

Integrated analysis of the transcriptome-wide m6A methylome in preeclampsia and healthy control placentas

Jin Wang ¹, Fengchun Gao ², Xiaohan Zhao ¹, Yan Cai ¹, Hua Jin ^{Corresp. 1}

Corresponding Author: Hua Jin Email address: wangjinshiyi@126.com

N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNA and potential regulatory functions of m6A have been shown by mapping the RNA m6A modification landscape. M6A modification in active gene regulation manifests itself as altered methylation profiles. The number of reports regarding to the profiling of m6A modification and its potential role in the placenta of preeclampsia (PE) is a little. In this work, placental samples were collected from PE and control patients. Expression of m6Arelated genes was investigated using quantitative real-time PCR. MeRIP-seq and RNA-seq were performed to detect m6A methylation and mRNA expression profiles. Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were also conducted to explore the modified genes and their clinical significance. Our findings show that METTL3 and METTL14 were up-regulated in PE. In total, 685 m6A peaks were differentially expressed as determined by MeRIP-seq. Altered peaks of m6A-modified transcripts were primarily associated with nitrogen compound metabolic process, positive regulation of vascular-associated smooth muscle cell migration, and endoplasmic reticulum organisation. The m6A hyper-methylated genes of Wnt/β-catenin signalling pathway, mTOR signalling pathway, and several cancer-related pathways may contribute to PE. We also verified that the significant increase of HSPA1A mRNA and protein expression was regulated by m6A modification, suggesting m6A plays a key role in the regulation of gene expression. Our data provide novel information regarding m6A modification alterations in PE and help our understanding of the pathogenesis of PE.

¹ Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China

² Obstetrical Department, Jinan Maternal and Child Health Care Hospital, Jinan, China

6

11

- 1 Integrated analysis of the transcriptome-wide m6A
- 2 methylome in preeclampsia and healthy control
- 3 placentas
- 5 Jin Wang¹, Fengchun Gao², Xiaohan Zhao¹, Yan Cai¹, Hua Jin^{*,1}
- ⁷ Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan,
- 8 Shandong Province, PR China
- ⁹ ²Obstetrical Department, Jinan Maternal and Child Health Care Hospital, Jinan,
- 10 Shandong Province, PR China
- 12 * Corresponding Author:
- 13 Hua Jin
- No.2, Jianguo xiaojing roud, Jinan 250002, Shandong Province, PR China
- 15 Email address: wangjinshiyi@126.com

Abstract

N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNA and 17 potential regulatory functions of m6A have been shown by mapping the RNA m6A 18 modification landscape. M6A modification in active gene regulation manifests itself as 19 altered methylation profiles. The number of reports regarding to the profiling of m6A 20 modification and its potential role in the placenta of preeclampsia (PE) is a little. In this 21 work, placental samples were collected from PE and control patients. Expression of 22 m6A-related genes was investigated using quantitative real-time PCR. MeRIP-seq and 23 RNA-seg were performed to detect m6A methylation and mRNA expression profiles. 24 Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) 25 pathway analyses were also conducted to explore the modified genes and their clinical 26 27 significance. Our findings show that METTL3 and METTL14 were up-regulated in PE. In total, 685 m6A peaks were differentially expressed as determined by MeRIP-seq. Altered 28 29 peaks of m6A-modified transcripts were primarily associated with nitrogen compound metabolic process, positive regulation of vascular-associated smooth muscle cell 30 migration, and endoplasmic reticulum organisation. The m6A hyper-methylated genes of 31 Wnt/β-catenin signalling pathway, mTOR signalling pathway, and several cancer-related 32 33 pathways may contribute to PE. We also verified that the significant increase of HSPA1A mRNA and protein expression was regulated by m6A modification, suggesting m6A 34 plays a key role in the regulation of gene expression. Our data provide novel information 35 regarding m6A modification alterations in PE and help our understanding of the 36

39

37 pathogenesis of PE.

Introduction

onset hypertension accompanied by proteinuria during gestation. This disease affects 3-40 5% of all pregnancies and is one of the leading causes of maternal and perinatal 41 morbidity and mortality (Mol et al. 2016). The exact pathophysiology that causes PE 42 remains unclear; however, genetic, immunological, endocrine, and environmental factors 43 have been implicated in its pathogenesis (Burton et al. 2019). The placenta plays an 44 essential role in the development of PE. The underlying pathogenic mechanisms include 45 defective deep placentation, oxidative and endoplasmic reticulum stress, intravascular 46 inflammation, and imbalance of angiogenesis, among others (Burton et al. 2019; 47 48 Chaiworapongsa et al. 2014). No specific treatment is currently available, and delivery of the placenta is the only effective treatment (Burton et al. 2019; Chaiworapongsa et al. 49 50 2014; Wang et al. 2019). Numerous studies have reported that PE significantly alters the expression of 51 coding and noncoding RNAs (ncRNAs), including mRNA, miRNA, long noncoding RNA 52 (IncRNA), and circular RNA (circRNA) (Bai et al. 2018; Liu et al. 2017b; Muller-Deile et al. 53 54 2018; Nikuei et al. 2017). However, while these studies explored RNA expression, the modification profiles of these RNAs in the context of PE remain to be characterised. N6-55 56 methyladenosine (m6A) modification in mRNA is prevalent, and functionally modulates 57 in eukaryotes that is mediated by the m6A methyltransferase complex,

Preeclampsia (PE) is a multi-system disorder that is primarily characterised by new-

methyltransferase-like (METTL)3, METTL14, and Wilms' tumour 1-associated protein 58 (WTAP) and eliminated by fat-mass and obesity-associated protein (FTO) or alkylation 59 repair homolog protein 5 (ALKBH5) (Boccaletto et al. 2018; Fu et al. 2014; Meyer & 60 Jaffrey 2014). These modifications are believed to moderate RNA structure, function, 61 and stability (Edupuganti et al. 2017; Liu et al. 2017a; Piao et al. 2017; Wang et al. 2014). 62 Recently, the effects of m6A modification on many fundamental biological processes 63 have been characterised; these processes include metabolism (Yang et al. 2018), 64 immunomodulation (Zheng et al. 2017), carcinogenesis(Ma et al. 2017; Zhang et al. 65 2017a), and spermatogenesis (Chen et al. 2017), among others. Abnormal m6A 66 methylation is associated with a variety of human diseases, such as obesity, neuronal 67 disorders, cancer, and infertility (Chen et al. 2017; Ma et al. 2017; Yang et al. 2018; 68 69 Zhang et al. 2017a; Zheng et al. 2017). 70 Given the indispensable function of RNA m6A modification in various bioprocesses, 71 it is reasonable to speculate that deregulation of m6A modification may also be associated with PE. A recent study indicate that m6A at 5'-UTR and nearby stop codon 72 in placental mRNA may play important roles in fetal growth and PE through conducted 73 MeRIP-Seq on human placentas obtained from mothers of infants of various birth 74 75 weights (Taniguchi et al. 2020). Here, we aimed to compare the m6A-tagged transcript profiles of placentas from PE-affected pregnancies with those of placentas from healthy 76 77 pregnancies to identify gene-specific changes in RNA methylation that may regulate 78 placental gene expression and contribute to the development of PE. Additionally,

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

potential roles for the m6A-modified transcripts in the physiological and pathological mechanisms underlying PE were revealed; these can provide a theoretical basis for the prevention and pre-emptive treatment of PE.

Materials & Methods

Sample collection

All placental samples used in this study were collected from the Department of Obstetrics, Jinan Maternal and Child Health Care Hospital. The characteristics of puerperants and newborns were collected from hospital medical records. PE cases (n =4) were collected in light of the guideline designed by the American College of Obstetrics and Gynecology (ACOG) (2019; Magee et al. 2014). These cases included women who exhibited a blood pressure of ≥140/90 mmHg on two occasions that occurred at least 4 h apart, accompanied by proteinuria (2+ on dipstick or 300 mg/24 h) at ≥20 weeks and <34 weeks of gestation. Normal controls (n =4) were defined as pregnancies without PE. All participants were of Han Chinese descent and those with complications such as gestational hypertension, gestational diabetes mellitus, foetal growth restriction, or preterm birth (<37 weeks) were excluded (Table 1). The study protocols were approved by the Ethics Review Committee of Ji'nan Maternal and Child Health Care Hospital and conducted in accordance with the Declaration of Helsinki (No. JNFY-2019003). Placental samples were collected at three sites from the foetal side of the placenta immediately after caesarean section (<30 min). Fragments of approximately 1 cm³ were

dissected from the placenta after removing maternal blood by vigorous washing in ice-

109

118

cold saline; these fragments were snap-frozen in liquid nitrogen and stored at -80°C until use. All participants provided written informed consent prior to participation.

RNA isolation

The placental samples from three different sites were ground and mixed, then, total RNA was isolated using TRIzol reagent (Invitrogen, CA, USA) according to the manufacturer's protocol. Agarose gel electrophoresis and NanoDrop ND-1000 (Thermo Fisher Scientific, MA, USA) was used to monitor RNA integrity and quality. Intact mRNA was isolated from the total RNA samples using an Arraystar Seq-Star[™] poly(A) Mrna Isolation Kit in accordance with the manufacturer's protocol.

Quantitative real-time PCR

The expression of m6A-related genes METTL3, METTL14, FTO, WTAP, and ALKBH5 110 were detected by quantitative real-time PCR (RT-qPCR). Briefly, total RNA was isolated 111 using TRIzol reagent (Invitrogen), and cDNA was generated by reverse transcription 112 using Prime Script™ RT Master Mix (Perfect Real-Time; Takara Bio, Shiga, Japan). RT-113 PCR was performed using SYBR Green master mix (Yeasen, Shanghai, China) and a 114 thermal cycler (LightCycler System; Roche Diagnostics Corp, IN, USA). β-Actin was 115 used as an internal control to normalise the data. The primers used for RT-qPCR are 116 presented in Table 2. 117

Quantification of m6A in total RNA.

The m6A RNA methylation status was directly detected using the EpiQuik™ m6A RNA

Methylation Quantification Kit (Colorimetric) according to the manufacturer's protocol.

Briefly, a negative control and a standard curve consisting of six different concentrations (range: from 0.02 to 1 ng of m6A) were prepared. Two hundred nanograms of total RNA was used for each reaction. After RNA binding to the 96-well plates, the binding solution was removed and the plates were washed three times with diluted wash buffer. Then, diluted capture anti-m6A antibodies were added; subsequently, the plates were washed four times with diluted wash buffer. Add 100 µl of developer solution to each well and incubate at room temperature for 7 min away from light. Add 100 µl of stop solution to each well to stop enzyme reaction. The optical density (OD) at 450 nm was measured using a microplate reader (BIOTEK, Vermont, USA). The absolute amount of m6A was quantified, and the percentage of m6A within the total RNA was calculated.

m6A-RIP-seq and data analysis

Poly(A) RNA was extracted with Arraystar Seq-StarTM poly(A) mRNA Isolation Kit (Arraystar, MD, USA). The RNA was fragmented into fragments with an average length of 100 nt using RNA Fragmentation Reagents (Sigma, MO, USA). Fragmented mRNAs were incubated for 2 h at 4 °C in the presence of 2 μg m6A antibodies (Synaptic Systems, 202003) in a 500 μl IP reaction system, and some of the fragments were used as input. The mixture was then incubated with protein-A beads and purified using elution buffer and ethanol. RNA-seq libraries for m6A antibody-enriched mRNAs and input mRNAs were prepared using the KAPA Stranded mRNA-seq Kit (Illumina, CA, USA). Finally, the completed libraries were assessed using an Agilent 2100 Bioanalyzer. The libraries were denatured with 0.1M NaOH and loaded into the reagent cartridge. Clusters were

generated using an Illumina cBot system (#PE-410-1001, Illumina). Sequencing was 142 performed on an Illumina HiSeq 4000 machine following HiSeq 3000/4000 SBS Kit (300 143 cycles) protocols. Quality control of the sequence data was performed using FastQC 144 (v0.11.7). The raw data were trimmed using Trimmomatic software (v0.32) and aligned 145 to the Ensembl reference genome using HISAT2 software (v2.1.0). The m6a-RIP-146 enriched regions (peaks) were detected using exomePeak software (v2.13.2). The 147 differential m6A peaks (fold changes ≥1.5 and p < 0.05) between the case group and 148 control group were analysed using exomePeak. These differential peaks were annotated 149 using the Ensembl database (GRCh 37/hg19). DREME motif discovery in transcription 150 factor ChIP-seg data was used to identify motifs among the m6A peak sequences. Gene 151 ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways 152 were analyzed through GO database and KEGG pathway database. 153

RNA-Sequencing

154

160

- Intact mRNA was isolated from total RNA samples using a NEBNext Poly(A) mRNA

 Magnetic Isolation Module (New England Biolabs, Hertfordshire, UK) according to the

 manufacturer's protocol. RNA-Seq libraries were prepared using a KAPA Stranded RNA
 Seq Library Prep Kit (Illumina). Sequencing was performed using the Illumina HiSeq

 4000 platform.
 - Quantifies m6A levels of HSPA1A using MazF-qPCR
- A previously reported strategy was adopted to identify m6A levels using the methylsensitivity of MazF RNA endonuclease, which was previously shown to cleaves RNA at

- unmethylated ACA sites, but not at sites with m6A methylation (Zhang et al. 2019). 163 500ng RNA was denatured by heating at 70°C for 2 min, then placed on ice. Each tube 164 was supplemented with 2 µl 5x MazF buffer, 1 µl mRNA interferase-MazF(TakaRa, 165 20U/ul), 1 µl RNase inhibitor, and DEPC-treated water was added to the total volume of 166 10 ul. After mixing, the mixtures were incubated at 37°C for 30 min and put on ice for 167 later use. MazF digested RNA (MazF +) and RNA without digestion (MazF -) was 168 reverse-transcribed into cDNA using Prime ScriptTM RT Master Mix (Takara Bio, Shiga, 169 Japan). RT-qPCR adopted the same method as described above, and the data were 170 analyzed by 2-\triangled CT method. The m6A methylation at that particular site of *HSPA1A* was 171 the expression of HSPA1A with MazF treatment, which was normalized by MazF -. 172 HSPA1A primer set: Fwd: 5'AGGCCGACAAGAAGAAGATG3', Rev: 173 174 5'CCTGGTACAGTCCGCTGATG3'.
- 175 RT-qPCR of HSPA1A mRNA
- HSPA1A mRNA was quantified by RT-qPCR, which adopted the same method as
 described above, and the primers used for RT-qPCR are presented in Table 2.
- 178 Western blot analysis
- Western blot (WB) was performed in 4 PE samples and 4 control samples using
 placental tissues. Briefly, protein was extracted from placental samples by the methods
 of TRIzol. Block the membrane with 5% skim milk in Tris-Buffered Saline Tween-20
 (TBST) for 1 hour. Primary antibody was used in 5% bovine serum albumin (BSA) and
 incubated at room temperature for 2 h, then washed the membrane with TBST for 4

194

195

196

197

198

199

200

201

202

times, 8 min each time. The secondary antibody was incubated for 1.5 hour, and the
membrane was washed with TBST for 3 times. Membrane blots were visualized using
ECL plus detection kit (Thermo Fisher Scientific) and imaged on ImageQuant 4600
(Tenon, Shanghai, China).

Statistical analyses

Data are expressed as the mean \pm standard deviation (SD). All statistical analyses were conducted using the SPSS 22.0 statistical package. Student's t-test was used to compare m6A, mRNA and protein levels between the PE and control samples. Fisher's exact test was used for all bioinformatic analyses, and a p-value < 0.05 was considered statistically significant.

Results

The main clinical information of samples

The main clinical data of the PE cases and controls are summarised in Table 1. All women did not have diabetes, chronic hypertension, polycystic ovarian syndrome, kidney or liver disease, and serious infection. Blood pressure and proteinuria were significantly higher in the PE cases than in the controls. There was no significant difference in maternal age, gestational age, prenatal maternal body mass index, and birth weights at delivery between the groups.

METTL3 and METTL14 were up-regulated in PE

The concentration, purity and integrity of extracted RNA was shown in Table S1 and Figure S1. Using gRT-PCR, we examined the mRNA levels of five core enzymes

responsible for m6A modification, including METTL3, METTL14, FTO, WTAP, and 205 ALKBH5, in the PE and control samples. mRNA levels of METTL3 and METTL14, the 206 key m6A methyltransferase, were significantly increased in the PE samples compared to 207 the control (Fig. 1; METTL3 p = 0.023; METTL14 p = 0.016). WTAP and the erasers FTO 208 and ALKBH5 were not significantly dysregulated in the PE group (Fig. 1). 209 m6A modification profiles in PE 210 In this study, each sample was generated nearly 20 M m6A-RIP-seq reads, and the 211 quality control metrics of the sequence data are shown in Table S2. The level of m6A 212 RNA methylation within the total RNA in the PE was higher than that in the controls (Fig. 213 2). We then analysed the genome-wide profiling of the m6A-modified mRNA in the PE 214 and control samples (GEO accession number: GSE143966). In total, 370 m6A peaks 215 216 were significantly up-regulated, whereas 315 peaks were down-regulated (fold changes \geq 1.5 and p < 0.05; Fig. 3A). The top 20 altered methylated m6A peaks are listed in Table 217 218 3, and all significantly differentially expressed m6A peaks are listed in Table S3. Additionally, 203 genes have up-regulated m6A peaks, and 202 genes have down-219 regulated m6A peaks (fold changes ≥1.5 and p < 0.05; Table S3). Each gene may have 220 one or more modified peaks. The identified m6A peaks were primarily enriched within the 221 222 coding sequence in proximity to the stop codons and in the 3'UTR (Fig. 3B, C & D). Additionally, the m6A peaks were characterised by the canonical RRACH motif (R 223 represents purine, A is m6A, and H is a non-guanine base; Fig. 3E). HSPA1A, a 224

234

235

236

237

238

239

240

241

242

243

244

245

representation of the significantly up-regulated peak, is shown in Figure 3F, Figure 3G and Supplemental Fig S2.

GO analysis and pathway analysis of differentially methylated mRNA

To investigate the functional physiological and pathological significance of m6A modification in PE, GO functional analysis and KEGG pathway analysis were used to examine the altered m6A peaks. GO analysis (the count of genes involved in a GO term > 2, p < 0.05) revealed that the up-regulated peaks in PE were significantly involved in macromolecule metabolic processes and the maintenance of DNA repeat elements, nuclear and intracellular processes, and damaged DNA binding and heat shock protein

binding (Fig. 4A). The down-regulated peaks were significantly associated with organelle organisation and membrane docking, intracellular and intracellular organelle functions, and damaged DNA binding and cysteine-type endopeptidase activity involved in the execution phase of apoptosis (Fig. 4B).

KEGG pathway analysis demonstrated that the up-regulated peaks in the PE group were significantly associated with the Wnt signalling pathway, the mTOR signalling pathway, and the AMPK signalling pathway (Fig. 4C). The down-regulated peaks were significantly associated with amino sugar and nucleotide sugar metabolism (Fig. 4D).

Overview of transcriptome profiles and conjoint analysis of m6A-RIP-seq and

RNA-seq data

In this study, each sample was generated nearly 20 M RNA-seq reads, and the quality control metrics of the RNA-seq data are shown in Table S2. Transcriptome profiles of the

altered genes in PE were determined by RNA-seq (GEO accession number: 246 GSE143953). Significantly differentially expressed genes (fold change ≥1.5 and p < 0.05) 247 between the PE and control samples were identified using a volcano plot (Fig. 5A); these 248 included 68 up-regulated and 52 down-regulated genes. The top twenty altered genes 249 are listed in Table 4. The top ten GO and pathways associated with the up- or down-250 regulated genes are displayed in Supplemental Fig. S3. Hierarchical cluster analysis was 251 performed to identify differentially expressed genes between the two groups (Fig. 5B). 252 According to conjoint analysis of m6A-RIP-seq and RNA-seq data, all genes were 253 initially divided into four groups that included 55 hyper-methylated m6A peaks in mRNA 254 transcripts that were significantly up-regulated (30; hyper-up) or down-regulated (25; 255 hyper-down) and 50 hypo-methylated m6A peaks in mRNA transcripts that were 256 257 significantly up-regulated (34; hypo-up) or down-regulated (16; hypo-down) (Fig. 5D, Table S4). 258 259 The expression of *HSPA1A* is regulated by m6A modification In this study, we detected the m6A levels of HSPA1A at the particular site in the CDS 260 region were significantly upregulated in PE (Fig. 6A&B; p = 0.012). The particular site 261 include oligos "ACA" and "(m6A)CA", and the sequences were 262 263 5'GAAGGUGCUGGACAAGUGUCAAGA 3' and 5'GAAGGUGCUGG(m6A)CAAGUGUCAAGA3', respectively. Additionally, HSPA1A 264 mRNA and HSP70 protein expression was significantly increased in PE (Fig. 6C& D; 265 266 HSPA1A mRNA p = 0.048).

Discussion

It has long been accepted that placental structural and functional abnormalities can 268 cause a number of pregnancy-associated diseases such as PE, gestational diabetes 269 mellitus, intrauterine growth restriction, and gestational trophoblastic disease (Burton & 270 Jauniaux 2018; Burton et al. 2019; Chaiworapongsa et al. 2014; Mol et al. 2016; 271 Salomon et al. 2016; Veras et al. 2017). Portions of the placenta entering systemic 272 circulation cause maternal PE syndrome, which includes oxidative stress of the 273 syncytiotrophoblast and dysregulated uteroplacental perfusion (Burton et al. 2019; 274 Redman et al. 2014). PE is also associated with changes in placental DNA 275 methylation(Herzog et al. 2017) and gene expression (Junus et al. 2012; Liang et al. 276 2016). This study reveals a region-specific m6A methylation map, first, we found that 277 278 METTL3 and METTL14 were up-regulated in PE as determined by qPCR. Consistent with this result, the total RNA m6A levels were increased in PE. Then, we identified 279 280 numerous m6A changes in PE placentas compared to healthy controls after excluding the influence of maternal age, body mass index, perinatal complications, and gestational 281 age at diagnosis and delivery. A portion of the genes identified in this study were 282 previously associated with PE; however, we also identified a number of novel genes. 283 Studies of the human placenta not only enrich our understanding of the mechanisms 284 underlying PE but also provide a theoretical basis for the prevention and pre-emptive 285 treatment of related diseases. Recent studies suggest that the placenta may play a 286 specific role in mediating the generation of intergenerational inheritance (Padmanabhan 287

et al. 2013). Therefore, an in-depth study of the placenta is crucial to determine the mechanisms underlying developmental programming; any related interventions can not only improve maternal and foetal health during pregnancy but also improve the health of multiple generations.

m6A methylation plays a critical role in the regulation of coordinate transcriptional and post-transcriptional gene expression (Edupuganti et al. 2017; Fu et al. 2014; Liu et al. 2017a; Piao et al. 2017; Wang et al. 2014; Yue et al. 2015; Zheng et al. 2017), including mRNA splicing, export, localisation, translation, and stability. M6A within a transcript can facilitate the binding of regulatory proteins and affect the potential of a given transcript for translation. Recent studies have demonstrated a vital functional role for m6A modification in promoting mRNA translation (Shi et al. 2017; Wang et al. 2015). In this study, hundreds of abnormal m6A methylations were also found in the transcripts, including within zinc finger transcription factors, which uncovers emerging links between m6A mRNA methylation and genome transcription. Thus, RNA decoration by m6A in these transcripts that promotes their interaction with nuclear transcription factors, possibly conferencing recognition of these transcripts (Dominissini et al. 2012).

HSPA1A (heat shock protein 70, Hsp70) is a member of the chaperone machinery that plays a central role in maintaining cellular homeostasis; this protein can elicit innate and adaptive pro-inflammatory immune responses and reflect oxidative stress in PE (Molvarec et al. 2011; Witkin et al. 2017), which is relevant to the progression of PE (Chaiworapongsa et al. 2014). Interestingly, circulating Hsp70 can be directly involved in

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

endothelial activation or injury in PE (Molvarec et al. 2011; Witkin et al. 2017). Indeed, in this study, we detected a significant increase in *HSPA1A* mRNA and protein expression in PE. Furthermore, in a previous study, compared with normal pregnancy, Hsp70 was significantly up-regulated in PE placental tissues (Molvarec et al. 2011; Sheikhi et al. 2015; Witkin et al. 2017). However, the exact mechanism of Hsp70 up-regulation in PE remains unclear; it may be related to higher m6A methylation levels of HSPA1A in PE placentas than those in the control samples. IGF2BPs are a distinct family of m6A readers that promote the stability and storage of their target mRNAs and therefore affect gene expression output (Huang et al. 2018). Moreover, 92% of the IGF2BP binding sites are located in protein-coding transcripts and highly enriched in CDS near stop codons and in 3'UTRs (Huang et al. 2018). Therefore, we concluded that the increase of m6a methylation in the CDS region of *HSPA1A* may promote mRNA stability. In the present study, we verified that the m6A levels in *HSPA1A* at the particular site in the CDS region were significantly increased in PE using MazF-qPCR. Zhou et al. reported that the m6A modifications of *HSPA1A* were increased at 5'UTR in mouse embryonic fibroblast (MEF) cell line after heat shock stress (Zhou et al. 2015). Compared with this study, the two studies have different species, different tissues, different cells and different treatment process, which may be the reasons for the different results of two studies. Further studies are necessary to elucidate if Hsp70 expression is correlated with m6A methylation of *HSPA1A* in human placenta.

KEGG pathway analysis revealed that these target genes were

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

significantly enriched in 20 different pathways, including the "Wnt signalling pathway", "mTOR signalling pathway", "AMPK signalling pathway", and the others. Some of the most essential and crucial pathological changes in the PE process include shallow trophoblast invasion and the damaged spiral artery remodelling, which may be regulated by Wnt/β-catenin signalling pathway (Zhang et al. 2017b). As a canonical Wnt-signalling pathway, the Wnt/β-catenin signalling pathway can regulate several biological processes such as proliferation, migration, invasion, and apoptosis (Nusse & Clevers 2017; Zhang et al. 2017b). Abnormal functioning of the Wnt/β-catenin signalling pathway may play an important role in the pathogenesis of various human diseases, including human cancer and PE (Nusse & Clevers 2017; Zhang et al. 2017b); however, direct evidence of the role of the Wnt/β-catenin pathway in the development of PE is lacking. In this study, genes exhibiting abnormal m6A methylation were significantly enriched in the Wnt signalling pathway; this may shed light on a new layer of gene regulation at the RNA level, ultimately giving rise to the field of m6A epitranscriptomics. Interestingly, inhibition of Wnt/β-catenin signalling is a promising treatment approach for a number of cancers (Clara et al. 2019; Krishnamurthy & Kurzrock 2018; Nusse & Clevers 2017). Future studies are recommended to verify if Wnt/β-catenin signalling may provide a prospective therapeutic target for the prevention and treatment of PE. In this study, 120 significantly differentially expressed genes were identified in PE, some genes have been reported in previous studies, including DIO2, BIN2, IGSF8,

BMP5, and WNT2 (Sitras et al. 2009; Zhang et al. 2016; Zhang et al. 2017b). These

genes, when differentially expressed in different populations, may play an important role in the development of PE. Using bioinformatics analysis, differentially expressed genes were enriched in biological processes involved in defence response, sphingolipid metabolic processes, and tissue development, among others. Maternal-foetal immune incompatibility and disruption of sphingolipid metabolism have emerged as factors involved in the pathogenic mechanisms underlying PE (Chaiworapongsa et al. 2014; Charkiewicz et al. 2017; Zhang et al. 2017b). This provides further evidence that PE is a heterogeneous and multifactorial disease and that a variety of pathogenic mechanisms are implicated in its occurrence and development.

Conjoint analysis of m6A-RIP-seq and RNA-seq data identified m6A-modified mRNA transcripts that were hyper-methylated or hypo-methylated and significantly differentially expressed. *TCF7L2*, a transcription factor of the Wnt and Hippo signalling pathway, is hyper-methylated and up-regulated in PE, suggesting a possible positive relationship between the extent of m6A methylation and the transcript level. Earlier findings revealed that a *TCF7L2* variant increased the risk of incident hypertension or diabetes mellitus (Bonnet et al. 2013; Chang et al. 2017); however, the relationship between *TCF7L2* and PE is not clear. To provide further insight, it will be necessary, in a future study, to elucidate the biological function of *TCF7L2* in the context of PE.

Gestational age is an important confounder when studying variation in placental DNA methylation. Previous studies have illustrated gestational age as one of the important factors that influence methylation (Novakovic & Saffery 2012; Wilson et al.

2018). Placentas obtained from preterm pregnant women with early PE were used in some studies, to match gestational age, some placentas of women undergoing spontaneous preterm delivery were used as control groups, which may possess additional differences in methylation that are not detected at full-term (≥37 week gestation) (Novakovic & Saffery 2012; Wilson et al. 2018; Yeung et al. 2016). In this study, to exclude the influence of gestational age, we used full-term placentas obtained from women with PE; however, we did not perform a study to determine that m6a methylation changes with gestational age. This is a limitation of the present study.

Conclusions

Here, we describe, for the first time, the m6A RNA methylation landscape; reveal the potential functions of this methylation in the regulation of RNA metabolism in PE.

Additionally, conjoint analysis of m6A-RIP-seq and RNA-seq data resulted in the identification of differentially expressed hyper-methylated or hypo-methylated mRNA m6A peaks. Finally, we uncovered that *HSPA1A* might be involved in the pathophysiology of PE as its mRNA and protein expression is regulated by m6A modification. Further studies will be necessary to validate more m6A-enriched genes and examine protein levels of the genes which contribute to elucidate the detailed molecular mechanism underlying the regulation and biological functions of m6A during the PE process. Additionally, characterisation of the role of m6A within the placenta will offer a new viewpoint to elucidate the mechanism of PE.

References

- 393 2019. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. *Obstet Gynecol* 133:e1-e25.
- 394 Ahmed A, Rezai H, and Broadway-Stringer S. 2017. Evidence-Based Revised View of the Pathophysiology of 395 Preeclampsia. *Adv Exp Med Biol* 956:355-374.
- Bai Y, Rao H, Chen W, Luo X, Tong C, and Qi H. 2018. Profiles of circular RNAs in human placenta and their potential roles related to preeclampsia. *Biol Reprod* 98:705-712.
- Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crecy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, and Bujnicki JM. 2018. MODOMICS: a database of RNA modification pathways. 2017 update. *Nucleic Acids Res* 46:D303-D307.
- Bonnet F, Roussel R, Natali A, Cauchi S, Petrie J, Laville M, Yengo L, Froguel P, Lange C, Lantieri O, Marre M, Balkau B, and Ferrannini E. 2013. Parental history of type 2 diabetes, TCF7L2 variant and lower insulin secretion are associated with incident hypertension. Data from the DESIR and RISC cohorts. *Diabetologia* 56:2414-404 2423.
- Burton GJ, and Jauniaux E. 2018. Pathophysiology of placental-derived fetal growth restriction. *Am J Obstet*Gynecol 218:S745-S761.
- Burton GJ, Redman CW, Roberts JM, and Moffett A. 2019. Pre-eclampsia: pathophysiology and clinical implications. *BMJ* 366:l2381.
- Chaiworapongsa T, Chaemsaithong P, Yeo L, and Romero R. 2014. Pre-eclampsia part 1: current understanding of its pathophysiology. *Nat Rev Nephrol* 10:466-480.
- 411 Chang S, Wang Z, Wu L, Lu X, Shangguan S, Xin Y, Li L, and Wang L. 2017. Association between TCF7L2 polymorphisms and gestational diabetes mellitus: A meta-analysis. *J Diabetes Investig* 8:560-570.
- Charkiewicz K, Goscik J, Blachnio-Zabielska A, Raba G, Sakowicz A, Kalinka J, Chabowski A, and Laudanski P. 2017.
 Sphingolipids as a new factor in the pathomechanism of preeclampsia Mass spectrometry analysis. *PLoS* One 12:e0177601.
- Chen X, Li X, Guo J, Zhang P, and Zeng W. 2017. The roles of microRNAs in regulation of mammalian spermatogenesis. *J Anim Sci Biotechnol* 8:35.
- Clara JA, Monge C, Yang Y, and Takebe N. 2019. Targeting signalling pathways and the immune microenvironment of cancer stem cells a clinical update. *Nat Rev Clin Oncol*.
- Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch
 J, Amariglio N, Kupiec M, Sorek R, and Rechavi G. 2012. Topology of the human and mouse m6A RNA
 methylomes revealed by m6A-seq. *Nature* 485:201-206.
- 423 Edupuganti RR, Geiger S, Lindeboom RGH, Shi H, Hsu PJ, Lu Z, Wang SY, Baltissen MPA, Jansen P, Rossa M, Muller
 424 M, Stunnenberg HG, He C, Carell T, and Vermeulen M. 2017. N(6)-methyladenosine (m(6)A) recruits and
 425 repels proteins to regulate mRNA homeostasis. *Nat Struct Mol Biol* 24:870-878.
- Fu Y, Dominissini D, Rechavi G, and He C. 2014. Gene expression regulation mediated through reversible m(6)A RNA methylation. *Nat Rev Genet* 15:293-306.
- Herzog EM, Eggink AJ, Willemsen SP, Slieker RC, Wijnands KPJ, Felix JF, Chen J, Stubbs A, van der Spek PJ, van
 Meurs JB, and Steegers-Theunissen RPM. 2017. Early- and late-onset preeclampsia and the tissue-specific
 epigenome of the placenta and newborn. *Placenta* 58:122-132.
- 431 Hiden U, Bilban M, Knofler M, and Desoye G. 2007. Kisspeptins and the placenta: regulation of trophoblast

- 432 invasion. Rev Endocr Metab Disord 8:31-39. 433 Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, Hu YC, Huttelmaier S, Skibbe JR, 434 Su R, Deng X, Dong L, Sun M, Li C, Nachtergaele S, Wang Y, Hu C, Ferchen K, Greis KD, Jiang X, Wei M, Qu L, 435 Guan JL, He C, Yang J, and Chen J. 2018. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins 436 enhances mRNA stability and translation. Nat Cell Biol 20:285-295. 10.1038/s41556-018-0045-z 437 Junus K, Centlow M, Wikstrom AK, Larsson I, Hansson SR, and Olovsson M. 2012. Gene expression profiling of 438 placentae from women with early- and late-onset pre-eclampsia: down-regulation of the angiogenesis-439 related genes ACVRL1 and EGFL7 in early-onset disease. Mol Hum Reprod 18:146-155. 440 Krishnamurthy N, and Kurzrock R. 2018. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors 441 and inhibitors. Cancer Treat Rev 62:50-60. 442 Liang M, Niu J, Zhang L, Deng H, Ma J, Zhou W, Duan D, Zhou Y, Xu H, and Chen L. 2016. Gene expression profiling reveals different molecular patterns in G-protein coupled receptor signaling pathways between early- and 443 444 late-onset preeclampsia. Placenta 40:52-59.
- Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L, and Pan T. 2017a. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. *Nucleic Acids Res* 45:6051-6063.
- Liu X, Chen H, Kong W, Zhang Y, Cao L, Gao L, and Zhou R. 2017b. Down-regulated long non-coding RNA-ATB in preeclampsia and its effect on suppressing migration, proliferation, and tube formation of trophoblast cells. *Placenta* 49:80-87.
- 450 Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QG, Zhou WP, and Sun SH. 2017. METTL14 suppresses 451 the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent 452 primary MicroRNA processing. *Hepatology* 65:529-543.
- Magee LA, Pels A, Helewa M, Rey E, and von Dadelszen P. 2014. Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: executive summary. *J Obstet Gynaecol Can* 36:416-441.
- Meyer KD, and Jaffrey SR. 2014. The dynamic epitranscriptome: N6-methyladenosine and gene expression control.

 Nat Rev Mol Cell Biol 15:313-326.
- 457 Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, and Hofmeyr GJ. 2016. Pre-eclampsia. *Lancet* 458 387:999-1011.
- Molvarec A, Szarka A, Walentin S, Beko G, Karadi I, Prohaszka Z, and Rigo J, Jr. 2011. Serum heat shock protein 70 levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in women with preeclampsia. *Clin Chim Acta* 412:1957-1962.
- Muller-Deile J, Schroder P, Beverly-Staggs L, Hiss R, Fiedler J, Nystrom J, Thum T, Haller H, and Schiffer M. 2018.

 Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish. *Sci Rep*8:3621.
- Myatt L, and Webster RP. 2009. Vascular biology of preeclampsia. *J Thromb Haemost* 7:375-384.
- Nikuei P, Rajaei M, Malekzadeh K, Nejatizadeh A, Mohseni F, Poordarvishi F, Ghashghaeezadeh N, and Mohtarami
 M. 2017. Expression of placental growth factor mRNA in preeclampsia. *Int J Reprod Biomed (Yazd)* 15:169-174.
- Novakovic B, and Saffery R. 2012. The ever growing complexity of placental epigenetics role in adverse pregnancy outcomes and fetal programming. *Placenta* 33:959-970.
- Nusse R, and Clevers H. 2017. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. *Cell* 169:985-999.

- Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda MC, Snyder FF, Gravel RA, Cross JC, and Watson ED. 2013. Mutation in folate metabolism causes epigenetic instability and transgenerational
- 475 effects on development. *Cell* 155:81-93.
- Pereira AC, Paulo M, Araujo AV, Rodrigues GJ, and Bendhack LM. 2011. Nitric oxide synthesis and biological functions of nitric oxide released from ruthenium compounds. *Braz J Med Biol Res* 44:947-957.
- Piao M, Sun L, and Zhang QC. 2017. RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing. *Genomics Proteomics Bioinformatics* 15:267-278.
- Redman CW, Sargent IL, and Staff AC. 2014. IFPA Senior Award Lecture: making sense of pre-eclampsia two placental causes of preeclampsia? *Placenta* 35 Suppl:S20-25.
- Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, Longo S, Duncombe G, Mitchell MD, Rice GE, and Illanes SE. 2016. Gestational Diabetes Mellitus Is Associated With Changes in the Concentration and Bioactivity of Placenta-Derived Exosomes in Maternal Circulation Across Gestation.

 Diabetes 65:598-609.
- Sheikhi A, Razdar S, Rahmanpour H, Mousavinasab N, Ganji HB, and Jafarzadeh A. 2015. Higher expression of HSP70 and LOX-1 in the placental tissues of pre-eclampsia pregnancies. *Clin Exp Hypertens* 37:128-135.
- Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, and He C. 2017. YTHDF3 facilitates translation and decay of N(6)methyladenosine-modified RNA. *Cell Res* 27:315-328.
- Sitras V, Paulssen RH, Gronaas H, Leirvik J, Hanssen TA, Vartun A, and Acharya G. 2009. Differential placental gene expression in severe preeclampsia. *Placenta* 30:424-433.
- 492 Taniguchi K, Kawai T, Kitawaki J, Tomikawa J, Nakabayashi K, Okamura K, Sago H, and Hata K. 2020.
 493 Epitranscriptomic profiling in human placenta: N6-methyladenosine modification at the 5'-untranslated
 494 region is related to fetal growth and preeclampsia. *FASEB J* 34:494-512. 10.1096/fj.201900619RR
- Veras E, Kurman RJ, Wang TL, and Shih IM. 2017. PD-L1 Expression in Human Placentas and Gestational Trophoblastic Diseases. *Int J Gynecol Pathol* 36:146-153.
- Wang T, Xiang Y, Zhou X, Zheng X, Zhang H, Zhang J, He L, and Zhao X. 2019. Epigenome-wide association data implicate fetal/maternal adaptations contributing to clinical outcomes in preeclampsia. *Epigenomics* 11:1003-1019.
- Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, and He C. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. *Nature* 505:117-120.
- Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, and He C. 2015. N(6)-methyladenosine
 Modulates Messenger RNA Translation Efficiency. *Cell* 161:1388-1399.
- Wilson SL, Leavey K, Cox BJ, and Robinson WP. 2018. Mining DNA methylation alterations towards a classification of placental pathologies. *Hum Mol Genet* 27:135-146.
- Witkin SS, Kanninen TT, and Sisti G. 2017. The Role of Hsp70 in the Regulation of Autophagy in Gametogenesis, Pregnancy, and Parturition. *Adv Anat Embryol Cell Biol* 222:117-127.
- Wu F, Tian FJ, Lin Y, and Xu WM. 2016. Oxidative Stress: Placenta Function and Dysfunction. *Am J Reprod Immunol* 76:258-271.
- Yang Y, Hsu PJ, Chen YS, and Yang YG. 2018. Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. *Cell Res* 28:616-624.
- Yeung KR, Chiu CL, Pidsley R, Makris A, Hennessy A, and Lind JM. 2016. DNA methylation profiles in preeclampsia and healthy control placentas. *Am J Physiol Heart Circ Physiol* 310:H1295-1303.

514	Yue Y, Liu J, and He C. 2015. RNA N6-methyladenosine methylation in post-transcriptional gene expression
515	regulation. Genes Dev 29:1343-1355.
516	Zhang M, Muralimanoharan S, Wortman AC, and Mendelson CR. 2016. Primate-specific miR-515 family members
517	inhibit key genes in human trophoblast differentiation and are upregulated in preeclampsia. Proc Natl
518	Acad Sci U S A 113:E7069-E7076.
519	Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O, Majumder S, He C, and Huang S.
520	2017a. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by
521	Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 31:591-606.e596.
522	Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C, and Luo GZ. 2019. Single-base
523	mapping of m(6)A by an antibody-independent method. Sci Adv 5:eaax0250. 10.1126/sciadv.aax0250
524	Zhang Z, Wang X, Zhang L, Shi Y, Wang J, and Yan H. 2017b. Wnt/beta-catenin signaling pathway in trophoblasts
525	and abnormal activation in preeclampsia (Review). Mol Med Rep 16:1007-1013.
526	Zheng Q, Hou J, Zhou Y, Li Z, and Cao X. 2017. The RNA helicase DDX46 inhibits innate immunity by entrapping
527	m(6)A-demethylated antiviral transcripts in the nucleus. Nat Immunol 18:1094-1103.
528	Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, and Qian SB. 2015. Dynamic m(6)A mRNA methylation directs
529	translational control of heat shock response. Nature 526:591-594. 10.1038/nature15377
530	

Table 1(on next page)

Clinical information of samples used in the study.

1 Table 1. Clinical information of samples used in the study.

Characteristic	Preeclampsia	Control	P Value
	(n=4)	(n=4)	
Maternal age, year	29.5 ± 1.3	29 ± 0.8	0.54
Gestational age, week	37.9 ± 0.5	38.2 ± 0.4	0.41
Prenatal maternal body mass index, kg/m2	27.6 ± 1.2	27.7 ± 0.8	0.86
Diastolic pressure, mmHg	110.3 ± 7.1	80 ± 4.2	3.40E-04
Systolic pressure, mmHg	162.5 ± 4.8	124.5 ± 4.9	3.27E-05
Proteinuria,g/24h	4.1 ± 0.5	0 ± 0	4.08E-04
Birth weight, g	3567.3 ± 290.2	3339 ± 316.6	0.33

Table 2(on next page)

Sequences of primers used for qRT-PCR analysis of mRNA levels.

Table 2. Sequences of primers used for qRT-PCR analysis of mRNA levels.

Gene name	Primer	Sequence	Product size (bp)
METTL3	Forward	5' ACAGAGTGTCGGAGGTGATT 3'	201
	Reverse	5' TGTAGTACGGGTATGTTGAGC 3'	
METTL14	Forward	5' TGAGATTGCAGCACCTCGAT 3'	250
	Reverse	5' AATGAAGTCCCCGTCTGTGC 3'	
WTAP	Forward	5' CCTCTTCCCAAGAAGGTTCGAT 3'	238
	Reverse	5' GTTCCTTGGTTGCTAGTCGC 3'	
FTO	Forward	5' AATAGCCGCTGCTTGTGAG 3'	182
	Reverse	5' CCACTTCATCTTGTCCGTTG 3'	
ALKBH5	Forward	5' GCCGTCATCAACGACTACCA 3'	208
	Reverse	5' ATCCACTGAGCACAGTCACG 3'	
HSPA1A	Forward	5' CCACCATTGAGGAGGTAGATTAG3'	176
	Reverse	5' CTGCATGTAGAAACCGGAAAA3'	
β-actin	Forward	5' GTGGCCGAGGACTTTGATTG 3'	73
	Reverse	5' CCTGTAACAACGCATCTCATATT 3'	

2

3

Table 3(on next page)

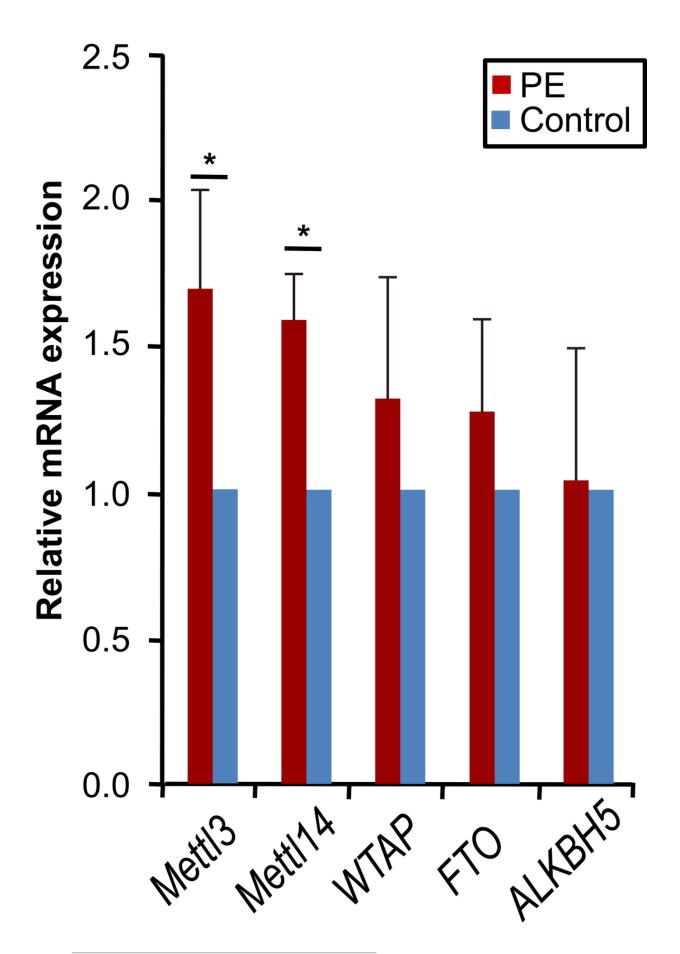
The top 20 differently expressed m6A peaks in PE.

Table 3. The top 20 differently expressed m6A peaks in PE.

Gene name	fold	Regulation	Chromosome	Peak start	Peak end	Peak	P-value
	change					region	
HSPA1A	47.50	Up	GL000251.1	3294734	3294974	cds	5.13E-06
DMWD	18.38	Up	chr19	46293970	46294029	cds,	1.82E-02
						utr3	
HYOU1	15.67	Up	JH159138.1	67181	68226	cds,	5.62E-03
						utr3	
BRCA1	15.14	Up	chr17	41245740	41245861	cds	6.61E-03
NDUFB2	13.36	Up	chr7	140396821	140400705	utr5	4.79E-02
SLC39A1	13.09	Up	chr1	153939949	153940038	utr5	1.38E-02
HYOU1	13.00	Up	JH159138.1	67162	68237	cds,	7.94E-03
						utr3	
SCAF11	13.00	Up	chr12	46322790	46322910	utr5	2.75E-02
SLC25A29	12.47	Up	chr14	100760163	100760343	utr5	2.63E-02
MID1IP1	9.99	Up	chrX	38663134	38663344	utr5	1.55E-02
SLC6A2	0.07	Down	chr16	55689515	55689784	utr5	1.41E-02
NPIPB6	0.08	Down	chr16	28353905	28354053	utr3,	7.59E-03
						cds	
LEKR1	0.09	Down	chr3	156544207	156544506	utr5	1.38E-02
MBLAC2	0.09	Down	chr5	89769658	89769897	cds	2.19E-02
TSSK6	0.10	Down	chr19	19626179	19626300	cds,	3.16E-02
						utr5	
LRRC3	0.10	Down	chr21	45877072	45877311	cds,	3.47E-02
						utr3	
RSP01	0.12	Down	chr1	38077963	38078322	utr3	4.90E-02
AC016586.1	0.13	Down	chr19	4041364	4041783	utr3	6.17E-03
TEX40	0.14	Down	chr11	64071267	64072238	cds,	3.16E-02
						utr3	
RPP25	0.15	Down	chr15	75246876	75246966	utr3	4.90E-02

Table 4(on next page)

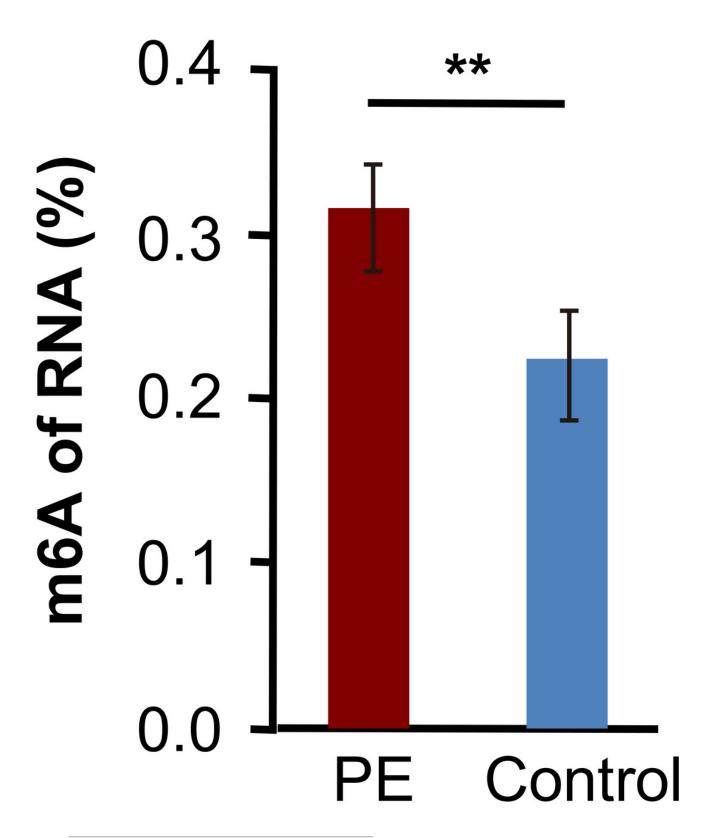
The top 20 differently expressed genes in PE.


Table 4. The top 20 differently expressed genes in PE.

Gene	Fold				
name	change	Regulation	Locus	Strand	p_value
AOC1	8.51	Up	chr7:150521715-150558592	+	5.48E-04
HLA-DRB5	4.45	Up	chr6:32485120-32498064	-	4.50E-02
DIO2	4.31	Up	chr14:80663870-80854100	-	4.09E-03
NOTUM	4.27	Up	chr17:79910383-79919716	-	3.34E-02
SPIN1	4.04	Up	chr9:91003334-91093609	+	1.26E-03
LAIR2	3.55	Up	chr19:55009100-55021897	+	3.46E-03
PLAC8	2.96	Up	chr4:84011201-84058228	-	2.89E-02
DCD	2.61	Up	chr12:55038375-55042277	-	4.97E-02
UPK1B	2.57	Up	chr3:118892364-118924000	+	2.42E-02
PTPRCAP	2.57	Up	chr11:67202981-67205538	-	3.48E-03
H2AFJ	0.67	Down	chr12:14927317-14930936	+	2.06E-02
AHSA2	0.67	Down	chr2:61404553-61418338	+	2.87E-02
B3GNT2	0.66	Down	chr2:62423248-62451866	+	2.51E-02
PAK1	0.66	Down	chr11:77032752-77185680	-	4.96E-02
TMEM14B	0.66	Down	chr6:10747992-10852986	+	8.71E-03
IMPA2	0.66	Down	chr18:11981024-12030882	+	2.68E-04
PKNOX2	0.65	Down	chr11:125034583-125303285	+	3.23E-04
SLC9A6	0.65	Down	chrX:135056000-135129428	+	1.21E-02
HIST4H4	0.63	Down	chr12:14920933-14924065	-	1.74E-02
ANKRD33	0.63	Down	chr12:52281744-52285448	+	1.61E-02

METTL3 and METTL14 were up-regulated in PE.

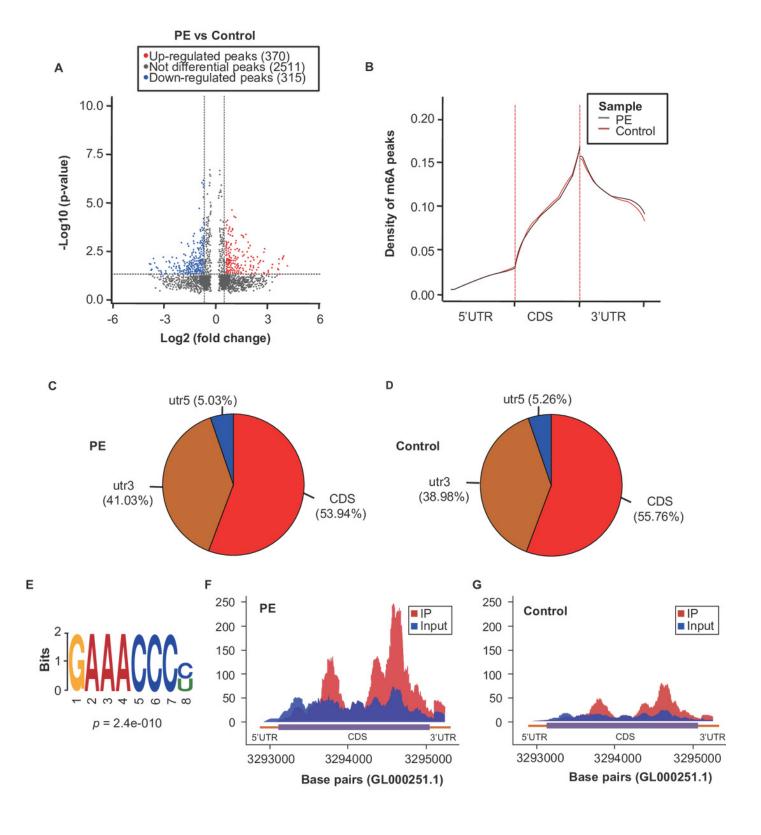
Quantitative real-time PCR was used to analysis the mRNA levels of METTL14, FTO, WTAP, and ALKBH5 in the PE samples and samples from normal pregnant women. All p-values were calculated using Student's t-test. *p < 0.05 versus control group (n = 4 each). PE: preeclampsia.



m6A levels of total RNA in PE and control.

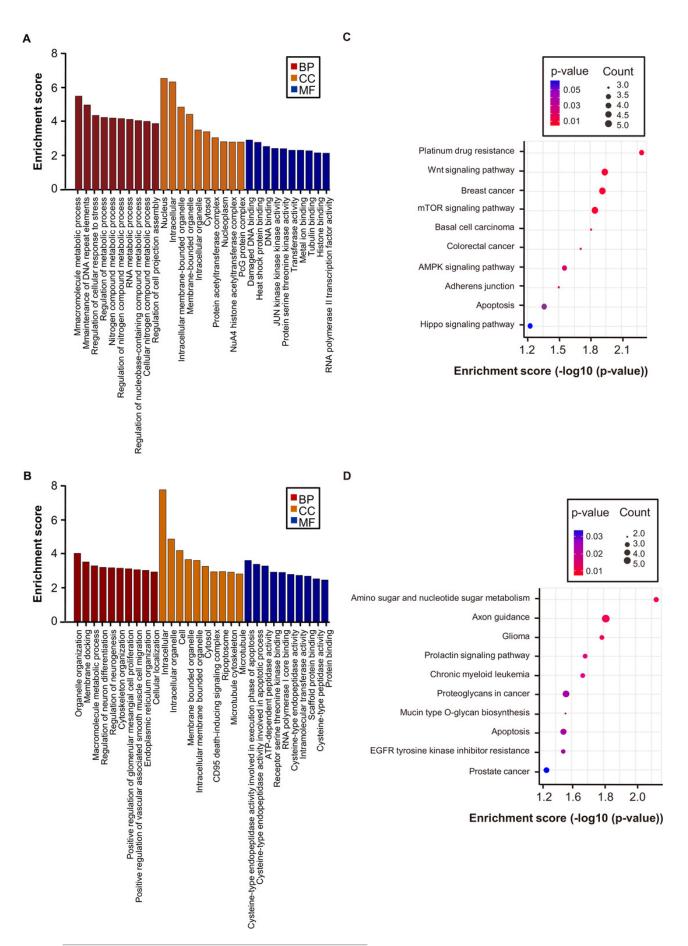
m6A levels of total RNA were determined by antibody based colorimetric method. Data are presented as mean \pm SD. All p-values were calculated using Student's t-test. **p < 0.01 versus control group (n = 4 each). PE: preeclampsia.

PE vs Control



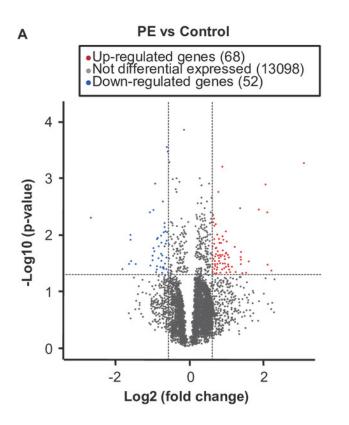
Overview of the m6A methylation landscape in the preeclampsia and control samples.

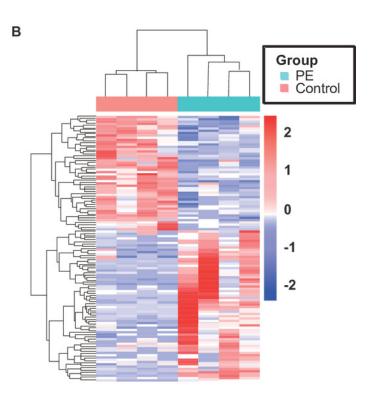
(A) Volcano plots displaying the distinct m6A peaks and their statistical significance (fold changes ≥ 1.5 and p < 0.05). (B) Metagene plots showing the region of average m6A peaks throughout the transcripts in the preeclampsia and control samples. (C) Pie charts displaying the distribution of m6A peaks in the preeclampsia. (D) Pie charts displaying the distribution of m6A peaks in the control group. (E) Sequence motifs of the m6A-containing peak regions. (F) Data visualisation analysis of *HSPA1A* mRNA m6A modifications in the preeclampsia group. (G) Data visualisation analysis of *HSPA1A* mRNA m6A modifications in the control group.

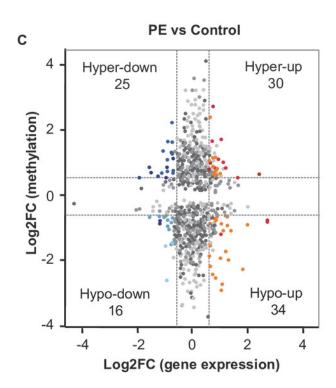


Gene ontology and KEGG pathway analyses of the altered m6A transcripts.

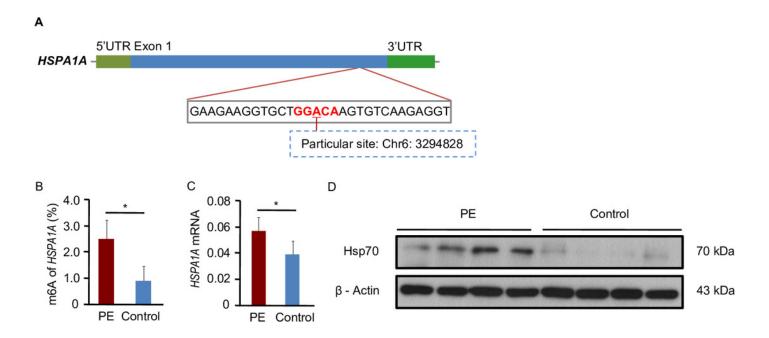
(A) Major enriched and significant GO-assessed up-regulated m6A peak transcripts. (B) Major enriched and significant GO-assessed down-regulated m6A peaks transcripts. (C) The top ten significantly enriched pathways for the up-regulated m6A peaks transcripts. (D) The top ten significantly enriched pathways for the down-regulated m6A peaks transcripts. GO: gene ontology, KEGG: Kyoto encyclopedia of genes and genomes, BP: biological process, CC: cellular component, MF: molecular function.






Conjoint analysis of m6A-RIP-seq and RNA-sequencing data for preeclampsia and controlsamples.

(A) Volcano plots displaying the mRNAs that were differentially expressed between the preeclampsia and control groups and their statistical significance (fold changes ≥ 1.5 and p < 0.05). (B) Hierarchical clustering analysis of the differentially expressed mRNAs. (C) Four quadrant graph showing the distribution of transcripts with a significant change in both m6A level and expression in preeclampsia.



The expression of *HSPA1A* is regulated by m6A modification.

(A) Schematic presentation of the location of verified m6A site in *HSPA1A*. (B) The m6A levels of *HSPA1A* at the particular site in the CDS region were significantly upregulated in PE. (C) The mRNA levels of *HSPA1A* were significantly increased in PE. (D) HSP70 protein expression was assessed by Western blot. All p-values were calculated using Student's t-test. *p < 0.05 versus control group (n = 4 each). PE: preeclampsia.

