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Development of limb bone laminarity in the domestic pigeon
(Columba livia)
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Background. Birds show adaptations in limb bone shape that are associated with resisting locomotor
loads. Whether comparable adaptations occur in the microstructure of avian cortical bone is less clear.
One proposed microstructural adaptation is laminar bone in which the proportion of circumferentially-
oriented vascular canals (i.e., laminarity) is large. Previous work on adult birds shows elevated laminarity
in specific limb elements of some taxa, presumably to resist torsion-induced shear strain during
locomotion. However, more recent analyses using improved measurements in adult birds and bats reveal
lower laminarity than expected in bones associated with torsional loading. Even so, there may still be
support for the resistance hypothesis if laminarity increases with growth and locomotor maturation.

Methods. Here, we tested that hypothesis using a growth series of 17 domestic pigeons (15–563 g).
Torsional rigidity and laminarity of limb bones were measured from histological sections sampled from
midshaft. Ontogenetic trends in laminarity were assessed using principal components regression.

Results. We found that torsional rigidity of limb bones increases disproportionately with growth,
consistent with rapid structural compensation associated with locomotor maturation. However, laminarity
decreases with maturity, weakening the hypothesis that elevated laminarity is a flight adaptation at least
in the pigeon. These results suggest that the demands of locomotion may drive evolution more strongly
at the gross anatomical level rather than at the histological level.
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21 Abstract

22 Background. Birds show adaptations in limb bone shape that are associated with resisting 

23 locomotor loads. Whether comparable adaptations occur in the microstructure of avian cortical 

24 bone is less clear. One proposed microstructural adaptation is laminar bone in which the 

25 proportion of circumferentially-oriented vascular canals (i.e., laminarity) is large. Previous work 

26 on adult birds shows elevated laminarity in specific limb elements of some taxa, presumably to 

27 resist torsion-induced shear strain during locomotion. However, more recent analyses using 

28 improved measurements in adult birds and bats reveal lower laminarity than expected in bones 

29 associated with torsional loading. Even so, there may still be support for the resistance 

30 hypothesis if laminarity increases with growth and locomotor maturation.

31 Methods. Here, we tested that hypothesis using a growth series of 17 domestic pigeons (15–563 

32 g). Torsional rigidity and laminarity of limb bones were measured from histological sections 

33 sampled from midshaft. Ontogenetic trends in laminarity were assessed using principal 

34 components regression.

35 Results. We found that torsional rigidity of limb bones increases disproportionately with growth, 

36 consistent with rapid structural compensation associated with locomotor maturation. However, 

37 laminarity decreases with maturity, weakening the hypothesis that elevated laminarity is a flight 

38 adaptation at least in the pigeon. These results suggest that the demands of locomotion may drive 

39 evolution more strongly at the gross anatomical level rather than at the histological level.

40

41
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42 Introduction

43 Laminar bone is a form of fibrolamellar bony tissue in which the primary vascular canal network 

44 is organized into concentric interconnected layers (Francillon-Vieillot et al., 1990). It is 

45 dominated by circumferential vascular canals (Currey, 1960; Francillon-Vieillot et al., 1990; de 

46 Ricqlès et al., 1991; de Margerie, 2002; de Boef & Larsson, 2007; Huttenlocker, Woodward & 

47 Hall, 2013), which have elongated profiles in transverse view that run approximately parallel to 

48 the periosteal surface (Fig. 1). The proportion of laminar bone [laminarity(de Margerie, 2002)] in 

49 many adult avian species appears elevated in specific limb bones such the humerus, ulna, femur, 

50 and tibiotarsus (de Margerie et al., 2005). Theoretical modeling suggests that these limb bones 

51 experience locomotor-induced torsion (i.e., by flapping in the humerus and ulna and by walking 

52 in the femur and tibiotarsus) (Pennycuick, 1967). Indeed, in vivo bone strain measurements 

53 confirm that torsional loading is substantial in the ulna of grounded but flapping turkeys (Lanyon 

54 & Rubin, 1984) and is dominant in the humerus of flying pigeons (Biewener & Dial, 1995). In 

55 addition, while walking, chickens and emus generate large torsional loads occur in the femur and 

56 tibiotarsus (Biewener, Swartz & Bertram, 1986; Carrano & Biewener, 1999; Main & Biewener, 

57 2007). If these loading patterns are stereotypical across birds, then the elevated laminarity 

58 observed in humeri, ulnae, femora, and tibiotarsi of many avian species may be a general feature 

59 of limb bones loaded habitually in torsion (de Margerie et al., 2005).

60 A purely biomechanical explanation for laminarity, however, remains problematic. 

61 Contrary to histological predictions, the only two species with detailed measurements of flight-

62 induced torsion [Columba livia (Biewener & Dial, 1995) and Pteropus poliocephalus (Swartz, 

63 Bennett & Carrier, 1992)] actually have negligible to low laminarity in the adult humerus 

64 (Bennett & Forwood, 2010; Lee & Simons, 2015; Pratt et al., 2018). Furthermore, the small 

65 amount of laminar bone that is found in the adult pigeon humerus is not localized to the 
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66 superficial cortex of the humerus, where maximum flight-induced torsional and bending strains 

67 are predicted (Pennycuick, 1967; Carter & Spengler, 1978; Craig, 2000). Instead, it occurs in the 

68 deep cortex, presumably remnants from earlier juvenile development. Therefore, further 

69 sampling across the development of the pigeon is needed to clarify the extent of laminar bone in 

70 juveniles. 

71 Postnatal development in the pigeon is altricial (Starck & Ricklefs, 1998). Juveniles are 

72 flightless and nest-bound for most of the postnatal growth period (Vriends & Erskine, 2005; 

73 Coles, 2007; Liang et al., 2018). Only when nearly full-grown do they become powerful fliers 

74 (Tobalske & Dial, 1996). Thus, the pigeon is ideal to examine rapid structural compensation in 

75 the limb skeleton during locomotor transition. Skeletal compensation occurs in the altricial-

76 developing wings of the California gull (Carrier & Leon, 1990) and mallard (Dial & Carrier, 

77 2012), so we expect it in both forelimb and hindlimb of the developing pigeon. Specifically, 

78 polar section modulus, which is a standard proxy for torsional rigidity at midshaft (Ruff, 2002; 

79 Young, Fernández & Fleagle, 2010; Ruff et al., 2013), should scale with positive ontogenetic 

80 allometry. Furthermore, if laminarity is a reflection of locomotor-induced torsion (de Margerie et 

81 al., 2005), then it should increase dramatically with skeletal (and locomotor) maturity.

82

83 Materials & Methods

84 Sampling and histology

85 We acquired salvaged and donated carcasses of 17 homing pigeons (Stromberg’s Chicks & 

86 Game Birds Unlimited; Pine River, Minnesota, USA). The sample comprises a postnatal growth 

87 series of known mass (15 – 563 g) (Table S1). Although the age range of the sample is 0–9 

88 weeks, the precise age of death for most individuals was not recorded. The right fore- and 

89 hindlimb of each individual was dissected to reveal the humerus, radius, ulna, femur, and 
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90 tibiotarsus (Fig. 2A). The length of each element was measured (Tables S2–S6), and a 1-cm mid-

91 diaphyseal block from each bone was excised using a rotary tool (Dremel 4000; Dremel, Mt. 

92 Prospect, Illinois, USA). We followed an established protocol for preparing plastic-embedded 

93 undecalcified bone (Lee & Simons, 2015). Two transverse 700-μm wafers were cut from each 

94 specimen at mid-diaphysis using a precision saw (Isomet 1000; Buehler, Lake Bluff, Illinois, 

95 USA). The wafers were mounted (Gorilla Epoxy; Gorilla Glue Inc., Cincinnati, Ohio, USA) to 

96 frosted glass slides and manually ground (Metaserv 250; Buehler, Lake Bluff, Illinois, USA) to 

97 100 ± 10 μm.

98

99 Imaging

100 Sections were acid-etched and stained with toluidine blue (Eurell & Sterchi, 1994) to improve 

101 contrast of in-plane primary vascular canals (Fig. 2B). The stain also highlights secondary 

102 osteons (specifically cement lines) and their (Haversian) canals, which are traditionally excluded 

103 from measurements of laminarity (de Margerie, 2002). Whole section images pre- and post-

104 staining were captured with a motorized upright microscope (Ni-U; Nikon, Tokyo, Japan) with a 

105 strain-free objective (10× Plan Fluor: numerical aperture of 0.3, resolvable size ≈1 μm). Once 

106 imaging was completed, each section was mounted (Permount; Fisher Scientific, Hampton, New 

107 Hampshire, USA) with a glass coverslip (#1; Fisher Scientific, Hampton, New Hampshire, USA) 

108 for preservation.

109

110 Bone profiles

111 A bone profile was prepared from each montage using Photoshop (CS5; Adobe, San Jose, 

112 California, USA). Montages were sharpened with the “Unsharp Mask” filter set at 5 px and are 
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113 high resolution (2.1 μm per pixel). The area bounded between the periosteal and endosteal 

114 surfaces was filled with white to represent bone. The surrounding non-bone area as well as in-

115 plane vascular canals and resorption spaces were filled with black. Bone profiles were exported 

116 to ImageJ (1.51d; National Institutes of Health, Bethesda, Maryland, USA) for further analysis. 

117 We measured the periosteal circumference and vascular porosity (areal ratio of in-plane vascular 

118 canals to total cortical area) of each bone profile (Tables S2–S6). Montages and bone profiles are 

119 freely accessible as interactive digital slides at the Paleohistology Repository (Lee & O’Connor, 

120 2013).

121

122 Ontogenetic scaling of polar section modulus

123 We used BoneJ v1.4.1 (Doube et al., 2010) to estimate the polar section modulus (Zp), which is a 

124 proxy of torsional rigidity and average bone bending rigidity (Ruff, 2002), for each bone (Tables 

125 S2–S6). This proxy is appropriate when the cross section of a long bone is nearly circular (Craig, 

126 2000). To test the suitability of this proxy to each cross section, we used BoneJ to calculate 

127 Imin/Imax, which is equal to 1.0 in a circular cross section. Values for the bone sections range from 

128 1.03 to 1.80 (Tables S2–S6). When compared to a reference figure (Daegling, 2002), the values 

129 of Imin/Imax in our sample suggest errors in torsional rigidity less than 6.7%. Therefore, we find no 

130 major problem in using this proxy. 

131 Using R (R Core Team, 2019), linear regression was performed separately for each 

132 element between log10-transformed Zp and the log10-transformed product of body mass and 

133 bone length. The coefficients of the regression analysis are presented in Table 1 and allometric 

134 scaling was inferred if the 95% confidence interval on slopes excluded the value of 0.75 

135 (isometry) (Young, Fernández & Fleagle, 2010).
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136

137 Laminarity index. We classified each vascular canal into one of four discrete categories of 

138 orientation (longitudinal, radial, oblique, and circumferential). Although, the laminarity index 

139 (LI) was originally defined by de Margerie (2002) as the proportionate area of circumferential 

140 canals relative to the total area of vascular canals, we used a subsequent re-definition in which LI 

141 is the number of circumferential canals divided by the total number of canals (Simons & 

142 O’Connor, 2012; Legendre et al., 2014; Lee & Simons, 2015). As such LI is a proportion and 

143 ranges from 0 (absence of circumferential canals) to 1 (ubiquity of circumferential canals).

144 We adopted a recently published method to quantify LI (Lee & Simons, 2015). Instead of 

145 counting every canal in an image of a bone section, we systematically sampled approximately 

146 50% of the canals in a given section. The image of each section was divided into octants using 

147 Photoshop (Fig. 2B), and the four octants representing cardinal anatomical positions (i.e., cranial, 

148 caudal, dorsal, and ventral for the wing elements; cranial, caudal, medial, and lateral for the 

149 hindlimb elements) were extracted for analysis.

150 Canal orientation is measured relative to the local tangent to the periosteal surface. That 

151 surface, however, is curved in most bone cortices (Fig. 2C). Consequently, the local tangent 

152 varies across a curved cortex and requires repeated referencing to measure canal orientation. To 

153 increase throughput and minimize error, we straightened the curvature of each octant using the 

154 “Straighten” function in ImageJ. Once straightened, the periosteal surface is parallel with the 

155 horizontal, thereby establishing a constant reference line (Fig. 2D). To assess the amount of 

156 distortion caused by straightening, we placed circular clock-shaped profiles with the clock hands 

157 placed at known angles in the original curved octants. We then re-measured profiles and angles 

158 after straightening each octant to assess the extent of image deformation on canal orientation. 
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159 Overall, the median deviation of test angles from original values is 1.15°, and the median aspect 

160 ratio of circular profiles is 1.05. At least in this study, canal orientation in straightened octants 

161 appears accurate.

162 We adopted the method by de Boef and Larsson (2007) to approximate the sectional 

163 profile of each primary vascular canal with a best-fitting ellipse using ImageJ. For each ellipse, 

164 the aspect ratio and orientation of the major axis relative to the periosteal reference line were 

165 measured. To relate these measurements to canal orientation, we followed criteria proposed by 

166 de Margerie (2002): (1) longitudinal canals have an aspect ratio of less than 3; (2) 

167 circumferential canals have major axes oriented 0° ± 22.5° relative to the nearest tangent line 

168 drawn at the periosteal surface; (3) radial canals have major axes oriented 90°± 22.5° relative to 

169 the nearest tangent line drawn at the periosteal surface; and (4) all remaining canals are oblique 

170 (Fig. 2E). Any canal that branches was divided at the node, and the orientation of each 

171 subdivided canal was estimated using the methodology as described above.

172 The ellipse-fitting method is appropriate as long as canals are generally cylindrical. They 

173 tend to be in cortical bone (Cooper et al., 2003, 2011; Pratt & Cooper, 2017), which ranges in 

174 vascular porosity from 0 – 30% (Carter & Spengler, 1978; Zioupos, Cook & Hutchinson, 2008). 

175 MicroCT inspection suggests this assumption is reasonable for avian cortical bone (Fig. 1). 

176 However, in cancellous bone (Carter & Spengler, 1978; Zioupos, Cook & Hutchinson, 2008) 

177 with vascular porosity greater than 30%, canals are too irregular to approximate with the ellipse-

178 fitting method. Consequently, we measured canal orientation only in bone sections with porosity 

179 less than or equal to 30% (Tables S2–S6), and laminarity for youngest specimens (MWU263, 

180 MWU 261, MWU 260, and MWU 267) was not measured.

181
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182 Robust principal component analysis and beta regression

183 In this study, we had to address the issue of multicollinearity among our explanatory variables: 

184 mass, bone length, and Zp. Principal component analysis (PCA) enables the formation of new, 

185 uncorrelated predictors (principal components) through linear combinations of the original 

186 variables. As such, we were able to resolve the issue of multicollinearity while still being able to 

187 assess the effect of each variable (Fekedulegn et al., 2002). PCA, however, is known to be highly 

188 sensitive to non-normal data. Therefore, we used robust PCA, which is appropriate for skewed 

189 data (Hubert, Rousseeuw & Verdonck, 2009), as implemented by the R package “rospca” 

190 (Reynkens, 2018). We standardized mass, bone length, and Zp by median and median absolute 

191 deviation with the function “RobScale” (Signorell, 2019) in R. Robust PCA was performed 

192 separately for each element (Table 2).

193 We used regression analysis to relate the minimum number of principal components 

194 (PCs) that account for at least 95% of the variation in the original variables with laminarity. 

195 However, laminarity index (LI) values do not satisfy assumptions required of traditional linear 

196 regression because they are not normally distributed and are bounded between 0 and 1. To 

197 overcome these problems, we used beta regression model with a logit link function to connect 

198 the mean LI to the predictor(s) as follows:

199 𝜇𝑙𝑜𝑔𝑖𝑡(LI) = 𝛽0 + 𝛽𝑖𝑃𝐶𝑖 + … + 𝛽𝑘𝑃𝐶𝑘,  𝑖 = 1, …,𝑘
200 where µlogit(LI) is the logit link function for the mean of LI, PCi,…,PCk are the principal 

201 components, β0 is the intercept, βi, …, βk are coefficients corresponding to each principal 

202 component, and k is the number of principal components (Ferrari & Cribari-Neto, 2004). 

203 Analyses were performed with the R package “gamlss” (Rigby & Stasinopoulos, 2005).

204

205
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206 Results

207 Histological description

208 At mid-diaphysis, the limb bones of the pigeon become increasingly compact with growth 

209 (Tables S2–S6). In very young individuals ranging from 0–2 weeks, bone walls are relatively 

210 thick and largely cancellous (porosity > 30%) with irregular vascular spaces. That cancellous 

211 structure is consistent with rapidly-growing juvenile bone as seen in other avian species (de 

212 Margerie et al., 2004). Older individuals show compact bone with vascular canals. For each 

213 bone, peak laminarity (i.e., proportion of circumferentially oriented canals) occurs in juveniles 

214 aged 2–4 weeks (Figs. 2 and 3). As individuals mature (4–9 weeks of age), they deposit new 

215 bony tissue with poor vascularization along the superficial half to third of the cortical wall (Fig. 

216 3A–J). Although the remaining deep portion is highly vascularized, canals are predominantly 

217 longitudinal (Fig. 3A–J).

218

219 Zp scaling analysis

220 The polar section modulus (Zp) of the humerus, radius, ulna, femur, and tibiotarsus increases 

221 with growth (Tables S2–S6). When scaled to the log10-transformed product of body mass and 

222 bone length, log10-transformed Zp shows positive allometry for all five sampled elements (Fig. 

223 4). The allometric slope of the tibiotarsus is slightly (but not significantly) shallower than the 

224 slopes of the other elements, in part reflecting the relatively large size of the tibiotarsus at hatch 

225 (Table 1).

226

227 Robust principal component analysis

228 Robust principal component analysis is generally consistent across the five limb elements (Table 

229 2). PC1 captures at least 95% of the variance in the original predictors: 98% for the humerus, 
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230 95% for the radius, 97% for the ulna, 98% for the femur, and 96% for the tibiotarsus. We ignored 

231 the residual variance (approximately 2–5%) that is absorbed by PC2 and PC3, thereby reducing 

232 data dimensionality from three components to one. Mass, Zp (torsional rigidity), and bone length 

233 each have positive loadings on PC1. In the humerus, ulna, and femur, length and Zp  share 

234 dominance on PC1 (Table 2). However in the radius and tibiotarsus, length alone dominates PC1 

235 (Table 2). Nevertheless, the loadings are consistent with PC1 representing an ontogenetic axis. 

236 Small PC1 scores are associated with juvenile features (small mass with short bones that are 

237 relatively compliant to torsion), whereas large PC1 scores are associated with adult features 

238 (large mass with long bones that are relatively rigid to torsion).

239

240 Beta regression

241 Although each element shows a significant negative correlation between laminarity index (LI) 

242 and PC1 (Table 3), two groups are apparent. The first group consists of humerus, ulna, and 

243 femur. This group is characterized by models with relatively strong goodness-of-fit (pseudo-R2 

244 exceeds 0.70), relatively positive intercept, and steep negative slope. In contrast to the first 

245 group, the second group consists of radius and tibiotarsus. It features models with relatively 

246 weak goodness-of-fit (pseudo-R2 < 0.55), relatively negative intercept, and shallow negative 

247 slope. Put together these results demonstrate that laminarity decreases with ontogeny and that 

248 laminarity in the radius and tibiotarsus may be influenced by additional factors (Fig. 5). 

249 We converted the PC1 coefficient into standardized coefficients of the original predictors 

250 (mass, length, and Zp). The relative effects of bone length and Zp dominate in the humerus, ulna, 

251 and femur, whereas in the radius and tibiotarsus, the relative effect of bone length dominates. 

252 Nevertheless in each element, we found negative correlations between the original predictors and 
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253 laminarity (Table 3). Contrary to expectations, these results in the pigeon suggest that as bones 

254 grow increasingly rigid to torsion, their laminarity decreases.

255

256 Discussion

257 Maturation of pigeon limb bones is synchronized and typical of altricial development. Each of 

258 the five limb elements analyzed shows positive allometry in polar section modulus (Zp) (Fig. 4; 

259 Table 1). Compared to juveniles, adults have limb bones that are disproportionately rigid to 

260 torsion, consistent with relatively late locomotor maturation. Onset of walking and coordinated 

261 flapping of wings occurs 14–21 days post-hatch, and locomotor maturation is complete around 

262 28–42 days post-hatch (Levi, 1962; Janiga & Kocian, 1985; Johnston & Janiga, 1995; Vriends & 

263 Erskine, 2005; Liang et al., 2018). Our interpretation in the pigeon wing is consistent with 

264 previous work showing strong positive allometry in wing bones of the California gull, black tern, 

265 and mallard, each of which are unable to fly until nearly full-grown. Unlike the pigeon, those 

266 birds begin walking shortly after hatch. As such, juveniles benefit from relatively robust skeletal 

267 proportions (negative allometry), presumably to keep immature tissues within safety margins 

268 during locomotion. Put together, our results support previous interpretations that cross-sectional 

269 bone geometry is a useful proxy for habitual loading and locomotor maturity (Swartz, Bennett & 

270 Carrier, 1992; Main & Biewener, 2007; Habib & Ruff, 2008; Young, Fernández & Fleagle, 

271 2010). Moreover, the growth of torsional rigidity in wing bones is consistent with rapid structural 

272 compensation related to the demands of flight (Carrier & Leon, 1990; Bennett, 2008; Dial & 

273 Carrier, 2012).

274 Contrary to expectations, the relatively rigid bones of adult pigeons have low laminarity 

275 (Figs. 3 and 5). This result differs from a recent study of 14 adult pigeons in which laminarity 

276 was reported as “high” (Skedros & Doutré, 2019). However, that study neither stained thick 
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277 undecalcified sections to clearly define boundaries of in-plane canals nor quantified canal 

278 orientation. Therefore, we cannot exclude that possibility that the reported “high laminarity” is 

279 overestimated.

280 In other avian taxa, low laminarity is attributed to reduced torsional loading such as in 

281 specialized soaring birds with long narrow wings that presumably are not suited for frequent 

282 flapping (de Margerie et al., 2005; Simons & O’Connor, 2012). Clearly, that explanation does 

283 not apply to the pigeon, which is a generalist flier (Berg & Biewener, 2010) with in vivo strain 

284 data from the humerus indicating considerable torsion during flapping (Biewener & Dial, 1995). 

285 Although strain data are not available for the remaining bones that we sampled in the pigeon, 

286 data from other avian species indicate similar torsional loading in the ulna of turkey and the 

287 femur of chicken during grounded flapping and walking, respectively (Lanyon & Rubin, 1984; 

288 Carrano & Biewener, 1999). These data suggest a systemic mismatch between laminarity and 

289 loading in the adult pigeon. They also address criticism regarding a similar mismatch in bats 

290 (Lee & Simons, 2015; Pratt et al., 2018), whose bones are simply not vascularized enough to be 

291 laminar. Here we show that even when richly vascularized as in the pigeon, torsionally-loaded 

292 bone is not necessarily more laminar.

293 Peak laminarity in pigeons occurs in nest-bound juveniles but is transient (Figs. 3 and 5). 

294 Juveniles begin to exercise their limbs a few weeks after hatching (Levi, 1962; Janiga & Kocian, 

295 1985; Johnston & Janiga, 1995; Vriends & Erskine, 2005; Liang et al., 2018), so elevated 

296 laminarity in their bones, especially in the humerus, ulna, and femur, suggests a response to 

297 torsional loading. Contrary to expectations, elevated laminarity is not maintained in growing 

298 juveniles as they intensify limb movements shortly before fledging. Instead, laminarity decreases 

299 as cross-sectional rigidity increases (Table 3). These results in the pigeon further weaken the 
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300 hypothesis that laminar bone develops to improve torsional rigidity. Future directions include 

301 assessing material properties, which may contribute to bone rigidity in pigeons and birds more 

302 broadly.

303 Currently, comparisons to other avian taxa are limited because the development of 

304 laminarity has only been quantified in the pigeon and emu. Even so, there is evidence that 

305 development of laminarity varies across birds. In the pigeon, laminarity and ontogeny are 

306 inversely correlated (Table 3). However in the emu, their relationship is more complex. 

307 Laminarity is highly variable and independent of ontogeny in the diminutive wing, presumably 

308 reflecting relaxed selection from flightlessness, whereas it is positively correlated with ontogeny 

309 in the hindlimb (Kuehn et al., 2019). Even so, among the sampled ontogenetic parameters (body 

310 mass, postnatal age, growth rate, and caudal shear strain), shear strain has the weakest effect on 

311 laminarity based on standardized regression coefficients. Furthermore, residual variation in shear 

312 strain not accounted for by ontogeny forms a “loading axis”, but it is not a significant predictor 

313 of laminarity. Put together, the results from pigeons and emus suggest that torsion-induced shear 

314 strain might have a minor effect on laminarity, but ontogenetic effects clearly dominate in bones 

315 selected for locomotion.

316 The developmental approach used by the current study may inform how loading affects 

317 other histological features such as collagen fiber orientation. In adult birds, collagen fibers with 

318 oblique-to-transverse orientation are especially abundant in bones shaped to resist torsion (de 

319 Margerie et al., 2005). Those features evolved independently in adult birds and at least one 

320 species of fruit bat (Skedros & Doutré, 2019) suggesting that they may be fundamental 

321 adaptations of vertebrate flapping flight. If so, we expect collagen fiber obliquity and torsional 

322 rigidity of wing bones to increase with locomotor maturity. Preliminary evidence suggests that 
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323 the predicted trend occurs in the ulna of growing turkey (Skedros et al., 2003). Future 

324 investigations should apply the developmental approach across a broader phylogenetic sample.

325

326 Conclusions

327 Limb bones that experience locomotor-induced torsion do not necessarily develop elevated 

328 laminarity. On the contrary, limb bone laminarity decreases systemically with maturity at least in 

329 the pigeon. This developmental pattern differs from a recent report in growing emus, suggesting 

330 that factors other than load resistance influence laminarity. At present, the hypothesis that 

331 adaptation to locomotor-induced torsion involves elevated bone laminarity is not supported. 

332 There is strong evidence, however, that limb bone geometry adapts to loading. Unlike laminarity, 

333 bone geometry develops disproportionate rigidity to torsion as juveniles mature into adults. This 

334 result is consistent with previous findings and suggests that the demands of locomotion may 

335 drive evolution more strongly at the gross anatomical level rather than at the histological level.

336
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Figure 1
Vascular canals in avian cortical bone are networked but generally cylindrical.

(A) Whole humerus scanned with microCT at 8-µm voxel resolution reveals thin cortical wall
at mid-diaphysis. (B) Virtual transverse section of a cortical strip sampled from mid-diaphysis
at 4-µm voxel resolution looks comparable to a traditionally prepared histological section.
Volumetric visualization in transverse (D) and tangential planes (D,E) reveal cylindrical
shape of canals. Whole bone and cortical strip were scanned using a GE phoenix v|tome|x
and Nikon XT H 225, respectively. Segmentation and rendering performed with Avizo (9.0.1,
FEI).
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Figure 2
Bone profile preparation for evaluation of laminarity index.

(A) Mid-diaphyseal cross-sections were taken from the five listed bone elements harvested
from a growth series of 17 pigeons (left-sided elements imaged using a Siemens SOMATOM
Perspective CT scanner only for illustrative purposes). (B) Each section was divided into four
octants representing cardinal anatomical positions (i.e., cranial, caudal, dorsal, and ventral
for the wing elements; cranial, caudal, medial, and lateral for the hindlimb elements). Octant
curvature (C) was straightened (D) using ImageJ. (E) Canals were fit with ellipses and
classified based on orientation relative to the horizontal periosteal surface.
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Figure 3
Histology of representative bone elements from growing pigeons arranged by mass.

In ascending order (bottom to top): 209 g (MWU 271), 242 g (MWU 258), 314 g (MWU 273),
455 g (MWU 256), and 482 g (MWU 254). Bone porosity decreases with mass. Circumferential
vascular canals are most abundant in juvenile cortical bone from the humerus, ulna, and
femur. Scale bar equals 600 µm (A,B,D–F & K), 480 µm (G,L & M), 400 µm (I,J,N–P), 343
µm (Q,T–V), and 300 µm (C,H,R,S,W–Y). Digital slides are available at
http://paleohistology.appspot.com/Page/Columba_livia.html .
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Figure 4
Polar section modulus (Zp) scaling analysis.

Positive allometric scaling of polar section modulus (Zp) in humeri, ulnae, radii, femora, and

tibiotarsi. Shaded regions are 95% confidence bands.
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Figure 5
Relationship between laminarity and the "ontogenetic axis" of variation.

(A) humerus, (B) ulna, (C) radius, (D) femur, and (E) tibiotarsus.

PeerJ reviewing PDF | (2020:03:46738:0:0:NEW 12 Mar 2020)

Manuscript to be reviewed

eprondva
Highlight

eprondva
Sticky Note
Which method did you use for fitting these curves on the LI vs PC1 scatter plot? And how do these graphs reflect the beta regression with the logit link function that you said you used for characterizing this LI vs PC1 relationship? So how are these figures related to the output of your beta regression? Please, give explanation in here as well as in the methods section so that the reader can interpret the link between the beta regression with logit link function and these figures, as well as the results of this analysis.



Table 1(on next page)

Ontogenetic scaling of log10(midshaft polar section modulus of bone) and log10(body
mass x bone length) .

Isometry equals slope of 0.75.
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1 Table 1:

2 Ontogenetic scaling of log10(midshaft polar section modulus of bone) and

3 log10(body mass x bone length).

4 Isometry equals slope of 0.75.

5

Element Slope 95% CI Intercept 95% CI

Humerus (n = 17) 1.20 1.07, 1.34 -4.09 -4.64, -3.54

Ulna (n = 17) 1.22 1.06, 1.39 -4.53 -5.20, -3.86

Radius (n = 17) 1.23 1.04, 1.43 -5.12 -5.90, -4.33

Femur (n = 17) 1.18 0.94, 1.43 -4.31 -5.28, -3.33

Tibiotarsus (n = 17) 0.98 0.89, 1.07 -3.69 -4.06, -3.31

6
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Table 2(on next page)

Results from robust principal component analysis (PCA).
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1 Table 2:

2 Robust principal component analysis (PCA) results.

3

Element PC1 PC2 PC3

Humerus Eigenvalues 5.384 0.100 0.022

Standard deviation 2.320 0.316 0.148

Proportion of variance 0.978 0.018 0.004

Mass eigenvector 0.262 -0.440 0.859

Length eigenvector 0.522 0.813 0.258

Zp eigenvector 0.812 -0.381 -0.443

Ulna Eigenvalues 5.581 0.115 0.048

Standard deviation 2.362 0.339 0.218

Proportion of variance 0.972 0.020 0.008

Mass eigenvector 0.274 0.896 -0.350

Length eigenvector 0.797 -0.415 -0.438

Zp eigenvector 0.538 0.159 0.828

Radius Eigenvalues 3.184 0.168 0.018

Standard deviation 1.784 0.409 0.133

Proportion of variance 0.945 0.050 0.005

Mass eigenvector 0.453 0.689 -0.566

Length eigenvector 0.817 -0.575 -0.046

Zp eigenvector 0.357 0.441 0.823

Femur Eigenvalues 3.963 0.047 0.038

Standard deviation 1.991 0.217 0.196

Proportion of variance 0.979 0.012 0.009

Mass eigenvector 0.348 0.845 0.407

Length eigenvector 0.689 -0.525 0.499

Zp eigenvector 0.635 0.107 -0.765

Tibiotarsus Eigenvalues 6.706 0.233 0.048

Standard deviation 2.290 0.483 0.218

Proportion of variance 0.960 0.033 0.007

Mass eigenvector 0.286 0.480 -0.830

Length eigenvector 0.867 -0.499 0.010

Zp eigenvector 0.409 0.722 0.558
4
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Table 3(on next page)

Relationship between laminarity and principal components using beta regression

Standardized coefficients for each of the original variables (mass, Zp, and bone length) are

also listed.
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1 Table 3:

2 Relationship between laminarity and principal components using beta regression.

3 Standardized coefficients for each of the original variables (mass, Zp, and bone length) are also 

4 listed.

5

Standardized Coefficients

Element Pseudo 

R2

Intercept p-value PC1 p-value Mass Length Zp

Humerus 0.726 -1.283 9.47e-8 -0.249 1.22e-4 -0.065 -0.130 -0.202

Radius 0.440 -2.585 5.7e-10 -0.197 0.007 -0.089 -0.161 -0.070

Ulna 0.852 -1.670 2.0e-10 -0.245 2.29e-6 -0.067 -0.195 -0.131

Femur 0.819 -1.564 4.9e-10 -0.244 1.31e-5 -0.085 -0.168 -0.155

Tibiotarsus 0.521 -2.657 5.0e-11 -0.137 0.002 -0.039 -0.119 -0.056

6
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