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Background. Birds show adaptations in limb bone shape that are associated with resisting locomotor
loads. Whether comparable adaptations occur in the microstructure of avian cortical bone is less clear.
One proposed microstructural adaptation is laminar bone in which the proportion of circumferentially-
oriented vascular canals (i.e., laminarity) is large. Previous work on adult birds shows elevated laminarity
in specific limb elements of some taxa, presumably to resist torsion-induced shear strain during
locomotion. However, more recent analyses using improved measurements in adult birds and bats reveal
lower laminarity than expected in bones associated with torsional loading. Even so, there may still be
support for the resistance hypothesis if laminarity increases with growth and locomotor maturation.

Methods. Here, we tested that hypothesis using a growth series of 17 domestic pigeons (15-563 g).
Torsional rigidity and laminarity of limb bones were measured from histological sections sampled from
midshaft. Ontogenetic trends in laminarity were assessed using principal components regression.

Results. We found that torsional rigidity of limb bones increases disproportionately with growth,
consistent with rapid structural compensation associated with locomotor maturation. However, laminarity
decreases with maturity, weakening the hypothesis that elevated laminarity is a flight adaptation at least
in the pigeon. These results suggest that the demands of locomotion may drive evolution more strongly
at the gross anatomical level rather than at the histological level.
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Abstract

Background. Birds show adaptations in limb bone shape that are associated with resisting
locomotor loads. Whether comparable adaptations occur in the microstructure of avian cortical
bone is less clear. One proposed microstructural adaptation is laminar bone in which the
proportion of circumferentially-oriented vascular canals (i.e., laminarity) is large. Previous work
on adult birds shows elevated laminarity in specific limb elements of some taxa, presumably to
resist torsion-induced shear strain during locomotion. However, more recent analyses using
improved measurements in adult birds and bats reveal lower laminarity than expected in bones
associated with torsional loading. Even so, there may still be support for the resistance
hypothesis if laminarity increases with growth and locomotor maturation.

Methods. Here, we tested that hypothesis using a growth series of 17 domestic pigeons (15-563
g). Torsional rigidity and laminarity of limb bones were measured from histological sections
sampled from midshaft. Ontogenetic trends in laminarity were assessed using principal
components regression.

Results. We found that torsional rigidity of limb bones increases disproportionately with growth,
consistent with rapid structural compensation associated with locomotor maturation. However,
laminarity decreases with maturity, weakening the hypothesis that elevated laminarity is a flight
adaptation at least in the pigeon. These results suggest that the demands of locomotion may drive

evolution more strongly at the gross anatomical level rather than at the histological level.
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Introduction
Laminar bone is a form of fibrolamellar bony tissue in which the primary vascular canal network

is organized into concentric interconnected layers (Francillon-Vieillot et al., 1990). It is
dominated by circumferential vascular canals (Currey, 1960; Francillon-Vieillot et al., 1990; de
Ricqlés et al., 1991; de Margerie, 2002; de Boef & Larsson, 2007; Huttenlocker, Woodward &
Hall, 2013), which have elongated profiles in transverse view that run approximately parallel to
the periosteal surface (Fig. 1). The proportion of laminar bone [laminarity(de Margerie, 2002)] in
many adult avian species appears elevated in specific limb bones such the humerus, ulna, femur,
and tibiotarsus (de Margerie et al., 2005). Theoretical modeling suggests that these limb bones
experience locomotor-induced torsion (i.e., by flapping in the humerus and ulna and by walking
in the femur and tibiotarsus) (Pennycuick, 1967). Indeed, in vivo bone strain measurements
confirm that torsional loading is substantial in the ulna of grounded but flapping turkeys (Lanyon
& Rubin, 1984) and is dominant in the humerus of flying pigeons (Biewener & Dial, 1995). In
addition, while walking, chickens and emus generate large torsional loads occur in the femur and
tibiotarsus (Biewener, Swartz & Bertram, 1986; Carrano & Biewener, 1999; Main & Biewener,
2007). If these loading patterns are stereotypical across birds, then the elevated laminarity
observed in humeri, ulnae, femora, and tibiotarsi of many avian species may be a general feature
of limb bones loaded habitually in torsion (de Margerie et al., 2005).

A purely biomechanical explanation for laminarity, however, remains problematic.
Contrary to histological predictions, the only two species with detailed measurements of flight-
induced torsion [Columba livia (Biewener & Dial, 1995) and Pteropus poliocephalus (Swartz,
Bennett & Carrier, 1992)] actually have negligible to low laminarity in the adult humerus
(Bennett & Forwood, 2010; Lee & Simons, 2015; Pratt et al., 2018). Furthermore, the small

amount of laminar bone that is found in the adult pigeon humerus is not localized to the
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superficial cortex of the humerus, where maximum flight-induced torsional and bending strains
are predicted (Pennycuick, 1967; Carter & Spengler, 1978; Craig, 2000). Instead, it occurs in the
deep cortex, presumably remnants from earlier juvenile development. Therefore, further
sampling across the development of the pigeon is needed to clarify the extent of laminar bone in
juveniles.

Postnatal development in the pigeon is altricial (Starck & Ricklefs, 1998). Juveniles are
flightless and nest-bound for most of the postnatal growth period (Vriends & Erskine, 2005;
Coles, 2007; Liang et al., 2018). Only when nearly full-grown do they become powerful fliers
(Tobalske & Dial, 1996). Thus, the pigeon is ideal to examine rapid structural compensation in
the limb skeleton during locomotor transition. Skeletal compensation occurs in the altricial-
developing wings of the California gull (Carrier & Leon, 1990) and mallard (Dial & Carrier,
2012), so we expect it in both forelimb and hindlimb of the developing pigeon. Specifically,
polar section modulus, which is a standard proxy for torsional rigidity at midshaft (Ruff, 2002;
Young, Fernandez & Fleagle, 2010; Ruff et al., 2013), should scale with positive ontogenetic
allometry. Furthermore, if laminarity is a reflection of locomotor-induced torsion (de Margerie et

al., 2005), then it should increase dramatically with skeletal (and locomotor) maturity.

Materials & Methods
Sampling and histology

We acquired salvaged and donated carcasses of 17 homing pigeons (Stromberg’s Chicks &
Game Birds Unlimited; Pine River, Minnesota, USA). The sample comprises a postnatal growth
series of known mass (15 — 563 g) (Table S1). Although the age range of the sample is 0—9
weeks, the precise age of death for most individuals was not recorded. The right fore- and

hindlimb of each individual was dissected to reveal the humerus, radius, ulna, femur, and
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tibiotarsus (Fig. 2A). The length of each element was measured (Tables S2—-S6), and a 1-cm mid-
diaphyseal block from each bone was excised using a rotary tool (Dremel 4000; Dremel, Mt.
Prospect, Illinois, USA). We followed an established protocol for preparing plastic-embedded
undecalcified bone (Lee & Simons, 2015). Two transverse 700-um wafers were cut from each
specimen at mid-diaphysis using a precision saw (Isomet 1000; Buehler, Lake Bluff, Illinois,
USA). The wafers were mounted (Gorilla Epoxy; Gorilla Glue Inc., Cincinnati, Ohio, USA) to
frosted glass slides and manually ground (Metaserv 250; Buehler, Lake Bluff, Illinois, USA) to

100 + 10 pm.

Imaging

Sections were acid-etched and stained with toluidine blue (Eurell & Sterchi, 1994) to improve
contrast of in-plane primary vascular canals (Fig. 2B). The stain also highlights secondary
osteons (specifically cement lines) and their (Haversian) canals, which are traditionally excluded
from measurements of laminarity (de Margerie, 2002). Whole section images pre- and post-
staining were captured with a motorized upright microscope (Ni-U; Nikon, Tokyo, Japan) with a
strain-free objective (10x Plan Fluor: numerical aperture of 0.3, resolvable size =1 um). Once
imaging was completed, each section was mounted (Permount; Fisher Scientific, Hampton, New
Hampshire, USA) with a glass coverslip (#1; Fisher Scientific, Hampton, New Hampshire, USA)

for preservation.

Bone profiles

A bone profile was prepared from each montage using Photoshop (CS5; Adobe, San Jose,

California, USA). Montages were sharpened with the “Unsharp Mask” filter set at 5 px and are
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high resolution (2.1 pm per pixel). The area bounded between the periosteal and endosteal
surfaces was filled with white to represent bone. The surrounding non-bone area as well as in-
plane vascular canals and resorption spaces were filled with black. Bone profiles were exported
to ImagelJ (1.51d; National Institutes of Health, Bethesda, Maryland, USA) for further analysis.
We measured the periosteal circumference and vascular porosity (areal ratio of in-plane vascular
canals to total cortical area) of each bone profile (Tables S2—S6). Montages and bone profiles are
freely accessible as interactive digital slides at the Paleohistology Repository (Lee & O’Connor,

2013).

Ontogenetic scaling of polar section modulus

We used Bonel v1.4.1 (Doube et al., 2010) to estimate the polar section modulus (Z,), which is a
proxy of torsional rigidity and average bone bending rigidity (Ruff, 2002), for each bone (Tables
S2-S6). This proxy is appropriate when the cross section of a long bone is nearly circular (Craig,
2000). To test the suitability of this proxy to each cross section, we used Bonel to calculate
Lyin/Lnax, Which is equal to 1.0 in a circular cross section. Values for the bone sections range from
1.03 to 1.80 (Tables S2—-S6). When compared to a reference figure (Daegling, 2002), the values
of 1,,;,/I,na In our sample suggest errors in torsional rigidity less than 6.7%. Therefore, we find no
major problem in using this proxy.

Using R (R Core Team, 2019), linear regression was performed separately for each
element between log10-transformed Z, and the log10-transformed product of body mass and
bone length. The coefficients of the regression analysis are presented in Table 1 and allometric
scaling was inferred if the 95% confidence interval on slopes excluded the value of 0.75

(isometry) (Young, Fernandez & Fleagle, 2010).
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Laminarity index. = We classified each vascular canal into one of four discrete categories of
orientation (longitudinal, radial, oblique, and circumferential). Although, the laminarity index
(LI) was originally defined by de Margerie (2002) as the proportionate area of circumferential
canals relative to the total area of vascular canals, we used a subsequent re-definition in which LI
is the number of circumferential canals divided by the total number of canals (Simons &
O’Connor, 2012; Legendre et al., 2014; Lee & Simons, 2015). As such LI is a proportion and
ranges from 0 (absence of circumferential canals) to 1 (ubiquity of circumferential canals).

We adopted a recently published method to quantify LI (Lee & Simons, 2015). Instead of
counting every canal in an image of a bone section, we systematically sampled approximately
50% of the canals in a given section. The image of each section was divided into octants using
Photoshop (Fig. 2B), and the four octants representing cardinal anatomical positions (i.e., cranial,
caudal, dorsal, and ventral for the wing elements; cranial, caudal, medial, and lateral for the
hindlimb elements) were extracted for analysis.

Canal orientation is measured relative to the local tangent to the periosteal surface. That
surface, however, is curved in most bone cortices (Fig. 2C). Consequently, the local tangent
varies across a curved cortex and requires repeated referencing to measure canal orientation. To
increase throughput and minimize error, we straightened the curvature of each octant using the
“Straighten” function in ImageJ. Once straightened, the periosteal surface is parallel with the
horizontal, thereby establishing a constant reference line (Fig. 2D). To assess the amount of
distortion caused by straightening, we placed circular clock-shaped profiles with the clock hands
placed at known angles in the original curved octants. We then re-measured profiles and angles

after straightening each octant to assess the extent of image deformation on canal orientation.
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Overall, the median deviation of test angles from original values is 1.15°, and the median aspect
ratio of circular profiles is 1.05. At least in this study, canal orientation in straightened octants
appears accurate.

We adopted the method by de Boef and Larsson (2007) to approximate the sectional
profile of each primary vascular canal with a best-fitting ellipse using Imagel. For each ellipse,
the aspect ratio and orientation of the major axis relative to the periosteal reference line were
measured. To relate these measurements to canal orientation, we followed criteria proposed by
de Margerie (2002): (1) longitudinal canals have an aspect ratio of less than 3; (2)
circumferential canals have major axes oriented 0° &+ 22.5° relative to the nearest tangent line
drawn at the periosteal surface; (3) radial canals have major axes oriented 90°+ 22.5° relative to
the nearest tangent line drawn at the periosteal surface; and (4) all remaining canals are oblique
(Fig. 2E). Any canal that branches was divided at the node, and the orientation of each
subdivided canal was estimated using the methodology as described above.

The ellipse-fitting method is appropriate as long as canals are generally cylindrical. They
tend to be in cortical bone (Cooper et al., 2003, 2011; Pratt & Cooper, 2017), which ranges in
vascular porosity from 0 — 30% (Carter & Spengler, 1978; Zioupos, Cook & Hutchinson, 2008).
MicroCT inspection suggests this assumption is reasonable for avian cortical bone (Fig. 1).
However, in cancellous bone (Carter & Spengler, 1978; Zioupos, Cook & Hutchinson, 2008)
with vascular porosity greater than 30%, canals are too irregular to approximate with the ellipse-
fitting method. Consequently, we measured canal orientation only in bone sections with porosity
less than or equal to 30% (Tables S2—S6), and laminarity for youngest specimens (MWU263,

MWU 261, MWU 260, and MWU 267) was not measured.
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203 Analyses were performed with the R package “gamlss” (Rigby & Stasinopoulos, 2005).
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Results
Histological description

At mid-diaphysis, the limb bones of the pigeon become increasingly compact with growth
(Tables S2—S6). In very young individuals ranging from 0-2 weeks, bone walls are relatively
thick and largely cancellous (porosity > 30%) with irregular vascular spaces. That cancellous
structure is consistent with rapidly-growing juvenile bone as seen in other avian species (de
Margerie et al., 2004). Older individuals show compact bone with vascular canals. For each
bone, peak laminarity (i.e., proportion of circumferentially oriented canals) occurs in juveniles
aged 2—4 weeks (Figs. 2 and 3). As individuals mature (4-9 weeks of age), they deposit new
bony tissue with poor vascularization along the superficial half to third of the corticai wall (Fig.
3A-J). Although the remaining deep portion is highly vascularized, canals are predominantly

longitudinal (Fig. 3A-])).

Zp scaling analysis

The polar section modulus (Z,) of the humerus, radius, ulna, femur, and tibiotarsus increases
with growth (Tables S2—S6). When scaled to the log10-transformed product of body mass and
bone length, log10-transformed Zp shows positive allometry for all five sampled elements (Fig.
4). The allometric slope of the tibiotarsus is slightly (but not significantly) shallower than the
slopes of the other elements, in part reflecting the relatively large size of the tibiotarsus at hatch

(Table 1).

Robust principal component analysis

Robust principal component analysis is generally consistent across the five limb elements (Table

2). PC1 captures at least 95% of the variance in the original predictors: 98% for the humerus,
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95% for the radius, 97% for the ulna, 98% for the femur, and 96% for the tibiotarsus. We ignored
the residual variance (approximately 2—5%) that is absorbed by PC2 and PC3, thereby reducing
data dimensionality from three components to one. Mass, Z, (torsional rigidity), and bone length
each have positive loadings on PC1. In the humerus, ulna, and femu, iength and Z, share
dominance on PC1 (Table 2). However in the radius and tibiotarsus, length alone dominates PC1
(Table 2). Nevertheless, the loadings are consistent with PC1 representing an ontogenetic axis.
Small PC1 scores are associated with juvenile features (small mass with short bones that are
relatively compliant to torsion), whereas large PC1 scores are associated with adult features

(large mass with long bones that are relatively rigid to torsion).

Beta regression
Although each element shows a significant negative correlation between laminarity index (LI)
and PC1 (Table 3), two groups are apparent. The first group consists of humerus, ulna, and
femur. This group is characterized by models with relatively strong goodness-of-fit (pseudo-R?
exceeds 0.70), relatively positive intercept, and steep negative slope. In contrast to the first
group, the second group consists of radius and tibiotarsus. It features models with relatively
weak goodness-of-fit (pseudo-R? < 0.55), relatively negative intercept, and shallow negative
slope. Put together these results demonstrate that laminarity decreases with ontogeny and that
laminarity in the radius and tibiotarsus may be influenced by additional factors (Fig. 5).

We converted the PC1 coefficient into standardized coefficients of the original predictors
(mass, length, and Z,). The relative effects of bone length and Z, dominate in the humerus, ulna,
and femur, whereas in the radius and tibiotarsus, the relative effect of bone length dominates.

Nevertheless in each element, we found negative correlations between the original predictors and
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laminarity (Table 3). Contrary to expectations, these results in the pigeon suggest that as bones

grow increasingly rigid to torsion, their laminarity decreases.

Discussion

Maturation of pigeon limb bones is synchronized and typical of altricial development. Each of
the five limb elements analyzed shows positive allometry in polar section modulus (Z,) (Fig. 4;
Table 1). Compared to juveniles, adults have limb bones that are disproportionately rigid to
torsion, consistent with relatively late locomotor maturation. Onset of walking and coordinated
flapping of wings occurs 14-21 days post-hatch, and locomotor maturation is complete around
28-42 days post-hatch (Levi, 1962; Janiga & Kocian, 1985; Johnston & Janiga, 1995; Vriends &
Erskine, 2005; Liang et al., 2018). Our interpretation in the pigeon wing is consistent with
previous work showing strong positive allometry in wing bones of the California gull, black tern,
and mallard, each of which are unable to fly until nearly full-grown. Unlike the pigeon, those
birds begin walking shortly after hatch. As such, juveniles benefit from iciatively robust skeletal
proportions (negative allometry), presumably to keep immature tissues within safety margins
during locomotion. Put together, our results support previous interpretations that cross-sectional
bone geometry is a useful proxy for habitual loading and locomotor maturity (Swartz, Bennett &
Carrier, 1992; Main & Biewener, 2007; Habib & Ruff, 2008; Young, Fernandez & Fleagle,
2010). Moreover, the growth of torsional rigidity in wing bones is consistent with rapid structural
compensation related to the demands of flight (Carrier & Leon, 1990; Bennett, 2008; Dial &
Carrier, 2012).

Contrary to expectations, the relatively rigid bones of adult pigeons have low laminarity
(Figs. 3 and 5). This result differs from a recent study of 14 adult pigeons in which laminarity

was reported as “high” (Skedros & Doutré, 2019). However, that study neither stained thick

Peer] reviewing PDF | (2020:03:46738:0:0:NEW 12 Mar 2020)


eprondva
Highlight

eprondva
Sticky Note
Which parts of the skeleton? And relatively robust compared to what? 

eprondva
Highlight

eprondva
Sticky Note
And what about leg bones? In this paragraph you only discuss wing bones, whereas it would be crucial to include how these findings in the wing bones relate to your findings in the hind limb bones. The entire skeleton following altricial growth trajectory, I'd expect to find similar allometries and growth-related structural changes in both, forelimbs and hind limbs. Which would then contrast the other birds that have precocial hind limbs but altricial forelimbs, like the mallard, seagull, etc, so the birds you referred to as well. Please, provide details on this, as this information is not only very interesting but very important in the interpretation of your data in this locomotor ontogeny context.


PeerJ

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

undecalcified sections to clearly define boundaries of in-plane canals nor quantified canal
orientation. Therefore, we cannot exclude that possibility that the reported “high laminarity” is
overestimated.

In other avian taxa, low laminarity is attributed to reduced torsional loading such as in
specialized soaring birds with long narrow wings that presumably are not suited for frequent
flapping (de Margerie et al., 2005; Simons & O’Connor, 2012). Clearly, that explanation does
not apply to the pigeon, which is a generalist flier (Berg & Biewener, 2010) with in vivo strain
data from the humerus indicating considerable torsion during flapping (Biewener & Dial, 1995).
Although strain data are not available for the remaining bones that we sampled in the pigeon,
data from other avian species indicate similar torsional loading in the ulna of turkey and the
femur of chicken during grounded flapping and walking, respectively (Lanyon & Rubin, 1984;
Carrano & Biewener, 1999). These data suggest a systemic mismatch between laminarity and
loading in the adult pigeon. They also address criticism regarding a similar mismatch in bats
(Lee & Simons, 2015; Pratt et al., 2018), whose bones are simply not vascularized enough to be
laminar. Here we show that even when richly vascularized as in the pigeon, torsionally-loaded
bone is not necessarily more laminar.

Peak laminarity in pigeons occurs in nest-bound juveniles but is transient (Figs. 3 and 5).
Juveniles begin to exercise their limbs a few weeks after hatching (Levi, 1962; Janiga & Kocian,
1985; Johnston & Janiga, 1995; Vriends & Erskine, 2005; Liang et al., 2018), so elevated
laminarity in their bones, especially in the humerus, ulna, and femur, suggests a response to
torsional loading. Contrary to expectations, elevated laminarity is not maintained in growing
juveniles as they intensify limb movements shortly before fledging. Instead, laminarity decreases

as cross-sectional rigidity increases (Table 3). These results in the pigeon further weaken the
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hypothesis that laminar bone develops to improve torsional rigidity. Future directions include
assessing material properties, which may contribute to bone rigidity in pigeons and birds more
broadly.

Currently, comparisons to other avian taxa are limited because the development of
laminarity has only been quantified in the pigeon and emu. Even so, there is evidence that
development of laminarity varies across birds. In the pigeon, laminarity and ontogeny are
inversely correlated (Table 3). However in the emu, their relationship is more complex.
Laminarity is highly variable and independent of ontogeny in the diminutive wing, presumably
reflecting relaxed selection from flightlessness, whereas it is positively correlated with ontogeny
in the hindlimb (Kuehn et al., 2019). Even so, among the sampled ontogenetic parameters (body
mass, postnatal age, growth rate, and caudal shear strain), shear strain has the weakest effect on
laminarity based on standardized regression coefficients. Furthermore, residual variation in shear
strain not accounted for by ontogeny forms a “loading axis”, but it is not a significant predictor
of laminarity. Put together, the results from pigeons and emus suggest that torsion-induced shear
strain might have a minor effect on laminarity, but ontogenetic effects clearly dominate in bones
selected for locomotion.

The developmental approach used by the current study may inform how loading affects
other histological features such as collagen fiber orientation. In adult birds, collagen fibers with
oblique-to-transverse orientation are especially abundant in bones shaped to resist torsion (de
Margerie et al., 2005). Those features evolved independently in adult birds and at least one
species of fruit bat (Skedros & Doutré, 2019) suggesting that they may be fundamental
adaptations of vertebrate flapping flight. If so, we expect collagen fiber obliquity and torsional

rigidity of wing bones to increase with locomotor maturity. Preliminary evidence suggests that
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the predicted trend occurs in the ulna of growing turkey (Skedros et al., 2003). Future

investigations should apply the developmental approach across a broader phylogenetic sample.

Conclusions
Limb bones that experience locomotor-induced torsion do not necessarily develop elevated

laminarity. On the contrary, limb bone laminarity decreases systemically with maturity at least in
the pigeon. This developmental pattern differs from a recent report it: growing emus, suggesting
that factors other than load resistance influence laminarity. At present, the hypothesis that
adaptation to locomotor-induced torsion involves elevated bone laminarity is not supported.
There is strong evidence, however, that limb bone geometry adapts to loading. Unlike laminarity,
bone geometry develops disproportionate rigidity to torsion as juveniles mature into adults. This
result is consistent with previous findings and suggests that the demands of locomotion may

drive evolution more strongly at the gross anatomical level rather than at the histological level.
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Figure 1

Vascular canals in avian cortical bone are networked but generally cylindrical.

(A) Whole humerus scanned with microCT at 8-um voxel resolution reveals thin cortical wall
at mid-diaphysis. (B) Y -ual transverse section of a cortical strip sampled from mid-diaphysis
at 4-um voxel resolution looks comparable to a traditionally prezared histological section.
Volumetric visualization in transverse (D) and tangential planes (D,E) reveal cylindrical
shape of canals. Whole bone and cortical strip were scanned using a GE phoenix v|tome|x
and Nikon XT H 225, respectively. Segmentation and rendering performed with Avizo (9.0.1,
FEI).
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Figure 2

Bone profile preparation for evaluation of laminarity index.

(A) Mid-diaphyseal cross-sections were taken from the five listed bone elements harvested
from a growth series of 17 pigeons (left-sided elements imaged using a Siemens SOMATOM
Perspective CT scanner only for illustrative purposes). (B) Each sectico was divided into four
octants representing cardinal anatomical positions (i.e., cranial, caudal, dorsal, and ventral
for the wing elements; cranial, caudal, medial, and lateral for the hindlimb elements). Octant
curvature (C) was straightened (D) using Image]. (E) Canals were fit with ellipses and

classified based on orientation relative to the horizontal periosteal surface.
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Figure 3

Histology of representative bone elements from growing pigeons arranged by mass.

In ascending order (bottom to top): 209 g (MWU 271), 242 g (MWU 258), 314 g (MWU 273),
455 g (MWU 256), and 482 g (MWU 254). Bone porosity decreases with mass. Circumferential
vascular canals are most abundant in juvenile cortical bone from the humerus, ulna, and
femur. Scale bar equals 600 um (A,B,D-F & K), 480 um (G,L & M), 400 um (I,J,N-P), 343
um (Q,T-V), and 300 um (C,H,R,S,W-Y). Digital slides are available at

http://paleohistology.appspot.com/Page/Columba _livia.html .
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Figure 4

Polar section modulus (Z,) scaling analysis.

Positive allometric scaling of polar section modulus (Z,) in humeri, ulnae, radii, femora, and

tibiotarsi. Shaded regions are 95% confidence bands.
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Figure 5

Manuscript to be reviewed

Relationship between laminarity and the "ontogenetic axis" of variation.

(A) humerus, (B) ulna, (C) radius, (D) femur, and (E) tibiotarsus.
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Table 1l(on next page)

Ontogenetic scaling of log10(midshaft polar section modulus of bone) and log10(body
mass x bone length) .

Isometry equals slope of 0.75.
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Table 1:

Manuscript to be reviewed

Ontogenetic scaling ot log10(midshaft polar section modulus of bone) and

log10(body mass x bone length).

Isometry equals slope of 0.75.

Element Slope 95% CI Intercept 95% CI

Humerus (n = 17) 1.20 1.07, 1.34 -4.09 -4.64, -3.54
Ulna (n=17) 1.22 1.06, 1.39 -4.53 -5.20, -3.86
Radius (n =17) 1.23 1.04,1.43 -5.12 -5.90, -4.33
Femur (n=17) 1.18 0.94, 1.43 -4.31 -5.28,-3.33
Tibiotarsus (n = 17) 0.98 0.89, 1.07 -3.69 -4.06, -3.31
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Table 2(on next page)

Results from robust principal component analysis (PCA).
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1 Table 2:
2 Robust principal component analysis (PCA) results.
3
Element PC1 PC2 PC3
Humerus Eigenvalues 5.384 | 0.100 | 0.022
Standard deviation 2.320 | 0.316 | 0.148
Proportion of variance 0.978 | 0.018 | 0.004
Mass eigenvector 0.262 | -0.440 | 0.859
Length eigenvector 0.522 | 0.813 | 0.258
Z, eigenvector 0.812 | -0.381 | -0.443
Ulna Eigenvalues 5.581 | 0.115 | 0.048
Standard deviation 2.362 | 0.339 | 0.218
Proportion of variance 0.972 | 0.020 | 0.008
Mass eigenvector 0.274 | 0.896 | -0.350
Length eigenvector 0.797 | -0.415 | -0.438
Z, eigenvector 0.538 | 0.159 | 0.828
Radius Eigenvalues 3.184 | 0.168 | 0.018
Standard deviation 1.784 | 0.409 | 0.133
Proportion of variance | 0.945 | 0.050 | 0.005
Mass eigenvector 0.453 | 0.689 | -0.566
Length eigenvector 0.817 | -0.575 | -0.046
Z, eigenvector 0.357 | 0.441 | 0.823
Femur Eigenvalues 3.963 | 0.047 | 0.038
Standard deviation 1.991 | 0.217 | 0.196
Proportion of variance | 0.979 | 0.012 | 0.009
Mass eigenvector 0.348 | 0.845 | 0.407
Length eigenvector 0.689 | -0.525 | 0.499
Z, eigenvector 0.635 | 0.107 | -0.765
Tibiotarsus | Eigenvalues 6.706 | 0.233 | 0.048
Standard deviation 2.290 | 0.483 | 0.218
Proportion of variance | 0.960 | 0.033 | 0.007
Mass eigenvector 0.286 | 0.480 | -0.830
Length eigenvector 0.867 | -0.499 | 0.010
Z, eigenvector 0.409 | 0.722 | 0.558
4
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Table 3(on next page)
Relationship between laminarity and principal components using beta regression

Standardized coefficients for each of the original variables (mass, Z,, and bone length) are

also listed.
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Table 3:

Relationship between laminarity and principal components using beta regression.
Standardized coefficients for each of the original variables (mass, Z,, and bone length) are also

listed.

Standardized Coefficients
Element Pseudo | Intercept | p-value | PC1 p-value | Mass  Length Z,

R2

Humerus 0.726 -1.283 | 9.47e-8 | -0.249 | 1.22e-4 | -0.065 -0.130  -0.202
Radius 0.440 -2.585 | 5.7e-10 | -0.197 0.007 -0.089 -0.161  -0.070
Ulna 0.852 -1.670 | 2.0e-10 | -0.245 | 2.29¢-6 | -0.067 -0.195  -0.131
Femur 0.819 -1.564 | 4.9e-10 | -0.244 | 1.31e-5 | -0.085 -0.168  -0.155
Tibiotarsus | 0.521 -2.657 | 5.0e-11 | -0.137 0.002 -0.039 -0.119  -0.056
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