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ABSTRACT
There are nine herpesviruses known to infect humans, of which Epstein–Barr virus
(EBV) is the most widely distributed (>90% of adults infected). This ubiquitous virus
is implicated in a variety of cancers and autoimmune diseases. Previous analyses of
the EBV genome revealed numerous regions with evidence of generating unusually
stable and conserved RNA secondary structures and led to the discovery of a novel
class of EBV non-coding (nc)RNAs: the stable intronic sequence (sis)RNAs. To gain a
better understanding of the roles of RNA structure in EBV biology and pathogenicity,
we revisit EBV using recently developed tools for genome-wide motif discovery and
RNA structural characterization. This corroborated previous results and revealed novel
motifs with potential functionality; one of which has been experimentally validated.
Additionally, since many herpesviruses increasingly rival the seroprevalence of EBV
(VZV, HHV-6 and HHV-7 being the most notable), analyses were expanded to include
all sequenced humanHerpesvirus RefSeq genomes, allowing for genomic comparisons.
In total 10 genomes were analyzed, for EBV (types 1 and 2), HCMV, HHV-6A, HHV-
6B, HHV-7, HSV-1, HSV-2, KSHV, and VZV. All resulting data were archived in the
RNAStructuromeDB (https://structurome.bb.iastate.edu/herpesvirus) to make them
available to a wide array of researchers.

Subjects Bioinformatics, Computational Biology, Genomics, Microbiology, Virology
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INTRODUCTION
The herpesviruses are an ancient family of double-stranded DNA viruses (Order
Herpesvirales, Family Herpesviridae). The three major subfamilies (clades) of
mammalian herpesviruses—α (Alphaherpesvirinae), β (Betaherpesvirinae), and γ
(Gammaherpesvirinae)—appeared ∼180 to 220 mya (McGeoch et al., 1995). Nine
herpesviruses are currently known to infect humans: Epstein–Barr virus (EBV), human
cytomegalovirus (HCMV), human herpesvirus 6A and 6B (HHV-6A and HHV-6B),
human herpesvirus 7 (HHV-7), herpes simplex viruses 1 and 2 (HSV-1 and HSV-2),
varicella-zoster virus (VZV), and Kaposi’s sarcoma-associated herpes virus (KSHV). Of
these, EBV is most prevalent with >90% of adults being infected (Kieff & Rickinson, 2001).
EBV has a large (∼172 kb) double-stranded DNA genome that recapitulates many of the
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biological processes important to the host genome (Young & Rickinson, 2004) including
periods of pervasive transcription (O’Grady et al., 2014). After spreading through the
host by lytic replication, EBV establishes latency in B cells via several distinct patterns of
coding and noncoding gene expression. Both lytic and latent replication are associated
with various cancers (e.g., lymphomas and carcinomas) (Elgui de Oliveira, Muller-Coan &
Pagano, 2016) and autoimmune diseases (e.g., multiple sclerosis and Lupus) (Draborg, Duus
& Houen, 2013); however, molecular mechanisms connecting EBV infection to disease
remain elusive—making EBV an important target of study. One route for the regulation
of viral/host biology and for mediating host-virus interactions is RNA secondary structure.
Many key biological processes of both hosts and their pathogens are affected by RNA
structure: e.g., RNA transcription, processing, stability, and expression are all affected by
RNA folding (Andrews & Moss, 2019; Bevilacqua et al., 2016).

Although several functional RNA structural motifs have been identified in EBV (Moss
et al., 2014), knowledge of the roles of RNA and RNA folding in EBV infection and
disease still require additional attention. The first viral noncoding (nc)RNAs, discovered
in 1981, were the EBV encoded RNAs (EBERs −1 and −2) (Lerner et al., 1981). Both
EBERs are highly-expressed in infected cells (dwarfing endogenous ncRNA expression)
and possess extensive secondary structure that mediates their interactions with host and
viral biomolecules to promote infection (Lee et al., 2015; Lee, Pimienta & Steitz, 2012; Lee
et al., 2016;Moss et al., 2014). Over 20 years later, additional viral ncRNAs were discovered:
the BART and BHRF EBV-encoded micro (mi)RNAs in 2004 (Pfeffer et al., 2004) and the
EBV viral small nucleolar (v-snoRNA)1 in 2009 (Hutzinger et al., 2009).

A genome-wide bioinformatics and experimental analysis was previously performed in
EBV to scan for functional RNA motifs (Moss & Steitz, 2013). In the previous analysis, the
ncRNA discovery program RNAz (Gruber et al., 2010) was used to analyze sliding windows
of aligned EBV genome sequences (plus one closely related lymphocryptovirus from rhesus
monkeys: Macacine herpesvirus 4) to predict windows that have unusual thermodynamic
stability and conservation of RNA secondary structure—both indicators of functionality
(Clote et al., 2005). Approximately 30% of the (∼170 kbp) genome was predicted to
potentially encode functional RNA structure. In addition to known structures (EBERs,
v-snoRNA1, and pre-miRNA hairpins), many novel structural elements were predicted.
This analysis discovered a new class of EBVncRNAs, the stable intronic sequence (sis)RNAs,
which consist of abundant, highly structured intronic-sequence RNAs (derived from the
EBV W repeats). The sisRNAs consist of a complex mix of excised introns and, more
recently discovered, alternatively spliced long (l)ncRNAs (up to∼22 kb) (Cao et al., 2015b;
Tompkins, Valverde & Moss, 2018). The sisRNAs interact with multiple host regulatory
proteins (Tompkins, Valverde & Moss, 2018) and are essential to EBV’s ability to transform
human B cells (Bridges et al., 2019). Very long (∼500 nt) hairpins were modeled in the
latent origin of replication (oriP), which were later shown to occur in bidirectional lytic
lncRNAs that are hyper A-to-I edited and promote lytic replication (Cao et al., 2015a).
Elsewhere, a structural motif partially spans two exons and a whole intron in the EBV LMP2
gene; structure in this motif mediates interactions with splicing regulatory proteins and,
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surprisingly, nuclear actin to affect LMP2 splicing (a novel role for actin) (Kumarasinghe
& Moss, 2019).

Although this analysis of EBV led to interesting discoveries, there were several limitations
to this previous approach: (1) motifs that were not conserved (e.g., motifs unique to EBV)
were potentially missed; (2) multiple alternative models were predicted for the same
nt in different analysis windows; and (3) subjectively selected regions, comprised of
overlapping windows with favorable metrics, were selected for generating final models.
To address this, in this current study we used a new computational pipeline for RNA
secondary structure analysis, ScanFold, which addresses these limitations and has been
successfully applied to the Zika and HIV-1 genomes (Andrews, Roche & Moss, 2018) as
well as the human MYC mRNA (O’Leary et al., 2019). The ScanFold pipeline divides
RNA structural motif discovery into two parts; the first step is accomplished using
ScanFold-Scan, where individual sequences are analyzed using a slidingwindow approach.
This generates overlapping windows covering each nt of the sequence. For each window
ScanFold-Scan calculates 4 folding metrics: (1) The minimum free energy (MFE) 1G◦,
which predicts optimal thermodynamic stability. (2) The 1G◦ z-score, which measures
the stability of native vs. random sequence. (3) A p-value for the 1G◦ z-score, which is a
quality control metric that calculates the fraction of randomized sequences with greater
stability than native: p-values closer to 0 indicate a high confidence z-score. (4) The
ED (ensemble diversity), which indicates the structural diversity of Boltzmann-weighted
conformations calculated from a partition function. The second step, carried out by the
program ScanFold-Fold, builds secondary structural models from base pairs likely to
be functionally significant. ScanFold-Fold first compiles and averages ScanFold-Scan
metrics for every base pairing arrangement (for every nucleotide) predicted across the
sequence. The key metric used for selecting the most favorable bp for a nt is the 1G◦ z-
scoreavg, which highlights bp that are consistently found in low z-score windows. This
process was able to detect (and model with accuracy) all known structured motifs in
the HIV-1 and ZIKV genomes (Andrews, Roche & Moss, 2018). Further analysis revealed
the entirety of ScanFold-Fold results for HIV, ZIKV, and Hepatitis C genomes were
consistent with experimentally derived models—where the models from regions with the
most negative z-scoreavg values matched experimentally derived predictions and models
in positive z-scoreavg regions correlated to unstructured regions (Andrews, Baber & Moss,
2019). These results showed that ScanFold can serve not only as a motif discovery pipeline
(Andrews, Roche & Moss, 2018), but as a tool to generally characterize RNA structural
landscapes (Andrews, Baber & Moss, 2019).

In this current study we revisit EBV using this new approach, finding evidence for
additional functional elements in EBV including one that was experimentally characterized.
Significantly, in this new study, focus is placed on the more prevalent EBV type 1 RefSeq
genome (Smatti et al., 2018) (rather than the type 2 genome previously analyzed); this
current study, however, also includes data for the type 2 genome. Additionally, all sequenced
human herpesvirus RefSeq genomes have been analyzed to allow for global comparisons
between genomes and to facilitate the identification of specific viral RNAmotifs for further
structure/function analyses. All results for EBV and other human herpesviruses are archived
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on the RNAStructuromeDB a public resource archiving RNA secondary structural data for
humans and our pathogens (Andrews, Baber & Moss, 2017).

METHODS
Human herpesvirus genome sequences were acquired from the NCBI RefSeq database
(O’Leary et al., 2016): EBV-1 (NC_007605.1), EBV-2 (NC_009334.1), HCMV (NC_
006273.2), HHV-6A (NC_001664.4), HHV-6B (NC_000898.1), HHV-7 (NC_001716.2),
HSV-1 (NC_001806.2), HSV-2 (NC_001798.2), KSHV (NC_009333.1), VZV (NC_001348.
1). Each sequence was analyzed using the ScanFold pipeline. First, genome sequences
were scanned using a sliding analysis window of 150 nt with a single nt step size using
ScanFold-Scan. In each analysis window, the minimumGibbs free energy of folding (1G)
and its associated secondary structure were predicted, assuming the genome sequence was
transcribed into RNA. A1G z-score is calculated by comparing the native sequence to the
average1G of 50 randomized sequences (shuffling nucleotides) according to the following
equation: z-score= (1Gnative−1Grandom,average) / σ ; here, σ is the standard deviation of all
calculated 1Gs. Negative z-scores indicate the number of standard deviations more stable
the native sequence is vs. random. A p-value is calculated, which is a quality control metric
for the z-score that measures the fraction of random sequences more stable than native
(ideally, this will be close to zero). The ensemble diversity is calculated from a partition
function, which measures the diversity of folds in the possible folding ensemble. Here,
low numbers indicate that there is a single dominant conformation, while higher numbers
indicate alternative conformations or a lack of stable structure. From the partition function
a centroid structure is also calculated, this is the secondary structure model that has the
least difference with all other Boltzmann weighted conformations in the ensemble—thus,
it can be considered as a structure that represents the ensemble fold. The parameters used
for window/step size and randomizations were previously optimized (Andrews, Roche &
Moss, 2018).

The output of ScanFold-Scan were then analyzed using the program ScanFold-Fold.
Here, unique motifs are generated by creating consensus secondary structures across
all overlapping scanning windows, where base pairs are weighted by the z-score of the
window in which they occur. Motifs are thus generated from the base pairs that most
contribute to the unusual structural stability of a sequence. Presumably, the evolved order
of these sequences creates the particular stability of these pairs, indicating their potential
for function (e.g., evolution working to stabilize such structures). A key component of
ScanFold-Fold is the decision-making process used to define base pairs when multiple,
unusually stable, pairs can be predicted for a residue; here, the algorithm selects the pairing
partner that most consistently contributed to low z-score windows throughout the scan (see
Methods of Andrews, Roche & Moss, 2018). For regions of interest, these unusually stable
base pairs were used as constraints for generating global secondary structural models.
This was done to ‘‘fill in’’ base pairs that were ‘‘missing’’ due to the generation of the
consensus structure (e.g., where multiple, equally stable, pairs were averaged out) and to
deduce potential long-range interactions, which spanned regions larger than the (150 nt)
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windows used. To do this, the program RNAfold (Lorenz et al., 2011) was used to predict
the minimum free energy secondary structure possible, given the constraint of forming all
ScanFold-Fold with average z-score bp < −1 or −2 (described as the ‘‘Global Refold’’
option in Andrews, Baber & Moss, 2019).

To test predicted models for these select regions, a comparative sequence/structure
analysis was performed. The EBV-1 sequence was used in a BLASTn analysis to deduce
homologous sequence. These were aligned using the program MAFFT (Katoh, Asimenos &
Toh, 2009; Katoh & Frith, 2012; Katoh et al., 2005; Katoh et al., 2002; Katoh, Rozewicki &
Yamada, 2017;Katoh & Standley, 2013;Katoh & Standley, 2016;Katoh & Toh, 2008a;Katoh
& Toh, 2008b; Katoh & Toh, 2010; Kuraku et al., 2013; Nakamura et al., 2018; Yamada,
Tomii & Katoh, 2016) implementing the G-INS-i strategy, which is optimized for sequences
with global homology. The ScanFold-Fold constrained secondary structure model for
EBV-1 was mapped to this structure and conservation of base pairing was assessed as
the percentage of canonical pairing (GC/CG, AU/UA, or GU/UG base pairs) observed
across aligned positions. Mutations were tracked across model base pairs to identify
structure-preserving mutations that were potentially consistent (single point mutations)
or compensatory (double point mutations) with respect to the structure model.

To experimentally test RNA structural motifs for their effects on post-transcriptional
gene regulation, select sequences were inserted into the pIS2 vector downstream of its
Renilla Luciferase (RL) gene (within the 3′ UTR). All conditions were tested in biological
triplicate as described in (O’Leary et al., 2019). Briefly, RL constructs, along with Firefly
(FF) Luciferase were transfected into HeLa cells and incubated at 37 ◦C and 5% CO2

while maintained in DMEM supplemented with 10% FBS, penicillin, streptomycin, and
L-glutamine. After 24 h, transfected cells were split between a 24 well plate (for qPCR) and
a 96 well plate (for luciferase assays) and incubated an additional 24 h before analysis. Dual
luciferase assays were designed and performed following recommendations of (Van Etten,
Schagat & Goldstrohm, 2013): cells were lysed, and luciferase activity was measured using
Promega’s Dual Luciferase Reagent Assay kit with a collection time of 10 s. Relative response
ratios (RRR), calculated as the ratio of RL to FF relative light units (RLUs), were calculated
for each sample (Table S2).

The RT-qPCR analysis was carried out as described in (O’Leary et al., 2019): briefly,
whole cell RNA was extracted in TRIzol followed by a Dnase I treatment (NEB) for 2 h
at 37 ◦C. RNA was further purified with Zymo’s RNA Clean and Concentrator kit before
reverse transcription which was carried out using 1 µg of purified RNA, random hexamers,
and Superscript III (ThermoFisher). Transcript abundance was then measured via qPCR
and analyzed using the 11Ct method, where the relative abundance of RL was calculated
using FF as the reference gene. The results of both RT-qPCR and dual luciferase assays can
be seen in Table S2.

RESULTS
Global results
Average MFE 1G values across each genome ranged from −24.8 kcal/mol (HHV-7) to
−64.1 kcal/mol (HSV-2; Table 1). This large difference in predicted RNA folding stability,
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Table 1 ScanFoldmetrics of the human herpesviruses. ED (ensemble diversity) is a measure of conformational diversity of RNA. Average
Genome ZS (z-score) gives the1G z-score averages across all windows spanning each genome. ZS<−1 and<−2 give the percentage of prediction
windows with G z-score below each cutoff. Total base pairs gives the total number of stable pairs predicted in each genome (counting both strands
and all potential base pairs per nucleotide) and the bp ZS< −1 and< −2 give the percentages of bp below each z-score threshold. Motifs reports
the number of individual discrete RNA structures (defined as having a single base helix) containing at least one bp with ZS<−2.

Virus GC% 1G
(kcal/mol)

ED Average ZS Windows ZS <-1 ZS <-2 Total bp bp
ZS <-1

bp
ZS <-2

Motifs

EBV-1 59.4% −50.1 32.2 −0.63 343,348 35.1% 13.2% 835,324 8.8% 2.5% 858
EBV-2 59.6% −50.3 32.3 −0.62 345,230 34.4% 12.7% 850,827 8.4% 2.6% 870
KSHV 53.7% −42.6 32.6 −0.31 275,640 25.0% 7.9% 628,314 6.4% 1.5% 381
HSV-1 68.3% −60.8 32.7 −0.26 304,146 24.4% 8.1% 856,374 5.4% 1.4% 436
HHV-7 36.2% −24.8 33.7 −0.26 305,862 22.8% 7.6% 536,275 6.8% 1.6% 320
HSV-2 70.4% −64.1 32.7 −0.20 309,052 22.8% 7.5% 905,657 5.0% 1.2% 648
HCMV 57.4% −46.8 32.9 −0.19 470,994 22.9% 6.9% 1,143,973 2.9% 0.6% 562
VZV 46.0% −34.5 32.9 −0.13 249,470 20.0% 5.1% 498,533 5.7% 1.0% 226
HHV-6A 42.4% −29.7 32.7 −0.12 318,458 19.6% 5.4% 597,872 5.9% 1.2% 274
HHV-6B 42.8% −29.7 32.9 −0.09 323,930 19.0% 4.7% 607,730 5.8% 0.8% 268

as one would expect, correlates with the GC%, which ranged from 36.2% to 70.4%. The
average z-score and ensemble diversity (ED), however, do not follow trends for 1G or
GC%. The z-score quantifies the greater-than-random folding stability of an RNA sequence
and is primarily dependent on the sequence order and not its composition. Likewise, the
ED value indicates the diversity of potential structural conformations in an RNA’s folding
ensemble, which also appears to be an evolved property of ordered/functional RNA
sequences (Moss, 2018a). The average z-score ranged from -0.09 (HHV-6B) to −0.63 for
EBV-1, while the average ED ranged from 33.7 (HHV-7) to 32.3 (EBV-1). Indeed, all
folding metrics suggested functional structured motifs were most prevalent in the EBV
type 1 genome.

Unsurprisingly, the predictions for EBV-1 and EBV-2 were almost identical (Table 1),
as the two genomes are only ∼5% different in sequence and the majority of this difference
clusters within one gene region (EBNA-2) (Tzellos & Farrell, 2012). The percentage of the
EBV genome spanned by windows with z-scores <-1 (one standard deviation more stable
than random) was predicted to be 35.1% and 34.4% for types 1 and 2, respectively. This
is consistent with previous predictions using RNAz, which predicted ∼30% of the genome
to fall within low z-score windows (Moss & Steitz, 2013). These values are stronger than
any other human herpesvirus genome: e.g., the next highest percentage of windows with
z-score <-1 were for KSHV (25%). This also held true for windows with z-scores <-2
(two standard deviations more stable than random), where EBV-1 and EBV-2 had 13.2%
and 12.7% of their windows below this stricter cutoff: the next highest percentage was for
HSV-1 (8.1%). The virus with the smallest fraction of its genome spanned by low z-score
windows was HHV-6B (19.0% and 4.7% for the -1 and -2 z-score cutoffs, respectively).

In the prediction of the MFE1G for each analysis window, a model secondary structure
is also generated. Across each genome this resulted in many predicted base pairs (e.g., the
HCMV genome has 1,134,919 predicted base pairs; Table 1), where a specific nucleotide can
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be paired differently across several overlapping windows. As a result, many potential base
pairing partners may be predicted per nucleotide, resulting in the total number of predicted
base pairs to often exceed genome length; a confounding factor which has proved to
be a challenge in RNA 2D structure modeling (see Introduction). The ScanFold-Fold
algorithm confronts this challenge by predicting the single most likely orientation for
each nucleotide based on its contributions to low z-score windows (indicating ordered
stability and, potentially, function). The viruses that had the greatest percentages of low
z-score base pairs were EBV-1 and EBV-2: EBV-1 had 8.8% of its base pairs predicted with
average z-score <-1 and EBV-2 had 2.6% of its base pairs predicted with average z-score
<-2 (Table 1). Additionally, ScanFold-Fold extracts each discrete structural motif (i.e.,
single hairpins or multi-branched stem loops) containing at least one base pair with an
average z-score <-2. This results in a list of motifs for each genome, where again, EBV-1
and EBV-2 had the greatest number of motifs with 858 and 870 respectively.

In summary, all predictions indicate a particular importance for functional RNA
secondary structures encoded within the EBV genome vs. other herpesviruses. The
ScanFold-Fold results also give us a means of generating motifs of interest for further
analysis.

Known structural motifs in EBV
The ScanFold analysis was able to deduce the location and, in many cases, the secondary
structure of known RNA structural motifs in EBV-1. All known EBV-1 miRNA sequences
fell within low z-score regions and were contained within hairpins formed by low z-score
base pairs. For example, Fig. 1 summarizes ScanFold results for the EBV-1 BART miRNA
gene cluster. All but one miRNA sequence fall within hairpins comprised of base pairs
with average z-score <-2 (Fig. 1A; ebv-BART-5 miRNAs occurred in a hairpin comprised
of z-score <-1 base pairs). Features of the ScanFold-Fold model secondary structures for
the EBV miRNAs are consistent with what is known about active precursor (pre)-miRNA
hairpins. For example, the ebv-BART3* and ebv-BART3 sequences are annealed to each
other, are offset by two nucleotides and contain internal bulge loops (Fig. 1B). A similarly
sized hairpin was detected elsewhere in the EBV genome, which corresponds to the EBV
viral small nucleolar (v-sno)RNA1 (Fig. 2) (Hutzinger et al., 2009). All model pairs for
the v-snoRNA are correctly predicted (consistent with C/D box snoRNAs); however, the
average z-scores, while negative, were not lower than −1 (Fig. 2A). Thirteen additional
base pairs are predicted beyond the annotated v-snoRNA region (orange pairs in Fig. 2B).

ScanFold-Fold was able to detect the terminal hairpin loops of very large hairpin
structures found in ncRNAs from two regions. The first hairpin (Fig. S1) occurs in the
W repeat region, which generates the stable intronic sequence (sis)RNA-2. This sequence
occurs 5-8X in circulating viral strains and the transcribed sisRNAs accumulate to high
abundance in infected cells (Moss & Steitz, 2013) and appear to be important to EBV-
induced transformation of human B cells (Bridges et al., 2019; Szymula et al., 2018). The
second region is the latent origin of replication (oriP), which is transcribed bidirectionally
in lytically reactivated cells. In both oriP transcripts, tandem repeat sequences anneal
to each other to form very long hairpins, which interact with human ADAR (adenosine
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posed D’ and D interaction sites with host rRNA sequences are indicated in pink and blue, respectively.

Full-size DOI: 10.7717/peerj.9882/fig-2
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deaminase acting on RNA), are hyper-edited, localized to the nucleus, interact with
paraspeckle assembly factors, and play likely roles in immune modulation (Cao et al.,
2015a). ScanFold-Scan finds the terminal hairpins of each oriP transcript in windows
with less than −5 z-scores, however, the final model reported by the ScanFold-Fold
algorithm predicts multiple local inter-repeat interactions (Fig. S2). In both the sisRNA-2
and oriP transcripts, long range base pairs in each hairpin cannot be predicted, as they span
distances greater than the window size used (150 nt here). This highlights an important
limitation of ScanFold and, indeed, all scanning window approaches.

ScanFold-Fold was able to successfully predict most of the known structure of the EBV
encoded small RNA (EBER)1 (Fig. 3), a hyper-abundant viral ncRNA with implications to
oncogenesis (Iwakiri, 2016;Moss et al., 2014). Similar to the long hairpins discussed above,
EBER1 long-range base pairs were not predicted, however, 61% of the pairs not spanning
more than 150 nt were correctly predicted; the majority (14/15) with average z-scores
<-2. In EBER2, however, no model base pairs were predicted (Fig. 4) and, indeed, few
base pairs with low z-scores were predicted. The 21 base pairs with average z-scores <-1
do not correspond to any known EBER2 structures. This is due to the poorer predicted
metrics for windows spanning the annotated EBER2 region; indeed, windows spanning
EBER2 had positive z-scores, indicating a sequence that is potentially ordered to be loosely
structured (Andrews, Baber & Moss, 2019). Interestingly, the regions of EBER2 that fall
within positive z-score regions correspond to an interaction site that binds to nascent
transcripts from the terminal repeat (TR) region of the EBV genome. This interaction
facilitates the recruitment of the human PAX5 regulatory protein to the TR genomic
region to promote lytic replication (Lee et al., 2015). Interestingly, ScanFold predictions
in the TR region find that the EBER2 interaction sites are also spanned by positive z-score
windows and ScanFold-Fold predictions suggest that these regions are ordered to be
unstructured/accessible.

New structural motifs in EBV
In addition to finding known EBV structures, ScanFold predicts many additional motifs
with putative functions.We focused our attention on one regionwhich was particularly rich
in base pairs predicted to have average z-scores that were exceptionally low (<−2). This
region approximately spans EBV bp 48,800 to 50,200 and overlaps several important viral
genes (Fig. 5). The first cluster of predicted motifs overlaps three lytic genes BFRF1, BFRF2,
and BFRF3, which play essential roles in nuclear egress (Farina et al., 2005) (the first step
in virion release into infected cells), regulation of late viral gene expression (Aubry et al.,
2014), and assist in the assembly of infections particles (Henson et al., 2009), respectively.
Each gene overlaps each other, where BFRF2 and BFRF3 both overlap the 3′ UTR of BFRF1
and BFRF3 overlaps the 3′ UTR of BFRF2. Thus, functional structural motifs can be playing
multiple roles in the post-transcriptional control of BFRF1-3. We focused our attention,
however, on potential roles in the 3′ UTR of BFRF1. A 606 nt fragment sequence (bp 48,856
–49,461), corresponding to the motifs predicted with average z-scores less than -1 in the
BFRF1 3′ UTR were further analyzed.
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Figure 3 Results for EBER1. (A) IGV visualization of results. At the top of IGV, EBV-1 genome coordi-
nates are shown, followed by ScanFold-Fold predicted base pairs represented as arcs and the location of
EBER1 is indicated by the blue cartoon. Base pairs in the reference EBER1 structure correctly predicted by
ScanFold-Fold are highlighted in green on the secondary structure in (B). (C) indicates the correctly pre-
dicted pairs after refolding the EBER1 sequence using ScanFold-Fold bp with average z-scores< −2 as
constraints.

Full-size DOI: 10.7717/peerj.9882/fig-3

All base pairs predicted by ScanFold-Fold to have average z-scores <-1were constrained
to be paired to each other and the remaining sequence was refolded using the RNAfold
algorithm (the same algorithm used in ScanFold-Scan to predict windows (Lorenz et al.,
2011), which predicts the global MFE structure. This fills in base pairs that are ‘‘missing’’
in the ScanFold-Fold consensus (Fig. 6A), allows for potential long-range interactions
to occur and allows for base pairs that do not contribute to the low z-score of this region
to form. The resulting global model of this region is shown in Fig. 6B. The overall fold
can be divided into eight motifs. In most cases a motif was simply the ScanFold-Fold
predicted structure. In Motif (M)2 and M6, several base pairs were added to extend helices
(Fig. 6B). M4, on the other hand, was predicted to form a multibranch loop structure,
which encompasses three ScanFold-Fold predicted hairpins: M4.1, M4.3 and M4.5. To
test the resulting model, a phylogenetic analysis was undertaken. The EBV-1 sequence
was queried against the nt database using BLASTn (Altschul et al., 1990), which identified
100 putative homologs, all from other EBV strains. Model base pairs were compared to
an alignment of EBV-1 and these 100 homologous sequences (Data S1). Canonical base
pairing was conserved 99.1% and, when mutations occurred, they generally preserved
structure. Of the 202 base pairs predicted in this region, 35 showed evidence of consistent
mutation—a single point mutation which preserves base pairing (Fig. 6B). Only two
base pairs showed evidence of compensatory mutation—a double point mutation which
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Figure 5 Results for the EBV-1 genome region partially encoding BFRF1-3 and part of EBNA1. EBV-1
genome coordinates are followed by ScanFold-Fold predicted base pairs represented as colored arcs and
the location of each gene is indicated by the blue cartoon. The light blue highlighted region is the region
used for subsequent experimental analysis.

Full-size DOI: 10.7717/peerj.9882/fig-5

preserves base pairing. One putative compensatory mutation occurs in the basal stem of
M4.5 and the other in M7 (Fig. 6B).

A second cluster of predicted motifs overlaps the F/Q exons of EBNA1 (Fig. 5). EBNA1
is a key viral gene involved in the replication and partitioning of the EBV genome (Frappier,
2012). During latency program I, EBNA1 is the sole expressed protein and transcription
begins at the Q promoter (Qp; Fig. 7A). This results in the production of a short Q exon,
which is spliced upstream of the U leader exon in the EBNA1 5′ UTR, which was previously
found to contain a structured internal ribosomal entry site (IRES) that stimulates non-
canonical (cap-independent) translation (Isaksson, Berggren & Ricksten, 2003b). During
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Figure 6 Results for the region partially overlapping BFRF1-3. (A) The top of this panel shows
ScanFold-Fold predicted base pairs represented as colored arcs. (B) Secondary structure models
predicted after energy minimization using ScanFold-Fold base pairs (average z-score< −1) as
constraints. Eight motifs (M1-8) were defined (labeled in both the (A) and (B). Nucleotides with
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colors corresponding to the cartoon). (D) Results of luciferase assays for each construct; the translational
efficiency and luciferase mRNA and protein fold-change (vs. empty vector control (C)) are plotted for
C, wild type (WT) and three fragments of the structured region. The translational efficiencies reported
here were calculated by dividing the relative protein abundance of RL (RRR values) by mRNA levels of RL
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Full-size DOI: 10.7717/peerj.9882/fig-6

lytic reactivation transcription from the F promoter (Fp) leads to the incorporation of
the longer F exon into the 5′ UTR of EBNA1 (includes the Q exon sequence; Fig. 7A).
To see if the ScanFold-Fold predicted structural motifs would persist in the context of
this longer 5′ UTR, the entire sequence (plus the start codon), were analyzed using the
ScanFold pipeline. Three hairpins were predicted (HP1-3; Fig. 7B) which recapitulate
those predicted in the EBV genome scan (Fig. 5). The most significant base pairs (average
z-scores <−2) all occur within HP1, which begins at the first nucleotide transcribed from
Fp.

In the context of the 5′ UTR, the downstream F/Q exon nt are predicted to form a novel
hairpin, HP4. No significant base pairing was predicted between the F/Q and U leader
exons. Interestingly, no base pairs were predicted in the IRES-containing U leader exon
with average z-scores <-1. The negative z-score (< 0 but >−1) base pairs predicted here
do not correspond to any found in the EBNA1 IRES model structure (Moss et al., 2014).
After constraining ScanFold-Fold predicted base pairs (<-1) and re-folding the 5′ UTR,
however, four additional hairpins (HP5-8) were predicted (Fig. 7C). HP7 and HP8 are
found in the current consensus model of the EBNA1 IRES (Rfam ID# RF00448) in the
Rfam database (Burge et al., 2013; Daub et al., 2015; Gardner et al., 2009; Griffiths-Jones et
al., 2003; Griffiths-Jones et al., 2005; Kalvari et al., 2018a; Kalvari et al., 2018b; Nawrocki et
al., 2015). HP6 is a novel predicted configuration of the IRES nucleotides and HP5 is a
novel predicted hairpin upstream of the IRES, which partially overlaps (incorporating two
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Figure 7 Results for the EBNA1 5′ UTR. (A) Cartoon showing the EBV-1 genome region with the Fp
(used in lytic replication) and Qp (used in latency type I and II) promoters annotated alongside the F/Q,
U, and K exons (with start codon colored green). (B) ScanFold-Fold predicted base pairs represented
as colored arcs above the sequence of the EBNA1 5′ UTR formed after transcription from Fp. Spliced
exon sequences are highlighted and labeled below the arc diagram structure (with highlights colored as in
the cartoon). (C) Secondary structure model of the EBNA1 5′ UTR based on energy minimization using
ScanFold-Fold base pairs with average z-scores<−1 as constraints. The locations of exon starts and the
start codon are annotated; as well, nt that show evidence of undergoing structure-preserving mutations
are circled.

Full-size DOI: 10.7717/peerj.9882/fig-7

nucleotides of) the F/Q exon (Fig. 7C). HP6-8 are predicted to occur within a multibranch
loop structure that sits above an extensive basal stem structure.

To check for potential conservation of the model structure, as well as identify putative
consistent and compensatory changes to support model base pairs, a phylogenetic
comparison was performed using an alignment of 49 EBV sequences (Data S2).
Overall conservation of canonical base pairing was 98.0%. There were 22 putative
consistent mutations and 3 compensatory mutations identified (Fig. 7C). These putative
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compensatory mutations are found in HP4, HP6 and HP7. No consistent or compensatory
mutations were identified within the long basal stem under HP6-8.

Experimental analysis of a novel structured region
To test potential functions of the motifs overlapping BFRF1, BFRF2, and BFRF3, four
constructs were generated that comprise the entire WT structural region and three
fragments (containing M1-2, M3-6, and M7-8; Fig. 6C), which were placed downstream
(within the 3′ UTR) of Renilla Luciferase (RL) and expressed in human cell lines. Two
values were measured for each construct, as well as an empty vector control (Fig. 6D): the
Luciferase activity fold-change (Luciferase activity is a measure of protein expression levels)
and the translational efficiency (which normalizes protein levels using the RNA abundance
measured by RT-qPCR); see Methods. Compared to the control (C), the WT construct had
reduced Luciferase activity, but a ∼7-fold increase in translational efficiency. The M1-2
construct saw marked increases in Luciferase activity (∼2-fold) and translational efficiency
(∼36-fold increase). M3-6 reduced the Luciferase activity to wild type levels, however
translational efficiency was roughly cut in half compared to control. M7-8 reduced the
Luciferase activity and translational efficiency below WT levels (by roughly 60% in both
cases). These results indicate the presence of repressive elements in the region spanned by
M3-8 and stimulatory elements in M1-2.

Structural motifs beyond EBV
Beyond EBV, RNA secondary structures have been previously discovered in KSHV. A
recent analysis of the KSHV PAN ncRNA (Sztuba-Solinska et al., 2017) (an RNA transcript
that is important to late lytic gene expression and the release of progeny virions (Borah et
al., 2011; Sun et al., 1996)) generated a global secondary structure model for PAN based
on comprehensive SHAPE probing under in/ex cellulo, and in/ex virio in vitro conditions.
ScanFold-Fold results for the KSHV genomic region encoding PAN recapitulated many
features of the experimentally-informed global model (Fig. 8). Notable, however, is the
lack of highly negative average z-score base pairs from the ScanFold-Fold predictions:
indeed, the majority of base pairs were predicted with negative average z-scores that did
not fall below −1. Base pairs predicted with average z-scores below −1 clustered between
PAN nucleotides 137 to 327; the only motif from the previous global model with average
z-score <−1 fell within this region (H8; Fig. 8).

Motif base pairs (after refolding; see Methods) are 99.4% conserved in an alignment
of PAN homologs (Data S3) and the little variation observed was consistent with base
pairing. 11 out of 19 motifs predicted by ScanFold appeared in the global model (Fig. 8)
(Sztuba-Solinska et al., 2017) and, with small variations (e.g., see results of the PAN ENE
below), recapitulated the experimentally-guided model base pairs. The nucleotides in
the 8 ScanFold motifs that were not found in the global model were, in that model,
generally found in longer range interactions and/or showed high SHAPE reactivity under
various probing conditions (indicating single-stranded or loose structure). These results
are consistent with the observation that regions with z-scores greater than -1 generally
corresponded to higher SHAPE reactivities (Andrews & Moss, 2019) (potentially due to the
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Figure 8 Results for KSHV PAN. (A) IGV visualization of results with KSHV genome coordinates fol-
lowed by ScanFold-Fold predicted base pairs represented as arcs (colored green for bp with average z-
score< −1, yellow for bp with negative average z-scores> −1, and grey for> 0), the genome sequence
(A, C, G, and T are in green, blue, orange and red, respectively). (B) The bottom panel contains motif sec-
ondary structures predicted by ScanFold-Fold depicted using VARNA (Darty, Denise & Ponty, 2009).
The MRE is represented as an orange highlight on the arc diagrams and as orange bps in the secondary
structures. The nucleotides from the ENE motif which have been crystalized (Mitton-Fry et al., 2010) are
highlighted in green.

Full-size DOI: 10.7717/peerj.9882/fig-8

lack of a predominant secondary structure and/or the presence of primary sequence motifs
whose activity is facilitated by being unstructured). For example, the motif predicted for
nucleotides 34 to 91 contains the Mta responsive element (MRE; a protein binding site that
stabilizes PAN (Massimelli et al., 2011; Tunnicliffe et al., 2019) partially occluded within a
weak stem (comprised of GU and AU base pairs; Fig. 8). In the global model the MRE site
is highly reactive to SHAPE probing (under ex virio conditions) and the remaining motif
bases are contained within long-range helices (H2 and H3 in Fig. 1 of (Sztuba-Solinska
et al., 2017). The motif spanning nucleotides 343 to 376, however, is modeled as a small
alternative hairpin (H12 in Fig. 1 of (Sztuba-Solinska et al., 2017) in a looped out region
with moderate SHAPE reactivity (under ex virio conditions).

The best characterized (in structure and function) motif is the ENE (expression and
nuclear retention element) found in the 3′ end of the KSHV PAN ncRNA (Conrad et al.,
2006). This element was found to increase the stability/lifetime of intronless transcripts,
such as the PAN RNA, via the sequestration of the PAN poly(A) tail in an extensive
triple-helix structure with bulged uracil nucleotides in the ENE (Mitton-Fry et al., 2010).
In the analysis of the KSHV genome, ScanFold-Fold was able deduce the location of the
ENE and predict a secondary structure in agreement (Fig. 8) with the crystal structure
of the PAN ENE(Mitton-Fry et al., 2010) (crystalized nucleotides highlighted in green)
and the SHAPE directed model (of the cytoplasmic and ex virio RNA; Figs. S4 and S7 of
Sztuba-Solinska et al. (2017)).

Beyond the KSHV PAN there are many base pairs predicted with higher significance:
there are 39906 base pairs that have average z-scores<−1 and 9446<−2 predicted in the
KSHV genome. The values for KSHV are on par with predictions for other herpesviruses
(Table 1), indicating significant fractions of each genome likely encode functional RNA
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secondary structures (all results available on the RNAstructuromeDB (Andrews, Baber &
Moss, 2017) and in Supplemental Data set (https://zenodo.org/record/3964325).

DISCUSSION
Innovations present in the ScanFold approachmade this current report possible. The initial
ScanFold-Scan analysis generatesmetrics of local RNA folding that allow for genome-wide
comparisons between human herpesviruses. A key finding of this study is that EBV (types
1 and 2) both have evidence of containing more sequences that are ordered to form (likely
functional) RNA structures than any other herpesviruses: e.g., the average z-score for EBV
is ∼2X that of the next lowest (KSHV; Table 1). It should be noted, however, that even for
the genome with the least negative average z-score, HHV-6B (−0.09; Table 1), significant
percentages of the genome are spanned by low z-score windows. These give rise to many
predicted base pairs with likely functionality: e.g., for HHV-6B 5.8% and 0.8% of the
607,730 base pairs predicted by ScanFold-Fold have average z-scores <−1 (28,525 bp)
and <−2 (4,780 bp), respectively. Thus, although RNA secondary structure is predicted
to play greater roles in EBV, all human herpesviruses are likely to utilize regulatory RNA
structure to a larger extent than previously appreciated. The results of these analyses are
made available on the RNAstructuromeDB (Andrews, Baber & Moss, 2017) to facilitate
their usage by a wide array of researchers interested in human herpesviruses. Here, results
can be browsed alongside genomic annotations (which have been loaded from NCBI for
each genome) or any JBrowse compatible file (Buels et al., 2016) a user has available. As
an example, for EBV-1 we include additional tracks alongside ScanFold results to help
identify regions of interest; the McIntosh lab has generated RNA sequencing data for the
EBV-1 genome as it transitions from a latent to a lytically active state (Frey et al., 2020).
The sequencing data from this study can now be seen as a coverage track and allows users
to quickly assess whether regions highlighted by ScanFold fall within actively transcribed
regions.

In addition to facilitating global comparisons, the ScanFold approach defines specific
motifs of likely function. All predicted motifs containing at least one base pair with an
average z-score <-2 have been modeled, annotated, and compiled into individual PDF
files for easy viewing (Supplemental Data set - https://zenodo.org/record/3964325). In
addition to presenting the thermodynamic properties for each motif, the NCBI gene
features overlapping the motif have been listed. In EBV-1, ScanFold was able to identify
the locations of and recapitulate elements of known functional structured RNAs (Figs. 1–3
and Figs. S1–S2). For example, although ScanFold is not explicitly a miRNA discovery
program, it does a strikingly good job of deducing pre-miRNA hairpins. All known EBV
miRNAs are contained within hairpins formed by base pairs with z-averages <−1 and
the majority have base pairs <−2 (RNAstructuromeDB and Supplemental Data set -
https://zenodo.org/record/3964325: e.g., the BART miRNA cluster shown in Fig. 1. The
exceptionally low average z-scores of pre-miRNA base pairs indicates a particular bias in
their sequence order, highlighting the strict structural requirements of miRNA maturation
(Lee et al., 2002; Zeng & Cullen, 2003).
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ScanFold results may also provide information on the processing of another EBV
ncRNA, v-snoRNA1. In addition to predicting a C/D box snoRNA-like hairpin in the
annotated v-snoRNA1 region, additional base pairs are predicted that lengthen the hairpin
(Fig. 2). Interestingly, these additional predicted base pairs have lower average z-scores
than those of the core v-snoRNA1 structure. The extended hairpin predicted here may be
a precursor structure, required to mature the v-snoRNA1 (Hutzinger et al., 2009; Matera,
Terns & Terns, 2007). It is also interesting that, while being negative, the majority of core
base pairs are not predicted to have average z-scores below -1. This may be to facilitate
intermolecular RNA-RNA interactions with target sites on the host RNAs: e.g., utilizing
the D’ and D sites (Hutzinger et al., 2009) annotated on Fig. 2.

Similar results were found in the EBER2 and TR regions of EBV, which form biologically
essential intermolecular RNA-RNA interactions with each other (Fig. 4) (Lee et al., 2015).
But for several isolated base pairs, the EBER2 TR interaction region is predicted to have
unusually stable base pairs (Fig. 4A) as are the two interaction sites in the TR RNA (Fig. 4B),
which occur within a region of highly positive predicted z-score—indicating they may be
ordered to be unusually unstable (presumably to facilitate intermolecular base pairing).
None of the EBER2 reference structure (Rfam ID# RF02712) base pairs are predicted
by ScanFold-Fold (Fig. 4C); emphasizing its loose secondary structure, which is also
supported by previous experimental analyses (Lee et al., 2015).

In contrast to EBER2, EBER1 is predicted to contain base pairs with average z-scores
<−2, indicating a high degree of ordered structure, which is corroborated by experimental
analyses (Glickman, Howe & Steitz, 1988; Lee et al., 2015). These low z-score base pairs form
three hairpins in the reference structure (Rfam ID# RF01789), with the two remaining
reference structure hairpins being predicted by base pairs with average z-score <-1 (Fig. 3).
The remaining 46% of base pairs in the reference structure that were not predicted by
ScanFold-Fold highlight an important limitation of ScanFold: it cannot predict longer
range base pairs (due to the limitation of the window size used). To predict the reference
structure, however, ScanFold-Fold results can aid modeling by providing base pairs to
use as constraints (e.g., Fig. 3C). A priori knowledge of the final transcript sequence is,
however, essential here. This highlights another important limitation of whole genome
scans: defining the boundaries of a structured domain or ncRNA. In EBER1, for example,
10 base pairs with average z-scores <-2 are predicted between EBER1 and upstream EBV
sequences; as is a single base pair <-1 predicted to occur downstream (Fig. 3A). The EBER1
sequence can be co-transcribed as part of intronic sequences for latent membrane protein
(LMP)2 and these structures between EBER2 and flanking sequence could play some role
in splicing; however, additional work is needed to test this speculative hypothesis.

Beyond previously described structures in EBV, ScanFold uncovered many novel
motifs; we focused on structures predicted in a particular ‘‘hot spot’’ with base pairs
having average z-scores <-2 (indicating highly ordered sequences/structures; Fig. 5). The
motifs overlapping BFRF1-3 do so primarily in 3′ UTR sequences (exclusively in BFRF1
and partially in BFRF2), thus their hypothesized roles in regulation of gene expression;
as 3′ UTRs are particularly rich areas for post-transcriptional control elements (Mayr,
2017). Indeed, we found that inclusion of motifs M1 and M2 into a reporter construct
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stimulated expression of luciferase, while motifs M3 to M6 and M7 to M8 both suppressed
expression (Fig. 6B). Many factors can be playing roles in the observed effects of these
motifs. For example, multiple host regulatory proteins are predicted to target M1-8 (Data
S5) as are both host and viral miRNAs (Table S1). Motif structure can play many roles
here: by forming specific recognizable motifs; occluding or presenting primary sequence
motifs, or by altering the relative positioning of regulatory motifs. Much additional work
is required to validate predicted interactions in this region and to define the exact roles of
the conserved and unusually stable secondary structures discovered here: e.g., introducing
minimal mutations to modulate predicted RNA secondary structures can help determine
to what extent RNA structure plays a role in the observed results.

Similarly, we identified four highly stable/conserved hairpins in the F/Q exon of EBNA1,
which are, essentially, appended as a single domain to the 5′ UTR of this critical viral gene
during lytic replication. An interesting observation was that these novel elements had base
pairs that were predicted with average z-scores that were much lower than those of the
known structures in the downstream U leader exon (Isaksson, Berggren & Ricksten, 2003a)
(Fig. 7). Indeed, the EBNA1 IRES base pairs could only be predicted after refolding the
5′ UTR with upstream sequences constrained based on the ScanFold-Fold predicted base
pairs. Phylogenic support is found for all model structures, indicating that all have likely
importance; however, the IRES shows much less evidence of unusual stability. Perhaps,
as in the previously discussed examples, some flexibility is required in the IRES for its
function. What potential roles then, can be proposed for the rigidly defined structures in
the F/Q exon? One interesting possibility is that structure here is inhibiting cap-dependent
translation (e.g., by sequestering the 5′ end of the mRNA in the exceptionally stable HP1;
Fig. 7), potentially driving the use of the EBNA1 IRES in non-canonical translation. This
hypothesis is supported by data from a previous study (Isaksson, Berggren & Ricksten,
2003b), which showed that inclusion of this structured upstream sequence reduced relative
luciferase activities of all tested constructs. Furthermore, when the IRES domain was not
present, constructs containing the upstream structures had the lowest relative luciferase
observed levels.

CONCLUSION
A significant outcome of this study was the prediction of extensive functional RNA
structures throughout other human herpesviruses. It is likely that, similar to EBV, these
motifs are playing important roles in the regulation of herpesvirus biology, infection and
disease. Additional studies of these motifs will provide many insights, which are facilitated
by making all results available on the RNAstructuromeDB. Similarly, a web server is
available (Andrews, Baber & Moss, 2019; Andrews & Moss, 2019) for running ScanFold

calculations and for aiding in mutational design of constructs used in experimental assays
(e.g., using RNA2DMutMoss, 2018b).
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