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Background

As governments across Europe have issued non-pharmaceutical interventions (NPIs) such as social
distancing and school closing, the mobility patterns in these countries have changed. Most states have
implemented similar NPIs at similar time points. However, it is likely different countries and populations
respond differently to the NPIs and that these differences cause mobility patterns and thereby the
epidemic development to change.

Methods

We build a Bayesian model that estimates the number of deaths on a given day dependent on changes in
the basic reproductive number, R0, due to differences in mobility patterns. We utilize mobility data from
Google mobility reports using five different categories: retail and recreation, grocery and pharmacy,
transit stations, workplace and residential. The importance of each mobility category for predicting
changes in R0 is estimated through the model.

Findings

The changes in mobility have a considerable overlap with the introduction of governmental NPIs,
highlighting the importance of government action for population behavioral change. The shift in mobility
in all categories shows high correlations with the death rates one month later. Reduction of movement
within the grocery and pharmacy sector is estimated to account for most of the decrease in R0.

Interpretation

Our model predicts three-week epidemic forecasts, using real-time observations of changes in mobility
patterns, which can provide governments with direct feedback on the effects of their NPIs. The model
predicts the changes in a majority of the countries accurately but overestimates the impact of NPIs in
Sweden and Denmark and underestimates them in France and Belgium. We also note that the
exponential nature of all epidemiological models based on the basic reproductive number, R0 cause small
errors to have extensive effects on the predicted outcome.
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38 Introduction 

39 In December 2019 a new coronavirus (COVID-19) emerged in Wuhan, China. China 

40 implemented a quick strategy of suppression by imposing a lockdown in the city of Wuhan on 

41 January 23 (https://www.reuters.com/article/us-china-health-who-idUSKBN1ZM1G9, last 

42 accessed 1 May 2020), and implementing social distancing procedures nationwide, with a 

43 successful outcome [1]. Still, the virus rapidly spread across the world through our increasingly 

44 interconnected flight network, and shortly arrived in Europe. In February 2020 the number of 

45 cases started to increase quickly in some European countries. European countries introduced 

46 non-pharmaceutical interventions (NPIs) similar to those used in China to limit the spread of the 

47 virus. These NPIs include social distancing, school closures, restrict international travel and 

48 lockdown [2]. The NPIs results in behavioral changes, and these can be traced by tracking the 

49 location of mobile phones.

50

51 After an initial rapid spread in China, control measures proved very successful to stop the spread 

52 both in China[3] and in other parts of the world[4],[5]. However, there is still a risk for 

53 subsequent infections upon lifting of these restrictions[5,6]. There is, therefore, an urgent need 

54 both for understanding and tracking the effects of governmental interventions and their removals. 

55 Largescale testing could provide valuable information about the impact of interventions. 

56 However, these are expensive, sometimes inaccurate and might violate privacy rights. In 

57 contrast, the use of largescale data from anonymous tracking of mobile phones is inexpensive 

58 and readily available.

59

60 Google recently released a time-limited sharing of mobility data 

61 (https://www.google.com/covid19/mobility, last accessed 29 March 2020) from across the world 

62 as represented by summary statistics to combat COVID-19. The mobility data is measured in 6 

63 different sectors: retail and recreation, grocery and pharmacy, parks, transit stations, workplace 

64 and residential. The effects of the government-issued NPIs can be seen through changes in these 

65 patterns. 

66

67 It is likely that different countries respond in different manners to the same NPIs, why it is vital 

68 to consider the effect of NPIs country wise. Here, we show that by using real-life mobility data 

69 to model changes in the basic reproductive number, R0, the impact of NPIs across different 

70 countries can be modelled more accurately. The mobility data utilised here have some 

71 uncertainties and lack resolution. Still, to the best of our knowledge, this data is the best openly 

72 available data source for tracking a population’s movement in the eleven studied countries. 

73 Governments can, in collaboration with telephone companies, obtain much more fine-grained 

74 data, enabling them to evaluate the effect of the NPIs in more detail.

75

76 Recently, a group from Imperial College released a report [5] that estimates the effects of NPIs 

77 on R0. Subsequently, a modified version of this report was published [7]. The report had a 

78 massive impact on how the UK government changed its intervention strategy 

79 (https://www.imperial.ac.uk/news/196477/j-ideas-neil-ferguson-tells-mps-lockdown/, last 

80 accessed 1 May 2020). A limitation of the ICL model is the assumption that each intervention 

81 has the same impact in all countries, ignoring cultural and sociological differences as well as 
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82 differences in the details of the NPIs.  Here, we try to overcome this by developing an extension 

83 to their model utilizing country-specific mobility data in a Bayesian framework [8], we estimate 

84 the impact of each change in mobility pattern on R0. The resulting information provides a 

85 smooth, straightforward way for governments to analyze if NPIs are working and to what extent. 

86 We show that in a three-week forecast, our method makes a better prediction than the model 

87 from Imperial College.

88 Methods 

89 Here, we introduce an MCMC model to estimate the spread of the COVID-19 infection in 

90 various countries. The ICL model strongly inspires the model, and all parameters are taken from 

91 earlier studies. For each country, we define a starting point when the total number of observed 

92 deaths has reached ten. The model is trained using data starting 30 days before this day and until 

93 29 of March 2020. Finally, the model is used to simulate a three-week forecast from 30 March to 

94 19 April. 

95 Infection model

96 The number of cases acquired at day τ in country m,  is modelled with a discrete renewal cτ,m
97 process [9,10]:

98 , (i)𝑐𝜏,𝑚 = 𝑅𝜏,𝑚∑𝑡 ‒ 1𝜏 = 0
𝑐𝜏,𝑚𝑔𝜏 ‒ 𝑡

99 where

100   (ii)𝑔𝜏 ‒ 𝑡 ∼ 𝐺𝑎𝑚𝑚𝑎(6.5,0.62)
101

102 (Gamma distribution with a mean of 6.5 days and a standard deviation of 0.62 days) is the serial 

103 interval distribution used to model the number of cases [5,11]. 

104

105 gs is discretized in steps of 1 day accordingly:

106   (iii)𝑔𝑠 = ∫𝑠 + 0.5𝜏 = 𝑠 ‒ 0.5
𝑔(𝜏)𝑑𝜏 𝑓𝑜𝑟 𝑠 =  2,3,... 𝑎𝑛𝑑 𝑔1 = ∫1.5𝜏 = 0

𝑔(𝜏)𝑑𝜏 

107

108 The number of cases today is thus dependent on the cumulative number of cases from the 

109 previous days, weighted by the serial interval distribution, multiplied with the basic reproductive 

110 number (R0) at day t. The discretizations, here and elsewhere, of 1 day are motivated by the 

111 intervals in reporting. Just as in the ICL model [5], we assume the starting point for the infection 

112 was 30 days before the day after each country has observed ten deaths in total. The time delay of 

113 30 days is necessary due to the relationship between infection and death (see Death model 

114 described below). From this assumed starting point, we initialize our model with six days [1] of 

115 cases drawn from an Exponential(0.03) distribution, which are inferred in the Bayesian posterior 

116 distribution (Dt,m). 

117

118 Impact on the basic reproductive number

119 Our model is based on the model used in the recent report [5] from Imperial College London 

120 (ICL). The ICL report tries to estimate the impact of NPIs on R0 in the same 11 countries 

121 modelled here. The main difference between the ICL model and the current one is the modelling 
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122 of the change of R0. In the ICL model, the basic reproductive number at day t in country m (Rt,m) 

123 is estimated as a function of the NPI indicators Ik,t,m in place at day t in country m as:

124 ,  (iv)𝑅𝑡,𝑚 = 𝑅0,𝑚𝑒 ‒ ∑6𝐼 = 1
𝛼𝑘𝐼𝑘,𝑡,𝑚

125

126 where I=1 when intervention k is implemented at day t in country m and α the impact of each 

127 intervention.

128

129 Here, we instead estimate Rt,m to be a function of the relative change in mobility pattern for each 

130 country:

131

132   , (v)Rt,m = R0,me
α

1
I
1,t,m

+ α
2
I
2,t,m

+ α
3
I
3,t,m

+ α
4
I
4,t,m

- α
5
I
5,t,m

133

134 where I1-5,t,m is the relative mobility in retail and recreation, grocery and pharmacy, transit 

135 stations, workplace and residential sectors respectively at day t in country m. The residential 

136 mobility parameter has a negative sign as it is assumed that when people stay at home it lowers 

137 R0. In our model, we assume that the impact of each relative mobility change has the same 

138 relative impact across all countries and across time. This assumption is a requirement to enable 

139 the estimation of the impact of mobility on R0. If the mobility impacts were allowed to differ 

140 between countries, it would not be possible to discern between other country-specific factors and 

141 the effect of changes in mobility. 

142

143 The parameter alpha is set to be gamma distributed with mean 0.5 and a standard deviation of 1. 

144 A narrow gamma distribution was chosen due to the assumption that the impact on R0 is almost 

145 instantaneous, with an effect that decreases quickly with time. We did not include the data for the 

146 mobility category “Parks” as this data displayed much noise and cyclic peaks, possibly caused by 

147 varying weather (https://www.google.com/covid19/mobility, last accessed 29 March). The prior 

148 for R0 is set to:

149  

150 (vi)R0,m
∼ Normal(2.79|κ), with κ ∼ Normal(0,0.5)

151

152 The value of 2.79 is chosen from the median value of a recent analysis of 12 modelling studies 

153 [12], and the normal distribution from [1].

154

155 The relative mobility is modelled as the relative value change compared to a mobility baseline 

156 estimated by Google (https://www.google.com/covid19/mobility, last accessed 29 March). The 

157 baseline is the median value, for the corresponding day of the week, during the 5-week period of 

158 2020-01-03 to 2020-02-06. For the days for which no mobility data is available, the values were 

159 set to 0. The mobility data for the forecast (and days beyond the date for the last available 

160 mobility data) was set to the same values as the last observed days. The time points for the 

161 interventions were taken from the ICL report[5], whose initial efforts were crowdsourced.

162

163 Death model

164 As the number of deaths in each country is likely to be the most accurate COVID-19 related data, 

165 we use this as the core of the model, being the posterior in the Bayesian simulations. The number 
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166 of deaths in country m at day t is modelled as a negative binomial distribution as used in earlier 

167 models [9,13] with mean and variance accordingly:

168

169   (vii)𝐷𝑡,𝑚 ∼ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑑𝑡,𝑚,
𝑑 2𝑡,𝑚𝜓 ), 𝜓 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 +

(0,5)

170

171

172 The expected number of deaths, dt,m, at day t in country m is given by:

173

174 , (viii)𝑑𝑡,𝑚 = ∑𝑡 ‒ 1𝜏 = 0
𝑐𝜏,𝑚𝜋𝑡 ‒ 𝜏,𝑚

175

176 where is the infection to death distribution in the country m given by a combination of the 𝜋𝑚
177 infection to onset distribution (Gamma(5.1,0.86)) and onset to death distribution 

178 (Gamma(17.8,0.45)) (combined with mean 22.9 days and standard deviation 0.45 days) times 

179 the infection fatality rate (ifr) [5],[14],[15] :

180

181 (ix)𝜋𝑡,𝑚 ∼ 𝑖𝑓𝑟𝑚 ⋅ 𝐺𝑎𝑚𝑚𝑎(5.1 + 17.8, 0.45)

182

183 πt,m is discretized in steps of 1 day accordingly:

184 (x)𝜋𝑠,𝑚 = ∫𝑠 + 0.5𝜏 = 𝑠 ‒ 0.5
𝜋𝑚(𝜏)𝑑𝜏 𝑓𝑜𝑟 𝑠 =  2,3,... 𝑎𝑛𝑑 𝜋1,𝑚 = ∫1.5𝜏 = 0

𝜋𝑚(𝜏)𝑑𝜏 

185

186 The ifrs are taken from previous estimates of the population at risk is about 1% [16] and adjusted 

187 for the predicted attack rate in the age group 50-59 years of age, assuming a uniform attack 

188 rate[5,6],[14], chosen due to having the least predicted underreporting in analyses of data from 

189 the Chinese epidemic [14]. The uniform attack rate is required due to a lack of age-specific data. 

190 The number of deaths today is thus dependent on the cumulative number of cases from the 

191 previous days, weighted by the country-specific infection to death distribution. 

192

193 The implications on R0 due to relative mobility variations were estimated simultaneously for all 

194 countries in a hierarchical Bayesian framework using Markov-Chain Monte-Carlo (MCMC)[8] 

195 simulations in Stan[17]. The death data (https://www.ecdc.europa.eu/en/publications-

196 data/download-todays-data-geographic-distribution-covid-19-cases-worldwide, last accessed 

197 20200419) used in the form of the number of deaths per day is from ECDC (European Centre of 

198 Disease Control), available and updated daily. We ran the model with eight chains, using 4000 

199 iterations (2000 warm-up), as in the earlier work [5,17]. The parameter specifics of the 

200 simulation are available in the code (see below). 

201 MCMC Convergence

202 MCMC simulations are considered to converge when the Rhat statistics (a metric for comparing 

203 the variance between pooled and within-chain inferences) reach one[18]. A histogram of Rhat 

204 statistics for the modelled parameters in all simulation runs were constructed and analyzed. We 

205 also ensure that no divergent transitions were observed by setting the adapt delta in the sampler 

206 (see code).  

PeerJ reviewing PDF | (2020:06:49799:2:1:NEW 12 Aug 2020)

Manuscript to be reviewed



207 Leave One Country Out Analysis

208 Since all countries are in different stages of their epidemics, different amounts of data are 

209 available for each country. To analyze how the model is influenced by different countries, we fit 

210 models using data from all countries except one using all 11 combinations[19]. We then estimate 

211 the importance of each mobility parameter in the leave-one-country-out analysis. The relative 

212 difference in each mobility parameter provides an estimate of how each country affects R0 and 

213 thus the number of cases and deaths as well. Furthermore, the Pearson correlation coefficients for 

214 the mean R0 across all time points are calculated for each country in the different runs when the 

215 other ten were left out (see Figure S1). 

216 Forecast validation

217 To ensure the forecasts are reliable, we leave out three weeks of data (30 March - 19 April) and 

218 fit a model using data from the beginning of the epidemic up to the date for the beginning of the 

219 left-out data. We then evaluate the model with one-week intervals from the 30th of March to the 

220 19th of April. We evaluate by the average error and the average fractional error (average 

221 error÷Σobserved deaths) during each of the three weeks. We compare our results with 

222 simulations obtained from the ICL model [5]. We should note here that the ICL model does not 

223 converge for three-week predictions using 4000 iterations (see Figure S2). 

224

225 EpiEstim estimates of the basic reproductive number (R0)

226 To validate our estimates of R0, we estimate R0 independently using case data from ECDC and 

227 the R package EpiEstim [20], based on the SIR model [21]. The serial interval used for the 

228 estimations is variable accordingly: estimate_R(country_cases,  method="uncertain_si", config = 

229 make_config(list(mean_si = 7.5, std_mean_si = 2,min_mean_si = 1, max_mean_si = 8.4, std_si 

230 = 3.4, std_std_si = 1, min_std_si = 0.5, max_std_si = 4, n1 = 1000, n2 = 1000))), allowing more 

231 possible scenarios to be explored (see code, Methods section). The R0 estimates are smoothed 

232 using one-week averages, since they are uncertain in the beginning of the epidemic when cases 

233 are few. These values are compared with those of the mobility model, only including values 

234 under 5 due to the high uncertainty of the larger values in the beginning of the epidemic. The 

235 correlations are high and the average errors are low, mainly arising in areas of large uncertainties 

236 (see figure S8).
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237

238 Correlation analysis

239 To ensure that there is a true relationship between the daily deaths and the mobility changes, 

240 correlations between the deaths per day and the different mobility parameters were analyzed. 

241 Both the death data and the mobility data were first smoothed using one-week averages. The 

242 correlations were made by shifting the daily deaths to infer the time delay of which type of 

243 mobility affects the daily deaths. The shifts are from 0-48 days, ensuring all countries have at 

244 least ten days of data for the correlation analysis. The correlations, without shifts, between the 

245 different mobility parameters, were also analyzed (see Figure S3).

246
247 Code

248 The code is written in Python using the Stan package pystan (v. 2.19.1.1) for MCMC 

249 simulations. The code is freely available under the GPLv3 license. 

250 https://github.com/patrickbryant1/COVID19.github.io/tree/master/simulations/mobility 

251

252
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253 Results 

254 Estimating the cumulative number of cases, the number of deaths per day and changes in 

255 the basic reproductive number, R0

256 In Figure 1, for Italy and Sweden, and Figure S4, for all eleven modelled countries, estimates of 

257 cumulative cases, daily deaths and the basic reproductive number R0 are shown. We simulate a 

258 three-week forecast from 30 March to 19 April using data up to 29 March from the European 

259 Centre of Disease Control (ECDC) in the form of the number of deaths per day, and relative 

260 mobility data estimated by Google (https://www.google.com/covid19/mobility, last accessed 29 

261 March). According to the model, most countries appear to have their epidemic under control 

262 (April 19) (Table 1). The most successful nation in terms of reducing R0 is Italy (R0≈0.22), and 

263 the least is Sweden (R0≈2.01).
264

265 From Figure S4, it can be seen that in all countries, the interventions have some positive effect, 

266 decreasing the estimated R0 between the epidemic start and March 29. It can be noted that during 

267 the development of the epidemic, R0 displays a wide range of values. In some countries, the mean 

268 of the estimated R0 shows a rapid increase to values as high as 10, coupled with an increase in 

269 mobility (primarily) to grocery and pharmacies exactly when the interventions were introduced. 

270 Most posterior distributions for the mean R0 values are centered around the prior of 2.79 (Figure 

271 2). Notable is that Italy and Spain, which both had very rapid spread have distributions centered 

272 higher than the prior.
273

274 The estimated number of deaths for up to three weeks after the model is trained, have a good 

275 correspondence with the observed number (Figures 1, S4 and Table 2). Compared with the 

276 Imperial College London (ICL) model [5], our model displays both lower errors and less 

277 uncertainty (see Figures 3, S5 and Table S1). The average absolute errors over the 11 countries 

278 in the number of deaths are lower across all three weeks (week 1: 60 vs 159, week 2: 95 vs 472, 

279 and week 3: 88 vs 1429 for our model and the ICL model respectively). 

280 Comparing mobility data across countries

281 When overlaying the implementation dates of the NPIs with the mobility data, it is clear that 

282 governmental decisions have a significant impact on the populations in the 11 modelled 

283 countries (see Figure S4). Most countries display very similar relative changes in their mobility 

284 patterns, with mobility in retail and recreation, grocery and pharmacy, transit stations and 

285 workplace decreasing, while mobility in the residential category is increasing. 

286

287 Most countries have similar relative changes across the sectors (Figure S4). The ones that display 

288 smaller relative changes (Denmark, Norway and Sweden) also demonstrate more modest 

289 reductions in R0, which is a natural consequence of our model, as it assumes that changes in R0 

290 are directly related to changes in mobility. The mobility patterns in Sweden display barely half of 

291 the relative changes compared with France, Spain, and Italy, and the reduction in R0 is, therefore, 

292 smaller in Sweden.  

293
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294 The importance of mobility sectors for modelling changes in R0 

295 Analyzing the importance of each mobility parameter for predicting the reduction in R0 (1-e-alpha) 

296 shows that the grocery and pharmacy sector appears to be the clearest indicator for R0 change 

297 (see Figure 4). The grocery and pharmacy sector is estimated to account for most of the reduc 

298 revision2_trackedtion of R0, with a median reduction of 95.6 % compared to less than 10 % for 

299 the other sectors (retail and recreation 3.8 %, transit stations 3.0 %. workplace 4.0 %, residential 

300 7.9 %).

301

302 Investigating the correlation between the deaths per day and the different mobility parameters 

303 (Figure 5), one can see that all sectors display high opposite correlations with a shift of about 20 

304 days. These correlations are due to the time-delayed relationship between the initial spread of the 

305 disease, causing deaths occurring after the reduction in mobility, see Figure S4. The mobility 

306 changes have the highest correlations with the number of deaths 30-40 days after they occur, 

307 suggesting that the mobility affects the death rate with a time delay of 30-40 days. Roughly in 

308 agreement with the 22.9 days in our model. Since the grocery and pharmacy sector displays the 

309 most significant correlations, the model assigns most weight to that sector, although the mobility 

310 in all sectors is highly correlated with each other (Figure S3). 

311

312 Model validation

313 The posterior distributions for the mobility parameters (see Figure S6) are almost identical in the 

314 leave-one-country-out analysis (LOO) analysis. A bimodal distribution is observed when leaving 

315 Italy out in the grocery and pharmacy sector though, emphasizing the importance of the Italian 

316 data. The variable R0 values in the LOO analysis show Pearson correlations close to 1, with Italy 

317 and especially the United Kingdom displaying lower correlations of around 0.8 and consistently 

318 below 0.8 respectively (see Figure S1). Italy and the United Kingdom correlate badly with each 

319 other, with Pearson correlations of close to 0. 11 of 4000 iterations ended with a divergence 

320 (0.275 %) Spain was excluded. A histogram of Rhat statistics for the modelled parameters in all 

321 simulations for the main analysis is displayed in Figure S7.

322

323 To validate the R0 estimates, we used a SIR model using EpiEstim [20] to estimate R0 

324 independently from case data (and not death data as in our and the ICL models). This model does 

325 not try to determine the cause of changes in R0, but just estimates the changes from the number 

326 of reported cases. In general, the overlap of the two estimates of R0 estimates is high, in 

327 particular at the crucial time points before and after the effects of NPI implementation (see Table 

328 S2 and Figure S8). Denmark, Norway and Spain display the most substantial differences 

329 between the estimates, differing 2.98, 1.94 and 3.48 respectively at the point before NPI 

330 implementation. The differences that do arise are mainly during the periods with considerable 

331 uncertainty in the R0 estimates, i.e. when the number of reported cases is low. Sweden shows the 

332 most substantial error between the estimates after NPI implementation (0.98). Further, the 

333 models show very different speeds of the changes in R0 values, EpiEstim having a much slower 

334 response than the mobility model.   

335

336
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338 Discussion 
339 The model makes it clear that the non-pharmaceutical interventions (NPIs) introduced by 

340 governments across Europe have had substantial effects on both mobility patterns and in 

341 preventing the spread of COVID-19. By tracking the relative change in mobility in the grocery 

342 and pharmacy sector, it is possible to account for most of the reduction in the basic reproductive 

343 number, R0, in our model. This information can, therefore, provide a useful, straightforward way 

344 for governments to analyze the effect of their NPIs.

345

346 Why the grocery and pharmacy sector has been assigned the highest importance is likely because 

347 this sector displays the strongest correlation with the daily deaths. The correlations are highest 

348 assuming a 30-40 day shift, suggesting that mobility affects the death rate with a time delay of 

349 30-40 days, in rough agreement with our model. Since R0 is strongly dependent on the changes 

350 in mobility, rapid changes in mobility lead to rapid changes in R0, with drastic consequences to 

351 the estimated development of the epidemic in a country. However, changes in R0 will not 

352 manifest in the number of deaths per day until about three weeks later (the mean value in the 

353 gamma distribution for infection to death is 22.9 days, see methods section). Therefore, a three-

354 week forecast is provided. 

355

356 The estimates have an acceptable correspondence with the observed numbers in most countries 

357 (see Figure 3 and Table 2), and compared with the ICL-model, our model displays both lower 

358 errors and less uncertainty (Figures 3, S5 and Tables 2, S1). It can also be noted that the ICL 

359 model overpredicts the number of deaths in all countries. The higher accuracy when including 

360 mobility data, further suggests the usefulness of our model.

361

362 The estimated number of cases has considerable uncertainty across all countries. One limitation 

363 of our model is that it does not take herd-immunity effects into account, which should be reached 

364 when around 60-80 % of the population is infected [22]. Still, it is unlikely that sufficiently high 

365 infection has been reached yet for this to have a significant effect. Another limitation of the 

366 model is the assumption that the impact of each relative mobility change has the same relative 

367 impact across all countries and across time. If the mobility impact were allowed to differ 

368 between countries and in time, it would not be possible to discern between other country-specific 

369 and time factors and the mobility impact. Likely both more detailed mobility data and 

370 intermixing patterns need to be considered, metrics that are not available.

371

372 The number of cases is also highly dependent on having the correct infection-fatality-rate (ifr). 

373 This quantity is only modelled for the age group 50-59 years and does thereby not consider the 

374 attack rates for the whole of each country’s population (see methods section). If a nation 

375 managed to avoid the elderly being infected, that would lower the ifr [23], which could explain 

376 prediction differences to some extent. 

377

378 The model validation, by a leave-one-country-out analysis, comparing with independent R0 

379 estimates from EpiEstim [20] and predicting a three-week forecast ensures the model’s 

380 robustness. The leave-one-country-out analysis shows that the estimates are mostly affected by 

381 the data from Italy and the UK, likely due to these countries having more available data and 

382 higher death tolls early in the epidemic, making the model somewhat biased to these data in the 

383 beginning of the estimates (Figure S4). The comparison with the R0 estimates from EpiEstim 

PeerJ reviewing PDF | (2020:06:49799:2:1:NEW 12 Aug 2020)

Manuscript to be reviewed



384 show differences that arise mainly during the periods with considerable uncertainty in the R0 

385 estimates, i.e. when the number of reported cases are low. The estimates also show very different 

386 speeds of the changes in R0 values, EpiEstim having a much slower response than the mobility 

387 model (Figure S8).   

388    

389 The countries in the three-week forecast where the errors stand out are Denmark and Sweden, 

390 with over-predictions, and Belgium and France, which are under-predicted. We note that these 

391 two pairs of countries are close both geographically and culturally [24,25], possibly explaining 

392 the systematic differences. The differences may also be caused by differences in reporting 

393 between the countries (https://www.bloomberg.com/news/articles/2020-04-09/french-virus-

394 deaths-jump-with-more-nursing-home-patients-counted, last accessed May 1; 

395 https://www.politico.com/news/2020/04/19/why-is-belgiums-death-toll-so-high-195778, last 

396 accessed May 1). For instance, on April 5 more than 2000 deaths were reported in France, due to 

397 sudden inclusion of potential COVID-19 attributed deaths in nursing homes occurring at earlier 

398 dates (https://www.usnews.com/news/world/articles/2020-04-02/frances-coronavirus-death-toll-

399 jumps-to-nearly-5-400-as-nursing-homes-included, last accessed May 1). We note the sensitivity 

400 to small errors of all epidemic models using exponential measures, such as the basic reproductive 

401 number, and the significant effects these minor errors have on the predicted outcome.

402

403 Conclusions

404 Here, we present a model to estimate the effects of public interventions on the spread of COVID-

405 19 that does not assume that interventions have identical results in different geographical and 

406 cultural settings. In contrast, our model uses observational data of mobility patterns in five 

407 environments to estimate changes in the transmission rate. Our model creates the possibility to 

408 track rapid changes in the spread, instantaneously and predict their consequences three weeks 

409 ahead in time. Therefore, our model enables governments to use anonymous real-time data to 

410 adjust their policies. We do foresee that such models will become incrementally more powerful 

411 as more detailed mobility data becomes available in the future.
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Table 1(on next page)

Changes in Ro and mobility in the Grocery and Pharmacy sector during the epidemic.
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Country

Modelled start 

of the epidemic

Estimated mean R0 

at epidemic start

Estimated mean 

R0 at 29 March

Relative change in Groceries 

and pharmacies on 29 March

Austria 2020-02-22 3.11 0.36 −64%

Belgium 2020-02-18 3.24 0.51 −53%

Denmark 2020-02-21 3.02 1.36 -22%

France 2020-02-07 2.91 0.30 −72%

Germany 2020-02-15 3.08 0.56 -51%

Italy 2020-01-27 3.17 0.22 −85%

Norway 2020-02-24 2.82 0.92 -32%

Spain 2020-02-09 3.19 0.29 −76%

Sweden 2020-02-18 2.89 2.01 −10%

Switzerland 2020-02-14 2.81 0.53 -51%

United 

Kingdom 2020-02-12 2.82 0.61 -46%

1
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Table 2(on next page)

Average error and average fractional error in the number of deaths for the mobility
model.

Average error and average fractional error in the number of deaths for each country between
the mean predicted number of deaths per day and the observed number in one, two and
three week forecasts respectively. A corresponding table for the ICL model can be found in
Table S2.
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Three-week predictions for the number of deaths per day

Average error Average fractional error 

Country week 1 week 2 week 3 week 1 week 2 Week 3

Austria −3 −6 −2 −2.3 % −4.0 % −1.7 %

Belgium −46 −179 −186 −5.0 % −8.7 % −8.8 %

Denmark 0 10 28 0.4 % 10.2 % 32.2 %

France −318 −445 −427 −6.1 % −7.1 % −7.8 %

Germany −21 −7 −26 −2.2 % −0.5 % −1.6 %

Italy 144 201 29 2.7 % 4.9 % 0.8 %

Norway 1 1 3 1.7 % 2.2 % 6.9 %

Spain −98 84 −8 −1.6 % 1.8 % −0.2 %

Sweden −3 28 180 −1.2 % 5.4 % 28.9 %

Switzerland 13 41 48 4.3 % 14.1 % 17.1 %

United Kingdom 17 −42 32 0.4 % −0.7 % 0.5 %

Average absolute error 60 95 88 2.5 % 5.4 % 9.7 %

1
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Figure 1
Model results for Italy and Sweden.

Model results in the form of the cumulative number of cases, deaths per day and R0 for Italy

and Sweden, are displayed on the left axes. The model results start from 30 days before ten
accumulated deaths had been observed. The blue curves represent the estimations so far,
while the green represents a three-week forecast (30 March-19 April). The 50 % and 95 %
confidence intervals are displayed in darker and lighter shades respectively, with the mean
as a solid line. The histograms represent the number of cases and deaths reported by the
European Center for Disease Control (ECDC). Mobility data for the five modelled sectors
represented in terms of relative change compared to baseline (observed in a five-week
period of 2020-01-03 to 2020-02-06) is displayed on the right axes. The dates for the
introduction of different NPIs are marked with vertical lines. As can be seen, the NPIs have
very strong implications for the mobility patterns. The mobility data ranges from 2020-02-15
to 2020-03-29, after which the final levels are fixed. The graph for Rt includes a dashed
horizontal line marking the value one of halted epidemic growth.

PeerJ reviewing PDF | (2020:06:49799:2:1:NEW 12 Aug 2020)

Manuscript to be reviewed



PeerJ reviewing PDF | (2020:06:49799:2:1:NEW 12 Aug 2020)

Manuscript to be reviewed



Figure 2
Posterior distributions for the mean initial R0 sampled per country. The dashed line
corresponds to the prior mean, set to 2.79.
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Figure 3
Three-week predictions for all countries.

Three-week predictions for all countries in the form of deaths per day for the weeks 1: (Mar
30 - April 5), week 2 (April 6 - April 12) and week 3 (April 13 - April 19). The 50 % and 95 %
confidence intervals are displayed in darker and lighter shades respectively, with the mean
as a solid line. The blue histogram represents the observed deaths.
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Figure 4
Posterior distributions of the impact of each mobility parameter.

Posterior distributions of the impact of each mobility parameter for predicting the reduction
in R0. The grocery and pharmacy sector appears to be the clearest indicator for R0 change.
The median impacts are 3.8, 95.6, 3.0, 4.0 and 7.9 % for the retail and recreation, grocery
and pharmacy, transit, workplace and residential sectors respectively.
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Figure 5
Correlation between daily deaths and mobility changes.

Correlation between deaths per day and mobility changes for different time delays. Each
country is represented by one line. The mobility changes have the highest correlations with
the deaths about 30-40 days after they occur, suggesting that mobility affects the death rate
with a time delay of 30-40 days.
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