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ABSTRACT
Background:Hydrological impacts on aquatic biota have been assessed in numerous
empirical studies. Aquatic insects are severely affected by population declines and
consequent diversity loss. However, many uncertainties remain regarding the effects
of hydrology on insect production and the consequences of energy transfer to the
terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly
quantified in highly variable environments. Here, we characterized monthly
fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland
stream. We quantified the proportion of mayfly production that emerges into the
riparian forest. We also examined the potential morphological changes in Farrodes
caribbianus (the most abundant mayfly in our samples) due to environmental stress.
Methods:We collected mayflies (nymphs and adults) in a first-order stream in Costa
Rica. We compared benthic and adult biomass from two years’ worth of samples,
collected with a core sampler (0.006 m2) and a 2 m2-emergence trap. The relationship
between emergence and annual secondary production (E/P) was used to estimate the
Ephemeroptera production that emerged as adults. A model selection approach was
used to determine the relationship between environmental variables that were
collected monthly and the emergent biomass. To determine potential departures
from perfect bilateral symmetry, we evaluated the symmetry of two morphological
traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank
correlation coefficients (ρ) to examine potential changes in adult body length as a
possible response to environmental stress.
Results: Benthic biomass was variable, with peaks throughout the study period.
However, peaks in benthic biomass did not lead to increases in mayfly emergence,
which remained stable over time. Relatively constant mayfly emergence suggests that
they were aseasonal in tropical lowland streams. Our E/P estimate indicated that
approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph
production emerged as adults. Our estimated proportion of mayfly production
transferred to terrestrial ecosystems was high relative to reports from temperate
regions. We observed a strong negative response of F. caribbianus body length to
increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from
perfect symmetry were observed in all traits.
Conclusion: Our two years study demonstrates that there was large temporal
variability in mayfly biomass that was unrelated to hydrological fluctuations, but
potentially related to trophic interactions (e.g., fish predation). Body length was a
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good indicator of environmental stress, which could have severe associated costs for
mayfly fitness in ecosystems with high temporal variation. Our results highlight the
complex ecological and evolutionary dynamics of tropical aquatic insects, and the
intricate connection between aquatic and terrestrial ecosystems.

Subjects Ecology, Entomology, Freshwater Biology, Environmental Impacts, Population Biology
Keywords Mayflies, Sublethal effects, Disturbance, Environmental stress, Morphometry,
Costa Rica, Emergence pattern, Secondary production, Export, Emergence production

INTRODUCTION
Identifying factors that drive changes in natural communities has been a key issue in
ecology, because it allows us to understand current patterns and to predict community
responses to environmental change (Power et al., 1988; Resh et al., 1988). In freshwater
ecosystems, much attention is given to understand the impact of environmental variables
on aquatic organisms at multiple levels, from individuals to the community (Ardón et al.,
2013; Klem & Gutiérrez-Fonseca, 2017). Among a wide range of factors, hydrology has
often been reported as most prominent affecting aquatic biota (Ramírez & Pringle, 1998;
Ríos-Touma, Encalada & Prat Fornells, 2011). Thus, while it is well known that hydrology
reduces populations by catastrophic mortality, channel scouring and resource
redistribution; we know less about sublethal stresses that elicit escape (e.g., early
emergence) or generate morphological changes.

Insect emergence can be used as a reliable indicator of population success as it reflects
the influence of multiple environmental stressors that populations face during their larval
development. Temporal patterns of insect emergence are often synchronized and occur
during a limited period of time (Castro-Rebolledo & Donato-Rondon, 2015). However,
hydrology may strongly affect seasonality, magnitude and timing of emergence (Whiles &
Goldowitz, 2001; Lytle, 2002). This can have negative effects in aquatic-terrestrial energy
fluxes, since emerged aquatic insects provide significant subsidies for riparian food
webs (Nakano & Murakami, 2001). Thus, although emergent biomass may be a small
fraction of benthic biomass (Statzner & Resh, 1993), changes in the number and morphology
(e.g., body length) of individuals can have a large impact on the biomass and nutrient export
to adjacent terrestrial ecosystem (Small et al., 2013a; Kelly, Cuevas & Ramírez, 2015).

Individual body length and deviation from perfect bilateral symmetry are particularly
useful as measures of developmental stability (i.e., ability of an individual to adequately
buffer its developmental processes against environmental and genetic perturbations
and ensure common developmental outcomes under particular ecological and evolutionary
conditions). Environmental stressors affect body length by affecting growth or development
rates, which carries significant consequences for individual fitness and alters mortality
rates and reproductive success (Peckarsky et al., 2001; Dahl & Peckarsky, 2003). Bilateral
symmetry is known for many traits, and departure from symmetrical phenotypes has been
linked to low success of individuals in sexual competition (Møller, 1990; Santos, 2001;
Jorge & Lomônaco, 2011). Departures from symmetry are commonly grouped into
three categories, based on frequency distributions of the differences between the right
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and left sides of a structure: (a) directional asymmetry (i.e., greater development of a
character on one side), (b) antisymmetry (i.e., asymmetry without directional bias)
and (c) fluctuating asymmetry (i.e., random departure from perfect symmetry of any
bilateral anatomical character, showing a normal distribution with a mean of zero).
The first two cases of asymmetry are related to heritable variation for asymmetry, while
fluctuating asymmetry is commonly caused by environmental disturbance (Palmer &
Strobeck, 1986, 1992).

Tropical streams are highly variable in their environmental parameters, which has
an influence on aquatic biota (Jacobsen & Encalada, 1998; Ramírez, Pringle & Douglas,
2006). Streams draining humid tropical rainforests often experience unpredictable
hydrological events, which may represent sources of stress to aquatic populations.
This is especially true for tropical mayflies, which may live relatively long-periods in the
streams (range from 26 to 165 days, Sweeney, Jackson & Funk, 1995) compared to
their lifespan as adults (range from 3 to 6 days, Vásquez, Flowers & Springer, 2009).
Streams at La Selva Biological Station (LSBS) offer an excellent opportunity to assess
how environmental stressors influence aquatic biota, as they show high interannual
variability in their environmental variables (Ramírez, Pringle & Douglas, 2006; Small
et al., 2012; Gutiérrez-Fonseca, Ramírez & Pringle, 2018).

In this study, we examine the benthic and emerged biomass of Ephemeroptera in a small
tropical lowland stream. We quantified the biomass transfer to the terrestrial ecosystem
by adult emergence production (i.e., E/P ratio). We also assess whether environmental
variability can influence mayfly morphology (i.e., symmetry and body length).
We approach our objectives in four ways: first, we used data collected during two
years (2002–2003) to determine temporal patterns of emerged Ephemeroptera and the
benthic standing-stock biomass. Then, we estimated the E/P ratio using adult biomass and
nymph secondary production for each year. Second, we identified which environmental
variables were related to the emergence patterns of mayflies. Third, we examined
departures from perfect symmetry in adults of the Leptophlebiidae Farrodes caribbianus
(Traver) comb. nov. (Domínguez, 1999), the most abundant Ephemeroptera found in our
emergence trap. Fourth, we assessed potential changes in body length of F. caribbianus and
how they relate to the variation in rainfall. We focus on precipitation as a key factor
impacting macroinvertebrates, since previous studies have demonstrated their influence
on LSBS streams (Ramírez, Pringle & Douglas, 2006;Gutiérrez-Fonseca, Ramírez & Pringle,
2018). We hypothesized large mayfly mortality due to drag forces experienced by
individuals during floods, as well as an increase in nymph development instability due to
exposure to environmental stressors during their lifespan. We expected to observe a peak
in benthic and emergent biomass during the low rainfall season, as well as changes in
adult symmetry and body length.

MATERIALS AND METHODS
Study system
This study was conducted at LSBS (10�26′ N, 84�01′ W), a 1,563 ha reserve in the
Caribbean slope of Costa Rica, located in a gradient break between the Cordillera
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Central and the coastal plain. The forest in LSBS is composed of mature and
secondary tropical rainforest (Holdridge, 1967). Long-term average annual precipitation
(1963–2016) is 4,354 mm, ranging from 2,809 mm in 1995 to 6,165 mm in 1970
(available at http://www.ots.ac.cr/meteoro/). The annual distribution is bimodal, with
peaks of >400 mm/mo occurring both in June–July and November–December.
The period with low rainfall values is February–April (Sanford et al., 1994).

We collected the Ephemeroptera samples (nymphs and adults) from Carapa, a first
order stream (1 m wide and 0.25 m deep) bordered with abundant riparian vegetation
(canopy cover: 85%, Small et al., 2013b). We obtained the samples from an approximately
100 m reach, which was representative of overall stream conditions. Within the study
reach, channel substrate type was consistently dominated by detritus and fine sediments
(i.e., silt and clay). Long-term data sets (1997–2011) show that discharge ranges from
0.011 to 0.027 m3/s, stream temperature from 21.4 to 27.2 �C and pH from 3.62 to 6.46,
with low values occurring during the El Niño event of 1997–1998 (Small et al., 2012;
Gutiérrez-Fonseca, Ramírez & Pringle, 2018).

Benthic macroinvertebrate assemblages in Carapa are diverse, and include several
species of dipterans, mayflies, caddisflies, odonates, beetles and non-insects. Diptera
dominates the taxonomic richness, abundance and biomass of insects. Odonata, Trichoptera
and Ephemeroptera are also numerically important groups (Ramírez, Pringle & Douglas,
2006; Gutiérrez-Fonseca, Ramírez & Pringle, 2018). Fish assemblages are dominated by
the insectivorous fish Priapicthys annectens (98% of abundance, Family Poeciliidae)
(Small et al., 2013b).

Nymph biomass and production
We used data of mayfly benthic standing-stock biomass from Gutiérrez-Fonseca, Ramírez &
Pringle (2018). Ephemeroptera nymphs were sampled monthly for two years (2002–2003).
Three core samples (0.006 m2 each) were collected in runs with leaves as the dominant
substrate. All material enclosed into the core sampler was removed to a depth of ~10 cm or
until reaching bedrock. Mayfly nymphs were removed from organic matter and preserved in
80% ethanol. Biomass of individual nymphs was estimated by applying the length-mass
relationship developed by Benke et al. (1999), expressed as ash-free dry mass (AFDM) per
area (m2).

We were unable to calculate directly the annual secondary production (P) using samples
collected in our study, as we did not find nymphs of all size classes on all sampling dates.
Instead, we estimated P using the production-to-biomass (P/B) method (Benke, 1993).
An average P/B value for Ephemeroptera at La Selva (13.63 y−1) was obtained from
Ramírez & Pringle (1998), and biomass (B) was from our benthic sampling. While this is
an indirect method, it should provide us with the best approximation given our limited
information on tropical Ephemeroptera.

Adult emergence and biomass
We used a 2 m2 (sampling area) emergence trap (BioQuip Products, Rancho Dominguez,
CA, USA) to sample mayfly adults continuously from July 2001 to February 2004. The trap
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was suspended over the stream and covered the entire stream width, which allowed us to
sample in various microhabitats such as riffles, pools, runs and stream banks. Emerging
insects were collected weekly and preserved in 80% ethanol for subsequent taxonomic
identification. A modified handheld vacuum was used to remove emergent insects from
the trap. The trap was inspected often for maintenance (i.e., repair of holes and removal of
spider webs). Mayfly biomass was calculated by measuring the length of each individual
and applying the length–mass relationship developed by Sabo, Bastow & Power (2002).
Emergence biomass was expressed as mg AFDM/m2 by taking the total biomass of each
month adjusted by the trap area. Total annual biomass was determined by adding all
weekly samples for each year.

Physicochemical variables and hydrology
Wemeasured eight physicochemical variables monthly, simultaneously with Ephemeroptera
collections. Nutrient concentrations (i.e., NO−

3 -N, NH
þ
4 -N and PO3−

4 -P as soluble reactive
P: SRP) were measured by collecting two filtered (0.45 µm Millipore filters) water
samples using new 125 mL bottles. Samples were kept frozen until analyzed. NO−

3 -N,
NHþ

4 -N and SRP concentrations were measured using continuous-flow colorimetry and an
Alpkem RFA 300 colorimetric analyzer. We used cadmium-reduction, phenol-hypochlorite
and ascorbic acid methods for NO−

3 -N, NHþ
4 -N and SRP, respectively (APHA, 1998).

We measured stream temperature, pH, and conductivity in situ with a handheld meter
(Hanna Instruments, Woonsocket, RI, USA). The stream flow was measured with a
Marsh–McBirney current meter (Marsh McBirney Inc., Frederick, MD, USA), and
discharge was calculated using the velocity–area method (Gordon et al., 2004). Monthly
precipitation was recorded using data from the meteorological station available at LSBS
(OTS meteorological data, http://www.ots.ac.cr/meteoro/).

Measurement of traits and body length of F. caribbianus
We measured the body length (not including cerci) of all individual mayflies to quantify
size variation patterns. To determine departures from symmetry, we measured the length
of the second segment of forceps (SF) on the right and left sides of males, as well as
forewing area (AFW) and forewing length (LFW) on the right and left sides of both males
and females. Body parts were removed with forceps, mounted on glass slides, and
photographed with a stereomicroscope (AmScope, Irvine, CA, USA) and a microscope
(Nikon Eclipse E400). Images were analyzed with the free computer software ImageTool
2.0 (University of Texas Health Science Center, San Antonio, TX, USA). All linear and area
measurements were done with an accuracy of 0.01 mm and 0.01 mm2, respectively.
To avoid mistaking human error with potential asymmetries, we used one image per
individual to take three non-consecutive (i.e., in a random order) measurement of
each trait.

Data analyses
We used biomass to compare temporal patterns between benthic and emerging mayflies,
since biomass better reflects potential changes in production driven by environmental
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variability, beyond other metrics such as abundance and diversity (Malison, Benjamin &
Baxter, 2010). Likewise, biomass estimates are widely used in analyses of food webs and
secondary production. To estimate the fraction of Ephemeroptera production that
emerged as an adult and was exported to riparian ecosystems, we calculated the ratio of
adult emergence to nymph secondary production (E/P) for each year.

A model selection approach based on Akaike’s Information Criteria (AIC, Akaike, 1973)
was used to identify the best-fit model that included the environmental variables
influencing adult mayfly biomass. Model constructions and selections are described in
more detail in Gutiérrez-Fonseca, Ramírez & Pringle (2018). Briefly, we build linear
regression models using a forward selection procedure. We identified the model with the
best quality (i.e., with a minimum number of required explanatory variables) based on the
lowest AICc (<2Δ). Model averaging was used to draw conclusions when more than
one model was included in the subset. Multicollinearity among variables was assessed by
calculating the variance inflation factor (VIF). Environmental variables with a VIF > 10
were identified and removed from the analysis (O’Brien, 2007). Before building the
models, we also excluded variables that were highly correlated (|r| > 0.60).

To examine the association between body length and hydrology, we first related
monthly average precipitation to discharge using Pearson correlation coefficients. Then,
we determined the relationship between body length and average precipitation in the
159 days before collecting the emergence trap using non-parametric Spearman’s rank
correlation coefficients, due to the non-normal distribution of the data. Spearman’s rank
correlations were calculated separately for males (n = 67), females (n = 50) and both sexes
combined (n = 117). We used average precipitation of the 159 days, as this timeframe
coincides with the life cycle of Thraulodes sp. (same family, Leptophlebiidae), which was
estimated as the median days since an egg hatches until the individual reaches adulthood
(Jackson & Sweeney, 1995).

Analyses of potential departure from symmetry were performed on approximately
30 randomly selected individuals for each test, following the procedure recommended by
Palmer & Strobeck (1986, 2003) and Palmer (1994). We used the signed differences between
right and left (R–L) to distinguish fluctuating asymmetry (must be normally distributed
with zero mean) from antisymmetry and directional symmetry. The Shapiro–Wilks test was
used to determine whether the data were normally distributed, which would rule out
antisymmetry. Directional asymmetry is characterized by a normal distribution with a mean
other than zero. Therefore, we also conducted one-sample t-tests to determine if the mean of
signed (R–L) differed statistically from zero.

Analysis of potential fluctuating asymmetries were conducted for each trait using
three indices recommended by Palmer & Strobeck (2003): FA1, FA4a and FA10a. FA1,
calculated as mean of |R–L|, is the recommended index because it is easy to understand.
FA4a (0.798 √var(R–L)) has higher statistical power and represents the contribution of
FA measurement error. The FA10a index describes the average difference between sides
after measurement error has been partitioned out. This index was calculated using
two-way mixed model ANOVAs with side (Fixed), individual (Random) and their
interaction (Side × Individual). Then, we used the mean square (ME) to calculate FA10a
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as 0.798 √2σ2i (where σ
2
i = MESxI − MEerror). Additionally, we calculated measurement

error as a percentage (ME3, according to Palmer & Strobeck, 2003) by MEerror/MESxI ×
100. ME3 represents the mean difference between replicate measurements as a proportion
of mean difference between of the sides × individual interaction.

Pearson (r) and Spearman’s rank (ρ) correlations were calculated with the cor.test()
function of the stats package, the two-way mixed model ANOVA with the lmer() function
of the lme4 package (Bates et al., 2015), model averaging with the AICcmodavg package
(Mazerolle, 2019) and graphics were produced using the ggplot2 package (Wickham, 2016)
in R version 3.6.3 (R Core Team, 2019). Raw data and code used in this study are available
on a GitHub repository: https://github.com/PEGutierrezF/mayfly_morphometry.

RESULTS
Precipitation and hydrology
Monthly total precipitation showed a strong seasonal pattern during the study period.
The dry season had the lowest precipitations in March 2002 (132.0 mm) and March 2003
(45.3 mm). The wet season had maximum values in May 2002 (890.8 mm) and December
2003 (561.3 mm) (Fig. 1A). Discharge reflected the monthly average precipitation
variability in the two years of sampling (Pearson: r = 0.64, p < 0.001, Fig. 1B).

Figure 1 Temporal variability of precipitation in 2002 and 2003 (A), and relationship between mean
monthly precipitation and discharge (B). Grey shaded area represents the 95% confidence intervals.

Full-size DOI: 10.7717/peerj.9883/fig-1
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Benthic and emergence biomass and E/P ratios
Mean annual biomass of nymphs was 1.74 mg AFDM/m2 in 2002 and 2.22 mg AFDM/m2

in 2003. Benthic biomass peaked in March, July, and September 2002 and January and
October 2003 (Fig. 2). Meanwhile, mean annual biomass of emerging adults was 0.76 mg
AFDM/m2 in 2002 and 0.50 mg AFDM/m2 in 2003. Monthly mayfly emergence was
relatively constant throughout the study periods compared to benthic biomass, except for a
slight increase in June 2002 (Fig. 2A). Total emergence was 9.14 mg AFDM m−2 y−1

and 5.99mg AFDMm−2 y−1, while annual secondary production was 23.70mg AFDMm−2 y−1

and 30.28 mg AFDM m−2 y−1 for 2002 and 2003, respectively. Therefore, we estimated
that total emergence production represented 38.57% and 19.78% of nymph secondary
production for 2002 and 2003, respectively.

Physicochemical characteristics and individual-level variation
The AIC analysis used to determine the relative importance of environmental variables on
the biomass of emerging adults showed no support for any model. Therefore, none of
the variables related to nutrients, hydrology or physicochemistry that were evaluated in
our study explained the relatively constant patterns of mayfly emergence in our streams.

Body length of F. caribbianus was strongly influenced by average rainfall during the
159 days of nymph development. Spearman’s rank correlations revealed a negative

Figure 2 Temporal variability of benthic and emerging adult biomass during (A) 2002 and
(B) 2003. Full-size DOI: 10.7717/peerj.9883/fig-2
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relationship between average rainfall and body length of males (Spearman: ρ = −0.45,
p < 0.001), females (Spearman: ρ = −0.64, p < 0.001), and both sexes combined (Spearman:
ρ = −0.51, p < 0.001, Fig. 3).

Fluctuating asymmetry analysis in F. caribbianus
A total of 117 F. caribbianus (50 females and 67 males) were assessed (in groups of ~30
randomly selected individuals for each test) to determine departure from symmetry.
Analyses of trait value distribution satisfied the assumption of normality, so there was no
evidence of antisymmetry in any of the characters (p > 0.05, Table 1). Also, the t-tests
revealed that mean (R–L) was not significantly different from zero, which suggests that
there was no directional asymmetry (p > 0.05, Table 1).

Figure 3 Body length variability of F. caribbianus and precipitation. Relationship between F. car-
ibbianus body length and average precipitation in the 159 days prior to the sampling date. Each point
represents an individual, including males and females. Gray shaded area represents the 95% confidence
intervals. Full-size DOI: 10.7717/peerj.9883/fig-3

Table 1 Test for normality and t-test for each trait.

Trait N Mean (R–L) SE Normality test t-tests

W p-Value t p-Value

Male

AFW 31 0.00 0.082 0.975 0.685 0.065 0.984

LFW 33 −0.013 0.083 0.969 0.473 −0.924 0.363

SF 30 −0.004 0.016 0.955 0.235 −1.453 0.157

Female

AFW 28 0.028 0.077 0.981 0.862 1.958 0.061

LFW 40 0.007 0.023 0.956 0.120 2.015 0.051

Note:
AFW, forewing area; LFW, forewing length; SF, length of the second segment of forceps.
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Two-way mixed model ANOVAs (Table 2) showed that the side × individual interaction
was always significant, while global error (MEerror) was found to be smaller than the error
of the interaction (MESxI) for all traits. Measurement error (ME3: Merror/MESxI × 100)
contributed 5.9–19.6% of the total variance between-sides for each trait, which indicates
that ~80% of the measurement variation was reliable. Fluctuating asymmetries for each
trait amounted to roughly 1.07–2.67% of the average size of the corresponding trait
(FA1/mean). The estimates for FA4a and FA10a varied from 0.013 to 0.088 and from 0.002
to 0.034, respectively.

DISCUSSION
Our two-year study showed high temporal variability of mayfly benthic biomass,
characterized by multiple peaks during the study period. Unexpectedly, these peaks in
benthic biomass did not translate into measurable increases in emerging adult biomass,
which represented a small fraction of the benthic biomass. Notably, while benthic and
emergent biomass were similar during most of the study period, the observed peaks in
nymph biomass were not associated to similar peaks in the emergence of adults. Peaks in
benthic biomass occurred in different periods of the year, which may suggest that different
mechanisms control population dynamics of benthic and emerging mayflies. E/P ratio
varied between 38.57% in 2002 and 19.78% in 2003, and was higher than reports in
previous studies for emerging aquatic insects in temperate regions. We did not observe a
relationship between hydrology and the biomass of benthic and emergent mayflies, so our
expectation that mayfly biomass would peak in the dry season of La Selva was not
supported by our findings. Looking more closely at F. caribbianus, the most abundant
mayfly collected in emergence traps, we found no evidence of antisymmetry or directional
symmetry, but we did find slight deviations from symmetry that were larger than
measurement errors, suggesting alterations in bilateral morphology of F. caribbianus.

Table 2 Result of the two-way mixed model ANOVAs performed for each trait with side as a fixed component and individual as random
component.

Trait N Mean errora Mean (mm)b Side Individual Side × individual MEerror
d FA1 FA4a FA10a ME3 (%)

df F df F df MESxI
c F

Male

AFW 31 0.03 4.41 1 18.90* 30 797.40* 30 3.98E−5 13.30* 2.99E−6 0.076 0.088 0.004 16.4

LFW 30 0.03 3.79 1 2.05 29 223.89* 29 3.33E−3 5.10* 6.52E−4 0.063 0.066 0.034 19.6

SF 30 0.006 0.45 1 10.70* 29 103.80* 29 4.25E−4 7.50* 5.67E−5 0.012 0.013 0.012 13.3

Female

AFW 28 0.03 5.16 1 0.01 27 2163.2* 27 1.38E−5 16.9* 8.27E−7 0.065 0.062 0.002 5.9

LFW 28 0.02 4.01 1 8.66* 27 507.30* 27 2.35E−3 5.20* 4.51E−4 0.043 0.046 0.028 19.2

Notes:
* p < 0.05.
a Mean of the standard deviation of triplicate measurements on the right and left sides (i.e., indicator of accuracy during photo measurement).
b Mean of the right and left side measurements.
c Mean squared of the side × individual interaction.
d Mean squared of the variance of the repeated measurements.
Indices of asymmetry: FA1, FA4a, FA10a and measurement error as percentage (ME3 as % of MESxI). AFW, forewing area; LFW, forewing length; SF, length of the second
segment of forceps.
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We also found a strong negative relationship between body length and precipitation
variability at La Selva. This relationship was consistently significant for males, females, and
both sexes combined.

Our E/P estimation indicated that less than 40% (38.57% and 19.78% for 2002 and 2003,
respectively) of nymph secondary production was exported to the terrestrial ecosystem.
This potentially low value may have negative consequences on the riparian food web, as
emerging insects represent an important source of energy and nutrients in La Selva streams
(N-flux: 0.40–1.25 mg N m−2 d−1, Small et al., 2013a). Surprisingly, our E/P estimates
were equal to, or exceeded, the values previously reported for single groups of aquatic
insects, such as 19.3% for Hydropsyche angustipennis and 27% for H. pellucidula
(Trichoptera) in a Northern German lowland stream (Poepperl, 2000a), and 16% for a
limnephilid (Trichoptera) in an intermittent wetland (Whiles, Goldowitz & Charlton,
1999). Our E/P estimates were also high when compared to entire insect assemblages, such
as 16.6% in desert streams (Jackson & Fisher, 1986) and 18.3% in a northern German
stream (Poepperl, 2000b). Our E/P estimates even exceed the biomass export of aquatic
vertebrates, such as salamanders (10%, Regester, Lips & Whiles, 2006). These elevated
E/P ratios may be explained by the warm water temperatures (range: 21.4–27.2 �C,
Gutiérrez-Fonseca, Ramírez & Pringle, 2018), and high biomass turnover rates of
fast-growing mayflies (P/B= 13.63 y−1, Ramírez & Pringle, 1998) that are characteristic of
many tropical streams.

Unlike the large fluctuations in emergence patterns observed in other studies (Masteller,
1993; Pescador, Masteller & Buzby, 1993; Castro-Rebolledo & Donato-Rondon, 2015;
Yuen & Dudgeon, 2016), which provide support for seasonality of many tropical aquatic
insects, the lack of abrupt peaks in mayfly emergence found in our study suggests that
mayfly emergence was aseasonal. Fish predation on newly emerged adults may be a
possible explanation for the constant biomass of emerging mayflies in our study. Our focal
stream is inhabited by the insectivorous poeciliid, P. annectens, which is abundant
(4–14 individuals/m2, Small et al., 2013b) and could have negatively affected mayfly
emergence. Previous studies have shown a reduction of total emergence biomass of aquatic
insects by 62 ± 8% (Merkley, Rader & Schaalje, 2015) and 65% (Warmbold &Wesner, 2018)
in mesocosms with a similar fish density (11.4 fish/m2 and 7.8 fish/m2, respectively) to
our study stream. Field studies have also found that fish can regulate the timing and duration
of aquatic insect emergence (Moore & Schindler, 2010). Therefore, it is not surprising for
biotic control to be an important factor controlling insect emergence in our tropical lowland
streams, which harbor high fish diversity.

Hydrology has been recognized as a key factor controlling macroinvertebrate
assemblages in tropical streams (Flecker & Feifarek, 1994; Ramírez & Pringle, 1998;
Molineri, 2010), with peaks in biomass expected during the dry season and high mortality
during the rainy season. However, we observed peaks in benthic biomass during both the
dry and rainy seasons in La Selva. Peaks during the rainy season might be caused by
microdistributional changes in macroinvertebrates driven by high floods (Lancaster &
Hildrew, 1993; Lancaster, 1999). For instance, mayflies have been observed to make
small-scale refuge-seeking movements between substrate layers during simulated floods
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(Holomuzki & Biggs, 2000). This type of mechanisms could allow for high mayfly survival
in streams such as Carapa, where the deep subsurface layers may provide shelter and
protection for insects year round, as proposed for similar streams (Holomuzki & Biggs,
2000).

Our results show a strong influence of precipitation on the total body length of
F. caribbianus. Large individuals were negatively affected by precipitation, while small-sized
mayflies persisted during high rainfall events (Fig. 3). In tropical streams, two mechanisms
have been identified as potential ways in which insects respond to catastrophic floods.
The first mechanism proposes that small-sized individuals have better chances of surviving
floods by finding refuge in interstitial spaces (Townsend, Dolédec & Scarsbrook, 1997;
Segura, Siqueira & Fonseca-Gessner, 2013). The second hypothesis suggests that some
aquatic insects (e.g., Odonata: Polythoridae) emerge, copulate and oviposit at the onset
of the rainy season, so that only small larvae (which can be protected by large logs
and rocks) are present during periods of frequent floods (Pritchard, 1996). Since mayflies
in La Selva are multivoltine (Ramírez & Pringle, 1998), we find more support for the first
hypothesis through this study.

Asymmetrical traits have been used successfully as an early warning biomarker related
to developmental stress (Graham et al., 2010). Common stress sources that cause
fluctuating asymmetries in aquatic insects include water quality (Bonada & Williams,
2002), insecticide (Mpho, Holloway & Callaghan, 2001), experimental food deprivation
(Nosil & Reimchen, 2007) and changes in the physical structure of riparian vegetation
(Pinto et al., 2012). We found slight variations from perfect symmetry in the wings and
forceps of F. caribbianus, which suggests some level of developmental instability of the
nymph. However, given the limited number of mayflies per period, we were unable to
perform analyses under different levels of environmental stressors (e.g., low, medium and
high hydrology). Therefore, although we found slight random deviations from symmetry,
they were not distinguishable from developmental noise (i.e., random variation from
symmetry caused by metabolic rates, concentrations of regulatory molecules, diffusion, or
thermal noise) without further study (Palmer & Strobeck, 2003).

Future climate change scenarios predict an increase in hydrological extreme events for
many regions (Christensen et al., 2013). Extreme precipitation events are expected to
increase in tropical regions (O’Gorman & Schneider, 2009), with potential negative effects
on aquatic biota and aquatic-terrestrial linkages. Increases in heavy precipitation events
have already been observed in the Caribbean slope of Costa Rica during the last decades
(Aguilar et al., 2005; Rapp et al., 2014; Sánchez-Murillo et al., 2017), where climate
projections suggest an increase in mean annual precipitation of between 10% and 50%
(Alvarado et al., 2012). Therefore, large hydrological variability can threaten the fitness of
mayfly populations in La Selva, as well as in other tropical regions.

CONCLUSIONS
Contrary to our expectations and patterns shown in literature, we found a lack of
seasonality in benthic biomass. Adult biomass was unrelated to peaks in benthic biomass,

Gutiérrez-Fonseca and Ramírez (2020), PeerJ, DOI 10.7717/peerj.9883 12/18

http://dx.doi.org/10.7717/peerj.9883
https://peerj.com/


which makes us wonder what is controlling adult biomass export in these systems if not
hydrology (e.g., fish predation). Based on our E/P ratios, Neotropical streams can provide
larger subsidies to adjacent terrestrial ecosystems than their counterparts in temperate
regions. Departures from perfect symmetry were evident in all the evaluated traits, which
suggests developmental instability of mayflies. Body length proved to be a better indicator
of environmental stress, which could have severe associated costs for mayfly fitness in
ecosystems with high temporal variation. Further research could quantify effects of body
length reduction in mayfly fitness, energy and nutrient export to riparian food webs, as well
as the role of biotic control on mayfly biomass in tropical lowland streams.
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