × 109/L; p < 0.001) than
hospital survivors (SDC Table S1; Fig. S1). As expected, the non-survival group had
more comorbidities in the respiratory system (12% vs. 4%; p = 0.069) and circulatory
system (50% vs. 21%; p < 0.001), and they had a past history of infectious disease (12% vs.
2%; p = 0.009) and trauma (10% vs. 2%; p = 0.031). Volcano plots can help to visualize both
the statistical and clinical significance of a biomarker between died and alive groups
(Fig. 2).

Variable selection with GA
The variable selection process is shown in Fig. 3. A total of 300 evolution processes
were performed. Each evolution cycle developed the chromosome (a combination of
variables) that had the best predictive performance. A maximum of 200 generations were
allowed in each evolution cycle. If the fitness goal (>90% accuracy) was reached before
200 generations, the evolution cycle was terminated, and the program went into the next
cycle of evolution. Figure 2 shows the most frequently appearing variables in selected
chromosomes. The top six variables selected as ranked by their frequency of appearance
were age, BNP, D-dimer, platelet count, average platelet volume and urea nitrogen (Fig. 3).

The above GA procedure provided a large collection of chromosomes with good
predictive accuracy. We need to develop a representative model for the classification
problem. A forward selection procedure was employed for this purpose (Fig. S2).
The procedure resulted in 19 models whose predictive accuracy was higher than 99% of the
maximum. Model 15 was the model with the best predictive accuracy. However, the first
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model with only nine variables was also chosen based on the principle of parsimony.
As a result, two models were generated in this step: NNet1 contains nine variables,
including age, BNP, urea nitrogen, total platelet count, average platelet volume, D-dimer,
high-sensitivity troponin I, LDH and creatinine kinase isoenzyme. The second model
NNet2 contains 32 variables (Fig. S2). The two models can be visualized with heatmaps,
and their ability to classify live vs. dead patents can be visualized with a principal
component analysis (PCA) plot (SDC Figs. S3–S6).

Neural network model training
To evaluate the performance of NNet1 and NNet2, they were trained and validated with
5-fold cross-validation. The hyperparameter tuning is shown in SDC Fig. S7. The neural
networks were fully connected perceptrons with one hidden layer. The number of
hidden units were four and 10 in the NNet1 and NNet2, respectively. The hyperparameters
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Figure 2 Volcano plot showing significantly different variables between survivors and non-
survivors. The vertical axis is the statistical significance, and the horizontal axis represents the clinical
significance. SMD, standardized mean difference. Full-size DOI: 10.7717/peerj.9885/fig-2
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Figure 3 Monitoring the 300 evolution cycles with each cycle producing one chromosome. (A) The frequency by which each gene has been
present in the best chromosome obtained in each evolution cycle. The top 50 genes are denoted with colors, and the top seven are annotated with
names. (B) The changes of the rank of the top 50 genes with evolution cycles. The plot shows different colors when genes have many changes in
ranks, indicating the rank of these genes is unstable. In the example, the top seven “black” genes are stabilized quickly in 100 evolutions, whereas
“grey” genes showed unstable ranks. (C) The histogram of the number of generations required to reach the fitness goal across evolutions.

Full-size DOI: 10.7717/peerj.9885/fig-3
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with the best predictive accuracy were used to develop the neural network models.
Two logistic regression models (Table 1), Logit1 and Logit2, were developed by using
variables included in NNet1 and NNet2, respectively. The diagnostic performance of these
models was evaluated by the AUCs (Fig. 4A). The NNet1 model (AUC: 0.806; 95% CI
[0.693–0.919]) and NNet2 (AUC: 0.922; 95% CI [0.859–0.985]) outperformed the Logit1
(AUC: 0.744; 95% CI [0.577–0.911]) and Logit2 (AUC: 0.802; 95% CI [0.631–0.973]).
The DeLong’s test showed that the NNet2 model outperformed Logit2 with statistical
significance (p = 0.011). NNet1 was significantly better than Logit1 (p = 0.021). But NNet1
was not significantly better than Logit2 (p = 0.324). Variable importance can be calculated
by identifying all connections between each predictor and the outcome. Pooling and
scaling all weights specific to a predictor generates a single value ranging from 0 to 100 that
reflects relative predictor importance. The variable importance makes the predictors
comparable to each other (Garson, 1991). Figures 4B and 4C show the variable importance
in NNet1 and NNet2.

Model interpretation with LIME
Although neural network models are superior to generalized linear models in prediction
accuracy, they suffer from a limitation: the black-box property means that their
interpretation is not straightforward. LIME was used to interpret the NNet1 model (Fig. 5).
The figure illustrates how to illustrate the NNet1 model by subject-matter audience.
Four subjects including two survivors and two non-survivors are illustrated in the figure.
The supporting and contradicting features used to make a mortality prediction are
shown in the figure. Case 1 was alive at hospital discharge. The features of total platelet
count >237 ×109/L, LDH < 350 mmol/L and BNP < 46.45 ng/l support the survival
outcome. The features with red bars contradict the outcome. More categorized features
used in the prediction of an alive vs. dead outcome are shown in Fig. S8.

Comparison with other machine learning models
This section compared the predictive performance of different machine learning methods,
namely, the AdaBoosting model, support vector machine (SVM), neural network

Table 1 Parsimonious logistic regression model for the prediction of mortality.

Variables OR [95% CI] p value

Age 1.09 [1.04–1.14] <0.001

BNP 1.00 [0.99–1.00] 0.823

Urea nitrogen 1.08 [0.96–1.24] 0.215

Total platelet count. 1.00 [0.99–1.01] 0.840

Average platelet volume. 1.45 [0.91–2.67] 0.208

D-dimer 1.07 [1.00–1.16] 0.071

Hypersensitive troponin I 1.12 [1.01–4.74] 0.009

Lactate dehydrogenase 1.01 [1.00–1.01] 0.003

Creatine kinase isoenzyme 1.13 [1.06–1.19] 0.023

Note:
BNP, B-type natriuretic peptide; CI, confidence interval; OR, Odds ratio.
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Full-size DOI: 10.7717/peerj.9885/fig-4
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model and logistic regression model (Fig. 6). In this section, all variables were entered
the models, instead of using genetic algorithm for variable filtering. The result showed that
the predictive performance of AdaBoosting and NNet model were not significantly
different (AUC: 0.869 vs. 0.891, p = 0.091 for Delong’s test). NNet was better than the SVM
(AUC: 0.891 vs. 0.825; p = 0.012) and logistic regression model (AUC: 0.891 vs. 0.743;
p = 0.011; Fig. 7). The reason for the neural network to outperform SVM in our case is
probably due to the fact that the NNet model is fixed in terms of its inputs nodes,
hidden layers, and output nodes; in a SVM, however, the number of support vector
lines could reach the number of instances in the worst case. In this case, the SVM may
overfit the data because the sample size in our study is relatively small. The NNet model
performs better than the logistic regression because the former is able to automatically
handle high-order interaction and non-linear terms (Dreiseitl & Ohno-Machado, 2002).
Since we included many predictors for model training, it is very probably that some of
these variables are related to each other with complex functional forms. The logistic
regression model cannot capture these forms by model specification manually.
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DISCUSSION
The study retrospectively analyzed a cohort of COVID-19 patients. The overall mortality
rate was 17.1%. Risk factors for mortality risk included older age, decreased lymphocyte
count, elevated LDH, troponin I and D-dimer. Two neural network models, NNet1 and
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which included three hyperparameters: the number of iterations for which boosting is run or the number of trees to use, learning coefficient and
maximum depth of the trees. In Breiman method, a ¼ 1

2 ln
1�error
error

� �
is used. The Freund uses a ¼ ln 1�error

error

� �
. In both cases the AdaBoost.M1

algorithm is used and a is the weight updating coefficient. On the other hand, if the Zhu method is used, the SAMME algorithm is implemented with
a ¼ ln 1�error

error

� �þ ln ðnumber of class� 1Þ. (B) Hyperparameter tuning for SVM. The cost and class weight were tuned in a grid. (C) Hyper-
parameter tuning for generalized linear model with regularization. Hyperparameters included alpha (Mixing Percentage) and lambda (Regular-
ization Parameter). (D) Hyperparameter tuning for neural networks. Abbreviations: Adaboost: adaptive boosting with classification trees; SVM:
support vector machines. Full-size DOI: 10.7717/peerj.9885/fig-6
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NNet2, which included nine and 32 predictors, respectively, were developed for risk
stratification. Predictors were obtained on day 1 after hospital admission, which is useful
for early risk stratification. The neural network models were found to be superior to the
respective logistic regression models. These models were interpretable with the help of
LIME.
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Figure 7 Calibration (A) and Discrimination (B) of the models computed in the testing dataset.
Abbreviations: Adaboost, the adaptive boosting with classification trees; SVM, Support Vector
Machines; NNet, neural networks; GLMreg, generalized linear model with regularization.
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The overall mortality rate of the study was higher than that in other studies; Guan WJ
and colleagues reported that the mortality rate was 1.4% (Guan et al., 2020). However,
their study included 552 hospitals across China. Other studies have shown that the
mortality rate outside Wuhan is much lower than that in Wuhan (Huang et al., 2020;
Chen et al., 2020a; Wang et al., 2020; Xu et al., 2020), probably due to the limited medical
resources in Wuhan at the outbreak of the COVID-19 epidemic. The risk factors identified
in our study cohort are generally consistent with other reports, including older age,
more comorbidities, high SOFA score, and high D-dimer (Zhou et al., 2020). The strength
of our study was its use of EHR, which allowed it to include many more variables (>100)
than other studies. In conventional cohort studies, variables are included because domain
knowledge determines whether they are related to clinical outcome. This approach is
limited by human knowledge. In contrast, our study included all variables recorded in
the EHR, which can help to identify unknown risk factors. One limitation of such a
large-scale search of risk factors is the problem of multiple testing. We used a conservative
p value of 0.001 to identify risk factors to reduce the false positive rate. Furthermore, a
volcano plot was used to identify risk factors for mortality. The volcano plot identified risk
factors in two dimensions with p value < 0.001 and SMD > 0. The former guaranteed
that the difference was not due to chance, and the latter ensured a difference that was
clinically relevant. We identified additional risk factors, such as C-reactive protein,
albumin, albumin to globin ratio and neutrophil count.

The large number of variables also imposed great challenges such as multicollinearity,
non-linear terms and high-order interactions for conventional statistical modeling.
For example, the generalized linear model can capture interaction by explicitly designating
the interaction term, but the number of variable combinations can be as high as ×109/L,
which is far from the computational power. Thus, we employed neural networks to
automatically capture these high-order terms. The results showed that our neural
network models NNet1 and NNet2 were better than the conventional logistic regression
models. The employment of machine learning algorithms for the risk stratification of
COVID-19 patients has never been reported upon. Given the potential pandemic outbreak
of COVID-19 (Eurosurveillance Editorial Team, 2020), such models can be helpful for
other countries.

Several limitations must be acknowledged in the study. First, the study was based on
a single center, and the prediction model was not validated using an external cohort.
Thus, further validation studies are required to see whether the model can accurately
predict mortality outcome. The relatively small sample size can also explain the instability
of risk factor rankings in NNet1 and NNet2. However, we have tried to prevent model
overfitting by using the cross-validation method, in which model validation was performed
in samples that were not used for training. Second, missing values existed in our EHR,
which may introduce potential bias. Missing values per se may carry important predictive
information. For example, our previous studies have shown that missing values on
blood gas in hospitalized patients have better clinical outcomes (Zhang et al., 2019). In the
study, we assumed that the missing values were produced at random, and imputation
with random sampling was performed. Third, while the use of first-day biomarkers allows
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for early prediction of mortality outcome, it is at the cost of model accuracy. The clinical
trajectories can be quite different for patients with similar conditions on first admission,
as a variety of interventions/procedures may lead to different outcomes. In such a
situation, the performance of the model including variables on day 1 can be compromised.
Finally, the mortality used in the study is all-cause mortality, we could not fully determine
the specific causes of death in retrospective dataset.

CONCLUSIONS
In conclusion, our study included a cohort of COVID-19 patients with a mortality rate
of 17.1%. Several risk factors were identified considering both clinical and statistical
significance. Some novel risk factors such as BNP, Hypersensitive troponin I and Creatine
kinase isoenzyme. We further developed two neural network models, with the variables
selected by using GA. The model performs much better than the conventional generalized
linear models. Due to the worldwide outbreak of the COVID-19 pandemic, the study
can provide risk stratification tool for the triage and management of these patients.
The medical resources can be allocated to the most critically ill patients.

ABBREVIATIONS
COVID-19 Coronavirus Disease 2019

ICU Intensive care unit

GA Genetic algorithms

IQR interquartile range

NNet1 Neural network model 1

NNet2 Neural network model 2

AUROC Area under the receiver operating characteristics

CI Confidence interval

EHR electronic healthcare recordss

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Hongying Ni received funding from the Jinhua Novel Coronavirus Pneumonia Emergency
Response Research Project (2020XG-03). Zhongheng Zhang received National Natural
Science Foundation of China (Grant No. 81901929). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Jinhua Novel Coronavirus Pneumonia Emergency Response Research Project: 2020XG-03.
National Natural Science Foundation of China: 81901929.

Competing Interests
The authors declare that they have no competing interests.

Yu et al. (2020), PeerJ, DOI 10.7717/peerj.9885 14/17

http://dx.doi.org/10.7717/peerj.9885
https://peerj.com/


Author Contributions
� Yuetian Yu conceived and designed the experiments, prepared figures and/or tables, and
approved the final draft.

� Cheng Zhu conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

� Luyu Yang analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Hui Dong performed the experiments, analyzed the data, authored or reviewed drafts of
the paper, and approved the final draft.

� Ruilan Wang performed the experiments, authored or reviewed drafts of the paper, and
approved the final draft.

� Hongying Ni performed the experiments, authored or reviewed drafts of the paper, and
approved the final draft.

� Erzhen Chen performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

� Zhongheng Zhang conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

Human Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The study was approved by the ethics committee of Wuhan Third Hospital (KY2020-
007) and was conducted in accordance with the Helsinki Declaration.

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The study was approved by the ethics committee of Wuhan Third Hospital
(KY2020-007) and was conducted in accordance with the Helsinki Declaration.

Data Availability
The following information was supplied regarding data availability:

The raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.9885#supplemental-information.

REFERENCES
Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, Deng Y, Wei S. 2020a. Analysis of clinical features

of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua jie he he hu xi za
zhi = Zhonghua jiehe he huxi zazhi = Chinese Journal of Tuberculosis and Respiratory Diseases
43:E005 DOI 10.3760/cma.j.issn.1001-0939.2020.0005.

Yu et al. (2020), PeerJ, DOI 10.7717/peerj.9885 15/17

http://dx.doi.org/10.7717/peerj.9885#supplemental-information
http://dx.doi.org/10.7717/peerj.9885#supplemental-information
http://dx.doi.org/10.7717/peerj.9885#supplemental-information
http://dx.doi.org/10.3760/cma.j.issn.1001-0939.2020.0005
http://dx.doi.org/10.7717/peerj.9885
https://peerj.com/


Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T,
Zhang X, Zhang L. 2020b. Epidemiological and clinical characteristics of 99 cases of 2019 novel
coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513
DOI 10.1016/S0140-6736(20)30211-7.

DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more
correlated receiver operating characteristic curves: a nonparametric approach. Biometrics
44(3):837 DOI 10.2307/2531595.

Dreiseitl S, Ohno-Machado L. 2002. Logistic regression and artificial neural network classification
models: a methodology review. Journal of Biomedical Informatics 35(5–6):352–359
DOI 10.1016/S1532-0464(03)00034-0.

Eurosurveillance Editorial Team. 2020. Note from the editors: novel coronavirus (2019-nCoV).
Eurosurveillance 25(3):2001231 DOI 10.2807/1560-7917.ES.2020.25.3.2001231.

Friedman J. 2010. Regularization paths for generalized linear models via coordinate descent.
Journal of Statistical Software 33(1):1–22 DOI 10.18637/jss.v033.i01.

Garson GD. 1991. Interpreting neural network connection weights. Artificial Intelligence Expert
6(1):46–51 DOI 10.1016/0954-1810(91)90015-G.

Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, Liu L, Shan H, Lei C-L, Hui DSC, Du B,
Li L-J, Zeng G, Yuen K-Y, Chen R-C, Tang C-L, Wang T, Chen P-Y, Xiang J, Li S-Y,
Wang J-L, Liang Z-J, Peng Y-X, Wei L, Liu Y, Hu Y-H, Peng P, Wang J-M, Liu J-Y, Chen Z,
Li G, Zheng Z-J, Qiu S-Q, Luo J, Ye C-J, Zhu S-Y, Zhong N-S. 2020. Clinical characteristics of
coronavirus disease 2019 in China. New England Journal of Medicine 382:1708–1720
DOI 10.1056/NEJMoa2002032.

Hong Y, Wu X, Qu J, Gao Y, Chen H, Zhang Z. 2020. Clinical characteristics of coronavirus
disease 2019 and development of a prediction model for prolonged hospital length of stay.
Annals of Translational Medicine 8(7):443 DOI 10.21037/atm.2020.03.147.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J,
Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R,
Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel
coronavirus in Wuhan, China. Lancet 395(10223):497–506
DOI 10.1016/S0140-6736(20)30183-5.

Jin Y-H, Cai L, Cheng Z-S, Cheng H, Deng T, Fan Y-P, Fang C, Huang D, Huang L-Q,
Huang Q, Han Y, Hu B, Hu F, Li B-H, Li Y-R, Liang K, Lin L-K, Luo L-S, Ma J, Ma L-L,
Peng Z-Y, Pan Y-B, Pan Z-Y, Ren X-Q, Sun H-M, Wang Y, Wang Y-Y, Weng H, Wei C-J,
Wu D-F, Xia J, Xiong Y, Xu H-B, Yao X-M, Yuan Y-F, Ye T-S, Zhang X-C, Zhang Y-W,
Zhang Y-G, Zhang H-M, Zhao Y, Zhao M-J, Zi H, Zeng X-T, Wang Y-Y, Wang X-H. 2020. A
rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV)
infected pneumonia (standard version). Military Medical Research 7:4–23
DOI 10.1186/s40779-020-0233-6.

Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, Song M, Wang L,
Zhang W, Han B, Yang L, Wang X, Zhou G, Zhang T, Li B, Wang Y, Chen Z, Wang X. 2020.
Neutrophil-to-lymphocyte ratio predicts severe illness patients with 2019 novel coronavirus in
the early stage. MedRxiv 18 DOI 10.1101/2020.02.10.20021584.

Patel JL, Goyal RK. 2007. Applications of artificial neural networks in medical science.
Current Clinical Pharmacology 2(3):217–226 DOI 10.2174/157488407781668811.

Ren L-L, Wang Y-M, Wu Z-Q, Xiang Z-C, Guo L, Xu T, Jiang Y-Z, Xiong Y, Li Y-J, Li H,
Fan G-H, Gu X-Y, Xiao Y, Gao H, Xu J-Y, Yang F, Wang X-M, Wu C, Chen L, Liu Y-W,
Liu B, Yang J, Wang X-R, Dong J, Li L, Huang C-L, Zhao J-P, Hu Y, Cheng Z-S, Liu L-L,

Yu et al. (2020), PeerJ, DOI 10.7717/peerj.9885 16/17

http://dx.doi.org/10.1016/S0140-6736(20)30211-7
http://dx.doi.org/10.2307/2531595
http://dx.doi.org/10.1016/S1532-0464(03)00034-0
http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2001231
http://dx.doi.org/10.18637/jss.v033.i01
http://dx.doi.org/10.1016/0954-1810(91)90015-G
http://dx.doi.org/10.1056/NEJMoa2002032
http://dx.doi.org/10.21037/atm.2020.03.147
http://dx.doi.org/10.1016/S0140-6736(20)30183-5
http://dx.doi.org/10.1186/s40779-020-0233-6
http://dx.doi.org/10.1101/2020.02.10.20021584
http://dx.doi.org/10.2174/157488407781668811
http://dx.doi.org/10.7717/peerj.9885
https://peerj.com/


Qian Z-H, Qin C, Jin Q, Cao B, Wang J-W. 2020. Identification of a novel coronavirus causing
severe pneumonia in human: a descriptive study. Chinese Medical Journal 1(9):1015–1024
DOI 10.1097/CM9.0000000000000722.

Ribeiro M, Singh S, Guestrin C. 2016. Why should I trust you? Explaining the predictions of any
classifier. Stroudsburg: Association for Computational Linguistics.

Sun K, Chen J, Viboud C. 2020. Early epidemiological analysis of the 2019-nCoV outbreak based
on a crowdsourced data. MedRxiv DOI 10.1101/2020.01.31.20019935.

Tolles J, Meurer WJ. 2016. Logistic regression: relating patient characteristics to outcomes. JAMA
316(5):533–534 DOI 10.1001/jama.2016.7653.

Tolvi J. 2004. Genetic algorithms for outlier detection and variable selection in linear regression
models. Soft Computing 8(8):527–533 DOI 10.1007/s00500-003-0310-2.

Trevino V, Falciani F. 2006. GALGO: an R package for multivariate variable selection using
genetic algorithms. Bioinformatics 22(9):1154–1156 DOI 10.1093/bioinformatics/btl074.

Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, STROBE
Initiative. 2007. The strengthening the reporting of observational studies in epidemiology
(STROBE) statement: guidelines for reporting observational studies. PLOS Medicine 4(10):e296
DOI 10.1371/journal.pmed.0040296.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y,
Li Y, Wang X, Peng Z. 2020. Clinical characteristics of 138 hospitalized patients with 2019
novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323(11):1061–1069
DOI 10.1001/jama.2020.1585.

Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, Li S-B, Wang H-Y, Zhang S, Gao H-N,
Sheng J-F, Cai H-L, Qiu Y-Q, Li L-J. 2020. Clinical findings in a group of patients infected with
the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series.
BMJ 368:m606 DOI 10.1136/bmj.m606.

Yang Y, Lu Q, Liu M, Wang Y, Zhang A, Jalali N, Dean N, Longini I, Halloran ME, Xu B,
Zhang X, Wang L, Liu W, Fang L. 2020. Epidemiological and clinical features of the 2019 novel
coronavirus outbreak in China. MedRxiv DOI 10.1101/2020.02.10.20021675.

Zhang Z, Beck MW, Winkler DA, Huang B, Sibanda W, Goyal H, written on behalf of AME
Big-Data Clinical Trial Collaborative Group. 2018.Opening the black box of neural networks:
methods for interpreting neural network models in clinical applications. Annals of Translational
Medicine 6:216 DOI 10.21037/atm.2018.05.32.

Zhang Z. 2016a. Missing data imputation: focusing on single imputation. Annals of Translational
Medicine 4(S1):S9 DOI 10.3978/j.issn.2305-5839.2015.12.38.

Zhang Z. 2016b. Neural networks: further insights into error function, generalized weights and
others. Annals of Translational Medicine 4(16):300 DOI 10.21037/atm.2016.05.37.

Zhang Z, Gayle AA, Wang J, Zhang H, Cardinal-Fernández P. 2017. Comparing baseline
characteristics between groups: an introduction to the CBCgrps package. Annals of
Translational Medicine 5(24):484 DOI 10.21037/atm.2017.09.39.

Zhang Z, Goyal H, Lange T, Hong Y. 2019. Healthcare processes of laboratory tests for the
prediction of mortality in the intensive care unit: a retrospective study based on electronic
healthcare records in the USA. BMJ Open 9(6):e028101 DOI 10.1136/bmjopen-2018-028101.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H,
Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. 2020. Clinical course and risk factors for mortality
of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet
395(10229):1054–1062 DOI 10.1016/S0140-6736(20)30566-3.

Yu et al. (2020), PeerJ, DOI 10.7717/peerj.9885 17/17

http://dx.doi.org/10.1097/CM9.0000000000000722
http://dx.doi.org/10.1101/2020.01.31.20019935
http://dx.doi.org/10.1001/jama.2016.7653
http://dx.doi.org/10.1007/s00500-003-0310-2
http://dx.doi.org/10.1093/bioinformatics/btl074
http://dx.doi.org/10.1371/journal.pmed.0040296
http://dx.doi.org/10.1001/jama.2020.1585
http://dx.doi.org/10.1136/bmj.m606
http://dx.doi.org/10.1101/2020.02.10.20021675
http://dx.doi.org/10.21037/atm.2018.05.32
http://dx.doi.org/10.3978/j.issn.2305-5839.2015.12.38
http://dx.doi.org/10.21037/atm.2016.05.37
http://dx.doi.org/10.21037/atm.2017.09.39
http://dx.doi.org/10.1136/bmjopen-2018-028101
http://dx.doi.org/10.1016/S0140-6736(20)30566-3
http://dx.doi.org/10.7717/peerj.9885
https://peerj.com/

	Identification of risk factors for mortality associated with COVID-19
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	Abbreviations
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


