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Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic phytoplankton, is
predominantly degraded by bacteria belonging to the Roseobacter lineage and other
marine Alphaproteobacteria via DMSP-dependent demethylase A protein (DmdA). To date,
the evolutionary history of DmdA gene family is unclear. Some studies indicate a common
ancestry between DmdA and GcvT gene families and a co-evolution between Roseobacter
and the DMSP-producing-phytoplankton around 250 million years ago (Mya). In this work,
we analyzed the evolution of DmdA under three possible evolutionary scenarios: 1) a
recent common ancestor of DmdA and GcvT, 2) a coevolution between Roseobacter and
the DMSP-producing-phytoplankton, and 3) pre-adapted enzymes to DMSP prior to
Roseobacter origin. Our analyses indicate that DmdA is a new gene family originated from
GcvT genes by duplication and functional divergence driven by positive selection before a
coevolution between Roseobacter and phytoplankton. Our data suggest that Roseobacter
acquired dmdA by horizontal gene transfer prior to exposition to an environment with
higher DMSP. Here, we propose that the ancestor that carried the DMSP demethylation
pathway genes evolved in the Archean, and was exposed to a higher concentration of
DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent Roseobacter
ecoparalogs (copies performing the same function under different conditions), which
should be adapted to lower concentrations of DMSP.
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Abstract
Dimethylsulfoniopropionate  (DMSP),  an  osmolyte  produced  by  oceanic  phytoplankton,  is
predominantly  degraded  by  bacteria  belonging  to  the  Roseobacter lineage  and  other  marine
Alphaproteobacteria  via  DMSP-dependent  demethylase  A  protein  (DmdA). To  date,  the
evolutionary history of DmdA gene family is unclear. Some studies indicate a common ancestry
between DmdA and GcvT gene families and a co-evolution between Roseobacter and the DMSP-
producing-phytoplankton around 250 million years ago (Mya). In this work, we analyzed the
evolution of DmdA under three possible evolutionary scenarios:  1) a recent common ancestor of
DmdA and  GcvT,  2)  a  coevolution  between  Roseobacter and  the  DMSP-producing-
phytoplankton, and 3) pre-adapted enzymes to DMSP prior to Roseobacter origin. Our analyses
indicate  that  DmdA  is  a  new  gene  family  originated  from GcvT genes  by  duplication  and
functional divergence driven by positive selection before a coevolution between Roseobacter and
phytoplankton.  Our data suggest that  Roseobacter acquired  dmdA by horizontal  gene transfer
prior to exposition to an environment with higher DMSP. Here, we propose that the ancestor that
carried the DMSP demethylation pathway genes evolved in the Archean, and was exposed to a
higher concentration of DMSP in a sulfur rich atmosphere and anoxic ocean, compared to recent
Roseobacter ecoparalogs (copies performing the same function under different conditions), which
should be adapted to lower concentrations of DMSP.
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Introduction
Dimethylsulfoniopropionate (DMSP) is an osmolyte synthesized by oceanic phytoplankton 
(Galinski, 1995; Yoch, 2002). This molecule became abundant in the oceans 250 million years 
ago (Mya), coinciding with the expansion and diversification of dinoflagellates (Bullock et al., 
2017). Since then, it has played an important role in the biogeochemistry of sulfur cycle on Earth 
(Lovelock, 1983). DMSP is the main precursor of the climate-relevant gas dimethylsulfide 
(DMS; Reisch et al., 2011). In marine ecosystems, DMSP is rapidly degraded by different 
bacterial communities (González et al., 1999), and some strains seem to be very efficient and 
even become dependent on its degradation (Tripp et al., 2008). In fact, DMSP supports up to 13%
of the bacterial carbon demand in surface waters, making it one of the most significant substrates 
for bacterioplankton (Kiene et al., 1999; González et al., 1999). Candidatus Pelagibacter ubique 

(SAR11), dominant in the bacterioplankton and especially in surface waters, can only use sulfur 
atoms derived organic molecules, such as DMSP (Tripp et al., 2008). In the case of Ruegeria 

pomeroyi DSS-3, a model organism for DMSP studies, the turnover rate of DMSP transformation
depends on salinity conditions (Salgado et al., 2014). 

The first step in the degradation of DMSP involves two competing pathways, cleavage and 
demethylation. The DMSP cleavage pathway metabolizes DMSP with the release of DMS (Kiene
et al., 1999), a step catalyzed by a number of enzymes (Curson et al., 2011). In the alternative 
pathway, DMSP is first demethylated by a DMSP-dependent demethylase A protein (DmdA; 
Howard et al., 2006). Compared to the DMS-releasing pathway, dmdA is the most frequent gene 
in the genomes of oceanic bacteria (Newton et al., 2010). The DmdA enzyme was originally 
annotated as a glycine cleavage T-protein (GcvT) in the model bacteria R. pomeroyi (Reisch et 
al., 2011a), although it forms a separate clade from the known GcvTs (gcvT, gcvH, gcvP and 
gcvT-C) (Bullock et al., 2017). Despite their structural similarity which might indicate a common 
ancestry, DmdA and GcvT are mechanistically distinct (Schuller et al., 2012). DmdA produces 5-
methyl-THF from DMSP as the result of a redox-neutral methyl transfer while GcvT converts 
glycine to 5,10-methylene-THF (Reisch et al., 2008).

Nearly all known DMSP-catabolizing bacteria belong to the phylum Proteobacteria with DmdA 
orthologs found in most of the sequenced members of the Rhodobacteraceae family, as well as 
strains of SAR11, SAR324, SAR116 and in marine Gammaproteobacteria (González et al., 
1999; González, 2003; Howard et al., 2006; Bürgmann et al., 2007; Reisch et al., 2008; González 
et al., 2019 ). This phylogenetic distribution suggests an expansion of dmdA through horizontal 
gene transfer events (HGT) between different lineages of bacteria, presumably through viruses 
(Raina et al., 2010). Since the genome expansion of Roseobacter coincides with the 
diversification of the dinoflagellates and coccolithophores around 250 Mya (Luo et al., 2013; Luo
& Moran, 2014; Bullock et al., 2017) it has been suggested a co-evolutionary event between 
Roseobacter and the DMSP-producing-phytoplankton (González et al., 1999; Zubkov et al., 
2001; Moran et al., 2007; Bullock et al., 2017). Under this scenario, the enzymes of the DMSP 
demethylation pathway could have evolved within the last 250 Mya, as phytoplankton responded 
to the marine catastrophe at the end of the Permian with the diversification of dinoflagellates that 
produce DMSP and Roseobacter clade expanding by using DMSP as its main sulfur source. 
Despite this hypothesis, there is a lack of knowledge about the main evolutionary events that lead
the DMSP adaptation in Roseobacter.

In terms of production, the biosynthesis of DMSP has been reported in marine heterotrophic 
bacteria, such as the Alphaproteobacteria, i.e. Labrenzia aggregata (Curson et al., 2017). Since a 
common ancestor within the Roseobacter originated in the Archean, more than 2 billion years 
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ago (Kumar et al., 2017), the Roseobacter and other Alphaproteobacteria might have been 
exposed to this DMSP early (Reisch et al. 2011a,b). According to this hypothesis, the DMSP 
demethylation and the cleavage pathways arose by the evolution of enzymes that were already 
present in bacterial genomes and adapted in response to the wide availability of DMSP. As 
mentioned earlier, Alphaproteobacteria in the SAR11 seems to thrive at the expense of organic 
sulfur compounds, such as DMSP and has a common ancestor that lived ca. 826 Mya, at the end 
of the Precambrian (Luo et al., 2013). We would then expect a common ancestor of the DmdA 

gene family during the early Proterozoic Mya and that the functional divergence between DmdA 
and GcvT gene families was driven by both functional constraints and widespread HGT. 
Probably in the Huronian snowball earth, a period of planetary crisis where the greatest microbial
diversity took refuge in the shallow seas close to the equator (Tang, Thomas, & Xia, n.d.).

Here, we analyzed the evolutionary history of the DmdA gene family in marine Proteobacteria 
by considering three evolutionary scenarios: 1) a recent common ancestry of DmdA and GcvT, 2)
a coevolution between Roseobacter and the DMSP-producing-phytoplankton, and 3) pre-adapted 
enzymes to DMSP prior to Roseobacter origin. We first analyzed if convergent, independent or 
HGT-based evolution can explain the presence of dmdA genes in different bacterial lineages of 
SAR11, SAR116 and Rhodobacteraceae. Then, we inferred the most recent common ancestor 
(MRCA) of the DmdA gene family, the timing of its origin and any duplication events. We also 
reconstructed the ancestral forms of DmdA enzymes to infer the most likely ecological conditions
where DmdA thrive. We provide insights into their function by analyzing DmdA structural 
evolution. Finally, we examined how natural selection could have driven the divergence of the 
DmdA gene family. Our results indicate that dmdA appeared before the origin of Roseobacter 
clade and the conditions of the late Permian created by eukaryotic phytoplankton. Therefore, 
DmdA is an adapted version of enzyme that evolved in response to the availability of DMSP.

Materials & Methods
Data mining
DmdA orthologs and dmdA homologs were collected from a set of 771 genomes manually curated
and hosted in the MarRef database (Klemetsen et al., 2018). The sequences were obtained as 
described by González et al. (2019). The DmdA homologs included were obtained using a HMM 
designed for DmdA orthologs (González et al., 2019), with a relaxed maximum e-value (e-50). A 
total of 204 sequences from 184 genomes were used to infer the evolutionary history of DmdA 
gene family (Supplementary Table 1).

Phylogenetic tree reconstruction and topology tests
The phylogenetic tree of the DmdA protein sequences included DmdA orthologs and DmdA 
homologs (called non-DmdA). The sequences were aligned using MUSCLE (Edgar, 2004). 
Regions poorly aligned or with gaps were removed using TrimAl (Capella-Gutiérrez et al., 2009) 
with parameters set to a minimum overlap of 0.55 and a percent of good positions to 60. Best-fit 
evolutionary model was selected based on the results of the package ProtTest 3 (Darriba et al., 
2011) to determine the best-fit model for maximum likelihood (ML) and Bayesian inference (BI).

For the maximum likelihood analysis, PhyML v3.0 (Guindon et al., 2010) or RaxML v7.2.6 
(Stamatakis, 2006) were used to generate 100 ML bootstrap trees, using the Le Gascuel (LG) 
model with a discrete gamma distribution (+G) with four rate categories, as this was the model 
with the lowest Akaike information criterion and Bayesian information criterion score. For the 
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Bayesian analysis, trees were constructed using the PhyloBayes program (Lartillot & Philippe, 
2004, 2006; Lartillot et al., 2007) with the CAT model that integrates heterogeneity of amino acid
composition across sites of a protein alignment. In this case, two chains were run in parallel and 
checked for convergence using the tracecomp and bpcomp scripts provided in PhyloBayes. As an
alternative, we computed a phylogenetic tree using a Bayesian inference implemented in 
BEAST2 program which was run with relaxed clock model and Birth Death tree prior (Bouckaert
et al., 2014). Finally, we used R v3.6.1 (R Core Team, 2017) with phangorn v2.5.5 (Schliep, 
2011) to perform consensus unrooted tree.

We ran several topology tests to establish whether the trees generated using the ML and BI 
methods provided an equivalent explanation for the two main groups, i.e., the non-DmdA and 
DmdA clades. For this analysis, the topologies were compared with the TOPD/FMTS software 
v4.6 (Puigbo et al., 2007). A random average split distance of 100 trees was also created to check
if the differences observed were more likely to have been generated by chance.

Horizontal gene transfer (HGT) test and GC content analysis
Two approaches were used to detect HGT. First, a phylogenetic incongruence analysis 
(Ravenhall, Škunca, Lassalle, & Dessimoz, 2015) through three topology tests, the Kishino-
Hasegawa (KH) (Kishino & Hasegawa, 1989), the Shimodaira-Hasewaga (SH) (Shimodaira & 
Hasegawa, 1999) and the approximately unbiased (AU) (Shimodaira, 2002), implemented in the 
IQ-TREE software v1.5.5 (Nguyen et al., 2015). Two topologies were tested, the ML topology 
obtained for the species tree of the genomes here analyzed, and the ML phylogeny of DmdA. To 
construct the species tree, ribosomal protein 16 small subunit (RPS16) sequences were collected 
from the MarRef database (Klemetsen et al., 2018), one for each genome (Supplementary Table 
1).

The GC content variation was studied to identify genes that have a different percentage of GC 
content at the third position of codons with respect to the neighboring genomic regions. The 
EPIC-CoGe browser (Nelson et al., 2018) was used to visualize the genomes and sequences and 
look for genes that use different codons with respect to the rest of the genomic dataset (data are 
available under permission as “ULL-microevolution” on https://genomevolution.org/).

Molecular dating
We first tested for heterogeneities in the substitution rates of the genes using a likelihood ratio 
test (LRT) (Felsenstein, 1981) with the ML-inferred tree. Likelihoods’ values were estimated 
using baseml in PAML v4.8 (Yang, 2007) under rate constant and rate variable models and used 
to compute the likelihood ratio test (LRT) statistic according to the following equation:

 LRT=-2(logL1-logL0) 
where L1 is the unconstrained (nonclock) likelihood value, and L0 is the likelihood value obtained
under the rate constancy assumption. LRT is distributed approximately as a chi-square random 
variable with (m-2) degrees of freedom (df), m being the number of branches/parameters.

To conduct a molecular dating analysis with BEAST 2 (Bouckaert et al., 2014), two independent 
MCMC tree searches were run for 50 million generations, with a sampling frequency of 1000 
generations over codon alignment obtained, as we explain in the next section. The GTR 
substitution model with a gamma shape parameter and a proportion of invariants (GTR + G + I), 
was selected with PartitionFinder software v2.1.1 (Lanfear et al., 2016) based on the Bayesian 
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Information Criterion (Darriba et al., 2012), applied with a Birth Death tree prior (Gernhard, 
2008) and an uncorrelated relaxed clock log-normal. The molecular clock was calibrated using 
information from the TimeTree database (Hedges et al., 2006, 2015; Kumar et al., 2017). We 
used the dates of the most recent common ancestor of (1) the Alpha- and Gammaproteobacteria 
(2480 Mya), (2) the Halobacteriales (455 Mya) (Supplementary Fig 1-3), and (3) the SAR11 
(826 Mya) (Luo et al., 2013). A log-normal prior distribution on the calibrated nodes centered at 
the values mentioned above was specified with 20 standard deviations and constrained to be 
monophyletic. Convergence of the stationary distribution was checked by visual inspection of 
plotted posterior estimates in Tracer v1.6 (Rambaut, & Drummond, 2013) to ensure effective 
sample sizes (ESSs) of parameters were >> 200, as recommended by the authors. After 
discarding the first 15% trees as burn-in, the samples were summarized in the maximum clade 
credibility tree using TreeAnnotator v1.6.1 (Rambaut, & Drummond, 2002) with a PP limit of 0.5
and summarizing mean node heights. Means and 95 % higher posterior densities (HPDs) of age 
estimates are obtained from the combined outputs using Tracer v1.6. The results were visualized 
using FigTree v.1.4.3 (Rambaut, 2009).

Maximum likelihood tests of positive selection
To measure the strength and mode of natural selection during the evolution of DmdA gene 
family, the ratio of non-synonymous (dN) to synonymous substitutions (dS) (ω=dN/dS) was 
calculated in CodeML implemented in the suite Phylogenetic Analysis by Maximum Likelihood 
(PAML package v4.8) (Yang, 2007). 

CodeML requires an alignment of coding sequences, and a phylogenetic tree. DNA alignment 
was achieved by MUSCLE (Edgar, 2004) implemented in MEGA-CC v7.0.26 (Kumar et al., 
2016) and poorly aligned segments were eliminated with Gblocks under defaults parameters 
(Castresana, 2000). The phylogenetic tree was built using ML with PhyML v3.0 (Guindon et al., 
2010) as described above and a nucleotide substitution model selected by jModelTest (Darriba et 
al., 2012). DAMBE (Xia, 2001) was also used to check for saturation of nucleotide substitutions 
using a plot of the number of transitions and transversions for each pairwise comparison against 
the genetic distance calculated with the F84 model of nucleotide substitution (Huelsenbeck & 
Rannala, 1997), which allows different equilibrium nucleotide frequencies and a transition rate-
transversion rate bias. Multiple sequence alignments with similar characteristics (i.e., showing 
saturation of nucleotide substitutions) were then analyzed with CodeML (Yang, 2007).

Three sets of models were used (site-specific, branch-specific and branch-site models) to detect 
pervasive and episodic selection during the evolution of dmdA orthologs. Likelihood-ratio tests 
(LRTs) were used to compare models, and significant results (p-value<0.05) were determined 
contrasting with a chi-square distribution (chisq) (Anisimova et al., 2001).

In the site-specific analysis, we tested for variability of selection (type and magnitude) across the 
codons of the gene using three pairs of nested models. The first pair includes M0 (just one dN/dS 
ratio) and M3 (“K” discrete categories of dN/dS) and has four degrees of freedom (df). The 
second pair of models considers M1a (just two classes of sites, purifying [dN/dS<1] and neutral 
selection [dN/dS=1]) and M2a  (the same as M1a adding a third class of sites dedicated to positive
selection [dN/dS>1]), this has two df. Finally, the third pair of models comprised M7 (a beta 
distribution that allows dN/dS to vary among the interval [0,1]) and M8 (adds an extra discrete 
category to M7 with dN/dS>1), with two df. Whereas M0 vs M3 test for evidence of dN/dS 
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variation across sites, M1a vs M2a and M7 vs M8 test for the presence of sites under positive 
selection (dN/dS > 1).

Using three branch models (Yang, 1998), we tested for variation of selection over evolutionary 
time. The null model (M0) assumes that all branches evolve at the same rate, therefore, there is 
only one value of dN/dS for all the branches of the tree. The two-ratio model allows two dN/dS 
values, one value for all Roseobacter lineages (we called this group A) and another for the rest of 
branches (named group B). The free-ratio model, allows one dN/dS value for each branch. Null 
and two-ratio model are compared by LRT with one df but null and free-ratio model are 
compared with 36 df. 

For the last set of models, we identified sites that have been under positive selection at a 
particular point of evolution using branch-site models, in which dN/dS can vary among sites and 
among branches (Zhang, 2005). We computed two models: a null model, in which the 
“foreground branch” may have different proportions of sites under neutral selection to the 
“background branches”, and an alternative model in which the “foreground branch” may have a 
proportion of sites under positive selection. We compare these models for each terminal branch 
with a LRT of one df.  For each branch-site analysis, we applied the Bonferroni correction for 
multiple testing.

In site and branch-site tests, we identified sites under positive selection as those with Bayes 
Empirical Bayes (BEB) posterior probability above the 0.95 (Yang, 2005). We also checked for 
convergence of the parameter estimates in PAML by carrying out at least two runs for each tree 
and starting the analysis with different ω (0.2, 1, 1.2 and 2). In addition, to test for convergent 
selection in several lineages, we ran at Branch-site analysis selecting as “foreground branches” 
all those under positive selection in a previous analysis. 

Analysis of functional divergence
Divergent selection is indicated by different ω’s values among paralogous clades. We tested 
whether selective pressures diverged following duplication that led to dmdA and non-dmdA genes
(Bielawski & Yang, 2004). We compared the M3 model, which accounts for ω variation among 
sites but not among branches or clades, with a model allowing a fraction of sites to have different 
ω between two clades of a phylogeny (clade model D). We also tested M0 and M3 models and 
we used a posterior BEB probability above the 0.95 to identify sites evolving under divergent 
selective pressures. We checked for convergence of the parameter estimates in PAML by 
carrying out at least two runs for the tree and starting the analysis with different ω (0.1, 0.25, 2, 3 
and 4).

Finally, we applied two branch-site models (as described above) to test dN/dS differences on the 
branches representing the ancestral lineages of the DmdA and non-DmdA clades (see results) 
(Supplementary Fig 25). We considered the ancestral sequences from DmdA and non-DmdA 
clades as foreground branches in two different models. 

Reconstruction of ancestral DmdA sequence
To reconstruct the ancient conditions where dmdA gene prospered, we inferred the ancestral 
sequences of the DmdA node using the FastML web server (Ashkenazy et al., 2012) and then 
computed estimated physico-chemical properties on predecessor sequence using Compute 
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ProtParam tool from Expasy – SIB Bioinformatics Resource Portal (Gasteiger et al., 2005). 
Moreover, we also reconstructed the ancestral sequence of the non-DmdA node, as well as the 
ancestral sequence of both the DmdA, and the non-DmdA families. FastML was run considering 
the alignment of proteins and the ML phylogenetic tree for those DmdA orthologs or homologs 
inferred as we explained above. Posterior amino acid probabilities at each site were calculated 
using the Le Gascuel (LG) matrix (Le & Gascuel, 2008) and Gamma distribution. Both marginal 
and joint probability reconstructions were performed. Protein sequences resulting from marginal 
reconstructions were used to predict tertiary structure (see below) as well as to identify family 
domains using Pfam v32 (Finn et al., 2010).
 

Protein tertiary structure analysis
Predicted three-dimensional structures of protein sequences were examined by Iterative 
Threading ASSEmbly Refinement (I-TASSER) (Roy et al., 2010; Yang et al., 2015). First, I-
TASSER uses local meta-threading-server (LOMETS) (Wu & Zhang, 2007) to identify templates
for the query sequence in a non-redundant Protein Data Bank (PDB) structure library. Then, the 
top-ranked template hits obtained are selected for the 3D model simulations. To evaluate 
positively the global accuracy of the predicted model, a C-score should return between -5 and 2. 
At the end, top 10 structural analogs of the predicted model close to the target in the PDB 
(Berman et al., 2000) are generated using TM-align (Zhang, 2005). The TM-score value scales 
the structural similarity between two proteins, and should return 1 if a perfect match between two
structures is found. A TM-score value higher than 0.5 suggests that the proteins belong to the 
same fold family.

We used PyMol v1.7.4 (DeLano, 2002) to visualize the 3D structure of the proteins and to map 
the positively selected sites onto the 3D structure of DmdA (pdb: 3tfh).  

Results
Phylogenetic tree for DmdA family
We identify a total of 204 DmdA protein sequences out of 150 curated genomes, and reconstruct 
their evolutionary relationships by Bayesian Inference (BI) (Fig 1) and Maximum Likelihood 
(ML) (Supplementary Fig 4). Unrooted trees in TOPD-FMTS indicated that split distances did 
not exceed 0.19, indicating that the phylogenetic reconstruction is robust, with minor variations 
in alignment filtering and methods for inferring topologies (Supplementary Table 2). 

The BI tree (Fig 1) shows a main duplication between two lineages. The larger phylogenetic 
group comprises genes from Bacteroidetes, while the smaller group includes genes from 
Alphaproteobacteria. We focused on this smaller group as it includes the DmdA sequences (Fig 
1; green color) and the closest homologs to DmdA (Fig 1; yellow color).
 
Using phylogenetic analyses including DmdA orthologs and DmdA homologs close to those (the 
limit to select closer homologs was set to a maximum e-value of e-80) we resolve the position of 
the first DmdA sequences isolated from two marine bacterial species, R. pomeroyi 
(AAV95190.1) and Ca. P. ubique (AAZ21068.1). In addition, the inclusion of DmdA homologs 
allowed to resolve a robust phylogenetic relationship of DmdA gene family (Fig 2). We detected 
a clear separation between DmdA and putative non-DmdA families. Indeed, the four DmdA 
family trees constructed using different methods compared in TOPD-FMTS using split distances 
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(Supplementary Table 3) and unrooted trees (Supplementary Fig 5) agreed with this result. The 
average split distance was 0.60, indicating that the trees were neither identical (split difference=0)
nor completely different (1). A random split distance was calculated to analyze whether the split 
distances were significantly different. Because the random split distance resulted in a value close 
to 1 (0.988), our observations are unlikely to be given by chance. 

To identify HGT and duplication events, we constructed a proxy for the species tree of the 
genomes considered here by using a set of small subunit ribosomal protein (see Material and 
Methods). Given this (proxy) species tree (Supplementary Fig 6), the positions of many 
sequences on the DmdA tree are better explained as cases of HGT (Supplementary Fig 6; Fig 3) 
with high statistical support. We then tested whether the topology for a common set of taxa 
within the DmdA family (Supplementary Fig 7) were similar to that of the species tree 
(Supplementary Fig 8). We found significant differences (at an alpha of 0.01) between the 
topology of DmdA group and that of the proxy species tree (Table 1); this incongruence between 
phylogenies is true irrespective of the test used (Kishino-Hasegawa, Shimodaira-Hasewaga and 
unbiased tests). From these results we conclude that the phylogenetic relationships within each 
DmdA group are different to those of the species tree, strongly supporting a HGT-based 
evolution of DmdA family (Supplementary Fig 9).

Moreover, we found many genes that use different codons than the neighboring genomic regions.
These genes are inferred as having been horizontally transferred given their (G+C) wobble 
content (Supplementary Table 1), supporting an HGT-based evolution of DmdA family 
(Supplementary Fig 9).

Structural modeling
The structure for DmdA orthologs inferred on the protein sequences by Iterative Threading 
ASSEmbly Refinement (I-TASSER) were threaded onto the known structure of DMSP-
dependent demethylase A protein (PDB accession: 3tfhA) with a C-score<= 2 (Table 2). 
However, the predicted models for DmdA homologs were threaded onto two types of known 
structure; DmdA orthologs, and the structure of the mature form of rat dimethylglycine 
dehydrogenase (DmgdH) (PDB accession, 4ps9sA) with a C-score < 2 except for the sequence 
with accession number AEM59334.1, which shows a C-score > 2 (Supplementary Fig 10a,  
Supplementary Data 1). 

We clustered sequences with a putative DmgdH structure in a separate group using principal 
component analysis (Supplementary Fig 11). There is a clear 3D-structure coincidence between 
DmdA clade (red color in Supplementary Fig 10a) and the majority of lineages from non-DmdA 
clade (orange color in Supplementary Fig 10a) as well as a conserved folate-binding domain 
(Supplementary Fig 10b: 99S, 178E and 180Y). However, in the alignment we found a pattern of 
conserved residues coherent with phylogeny results (Supplementary Fig 10a, Supplementary Fig 
10b), where non-DmdA clade is formed by three subclades, one of them with DmgdH tertiary 
structure. Indeed, key residue for DMSP specific interaction is shown in clades with DmdA 
tertiary structure (Supplementary Fig 10b: W171) but not in a clade with DmgdH tertiary 
structure (Supplementary Fig 10b: F171).

Molecular dating 
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The log likelihood test (LRT) detected heterogeneity in the substitution rates of dmdA orthologs 
and dmdA homologs genes (Fig 2) (log L0=-29,827.108; log L1= -29,546.053; degrees of freedom
= 46; x2 = 562.11; P<0.001), thus rejecting the hypothesis of a strict molecular clock. This 
finding validates the use of relaxed molecular clock approach to estimate the node ages 
throughout Bayesian analysis (see Methods for details). We observed that the marginal densities 
for each run of the divergence time estimate analysis were nearly identical, pointing that the runs 
converged on the same stationary distributions. In all runs, the marginal densities for the standard
deviation hyperparameter of the uncorrelated log-normal relaxed clock model were quite 
different from the prior, with no significant density at zero and with a coefficient of variation 
around 0.2. Analyses using three different calibrated prior dates showed not discrepancies in the 
final divergence time estimates (Table 3). 

The time estimates for the MRCA of each gene family (Table 3 and Fig 4) indicate that the most 
recent common ancestor of DmdA gene family occurred in the late Archean, around 2,400 Mya, 
after a gene duplication event. Also, a duplication within the DmdA lineage generated a separated
SAR11 and Roseobacter DmdA lineage in the early Precambrian ca. 1,894 Mya (Fig 4: red 
arrow). Ca. P. ubique HTCC1062 within the first cluster and R. pomeroyi DSS-3 within the 
second cluster, resulted from a duplication around 300 Mya (Fig 4: blue arrow). However, a 
higher number of duplication events took place in the second cluster. Thus the number of 
paralogous genes comprising the Roseobacter DmdA family is larger than in SAR11 (Fig 4).  

We detected two duplication events within the putative non-DmdA clade (Fig 4; orange color); 
showing that the gene families were originated through old duplication events. One duplication 
involving the DmgdH family (Fig 4 dark yellow color; Table 2) occurred 1,480 Mya and another 
duplication 1,000 Mya (Fig 4: green arrow), with tertiary structure similar to the DmdA from Ca.

P. ubique. The other event of duplication took place during the Huronian glaciation, around 2100 
Mya (Fig 4: violet arrow). 

Reconstruction of ancestral DmdA sequence
Our analysis was focused on the reconstruction of the ancestral sequences of the DmdA clade, the
non-DmdA clade as well as the ancestral sequence of both the DmdA and non-DmdA clades. 
FastML inferred the 100 most likely ancestral sequences of the DmdA family. We observed that 
the same sequences were always inferred. Indeed, the difference in log-likelihood between the 
most likely ancestral sequence at this node (N1; Supplementary Fig 12) and the 100th most likely
sequence was only 0.105, indicating that both sequences are almost as likely to reflect the “true” 
ancestral sequence. That ancestral protein contains both PF01571 (GCV_T) and PF08669 
(GCV_T_C) domains, found in the DmdA orthologs and it is nearly identical to Ca. P. ubique 
HTCC1062 DmdA sequence. Moreover, PSI-BLAST search confirmed that the ancestral 
sequence in node 1 close to DmdA genes hosted in EMBL-EBI databases (Supplementary Fig 
13) and the structure for Ca. P. ubique apoenzyme DmdA was the closest analog to our predicted 
models (Table 2; Supplementary Data 1). Inferred physico-chemical properties are identical 
between Ca. P. ubique and the DmdA ancestral sequence (Supplementary Table 4).

On the other hand, the ancestral sequence inferred for non-DmdA family (N1; Supplementary Fig
14) and the ancestral sequence previous to functional divergence (N1; Supplementary Fig 15) 
contains only the PF01571 domain. That domain was located onto the known structure of T-
protein of the Glycine Cleavage System (PDB accession: 1wooA) with a C-score= 1.25 (Table 2; 
Supplementary Data 1) in the case of the ancestral DmdA and non-DmdA sequence. However, 
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the ancestral sequence for non-DmdA was better threaded onto the known structure of mature 
form of rat DmgdH (PDB accession: 4p9sA) with a C-score= 0.76 (Table 2; Supplementary Data 
1).  
 

Detection of positive selection on dmdA sequences
To infer how natural selection has influenced on the evolutionary history of DmdA gene family, 
we used an alignment of the 20 sequences clustered as dmdA orthologs. The phylogenetic tree for
these sequences was constructed by ML using the symmetrical model (SYM) with a discrete 
gamma distribution. 

The average dN/dS value for the dmdA gene was 0.085, suggesting that this gene evolved under 
strong negative (purifying) selection. Then, we analyzed dN/dS variation across the codons in the
gene, comparing M0 and M3 models through a LRT. The M3 model had better fit to the data than
the M0 model (chisq= 775.387, p-value< 0.01). All codons in the gene are under strong purifying
selection with dN/dS <1 (Fig 5), suggesting the importance of this sulfur pathway for the cells. In
accordance with this, the LTRs designed to detect codons under positive selection were not 
significant (M1 vs M2, chisq= 0 and p-value = 1, and M7 vs M8, chisq = 1.459 and p-value = 
0.482). Hence, we did not detect sites in dmdA subjected to positive selection (Supplementary Fig
17). 

We tested the variation in the intensity of selection over evolutionary time. A two-ratio model 
comparing the Roseobacter with the rest of lineages (Supplementary Fig 18) fits better the data, 
as the LRT was 23.777 and p-value < 0.01 (Table 4). dN/dS value in Roseobacter (ω1: 0.0767) 
was significantly lower than in the remaining branches (ω2: 0.1494), suggesting stronger 
purifying selection on dmdA in Roseobacter. When we tested the intensity of selection over 
evolutionary time using the free-ratio model (Table 4), we found changes in the selection 
pressure from the branches which defines the separation of SAR11 and Roseobacter DmdA gene 
families (Supplementary Fig 19: branches from nodes 21 to 23). In particular, we observed a dN/
dS value > 1 in the branch connecting nodes 21-23. We also identified some more recent 
branches (connecting nodes 25-26 and 28-29) for which dN/dS >> 1 was estimated 
(Supplementary Fig 19). 

Finally, we applied the two branch-site models to test for sites under selection on the individual 
lineages associated with dmdA (Supplementary Fig 20). Four sequences (WP_047029467, 
AHM05061.1, ABV94056.1, AFS48343.1) had a significant LRT after correcting for multiple 
testing (Table 5), suggesting episodic positive selection on these lineages (Supplementary Fig 
20). It should be highlighted that three selected sites are shared by at least two lineages (Table 5; 
Fig 6). One shared site is located next to the GcvT domain (152 K; Supplementary Fig 21), and 
two shared sites are closed to conserved positions (17E; 87Y; Supplementary Fig 21). The 
residue 87Y is adjacent to the conserved interaction site with THF (88Y; Supplementary Fig 21). 
Interestingly, since the selected lineages are separated in the tree, the adaptive mutations seem to 
have occurred through three parallel independent changes (Supplementary Fig 22). 

Functional divergence during the molecular evolution of DmdA sequences
We tested whether DmdA and non-DmdA gene families were subjected to different functional 
constrains after gene duplication (Supplementary Fig 5). We estimated the one-ratio model (M0) 
that yielded a value ω = 0.053 (Table 6), indicating that purifying selection dominated the 
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evolution of these proteins. The discrete model (M3) was applied to these sequences (Table 6) 
and the LRTs comparing M0 and M3 indicated significant variation in selective pressure among 
sites (Table 6; Supplementary Fig 23). 

The M3 model was compared with Model D, which accommodates both heterogeneity among 
sites and divergent selective pressures. The LRT was significant and supported the model D 
(Table 6), implying statistical evidence of functional divergence between DmdA and non-DmdA.
Parameter estimates under Model D with k=3 site classes suggested that 23.6% of sites were 
evolving under strong purifying selection (ω = 0.006), while 26.7% of sites were evolving under 
much weaker selective pressure (ω = 0.04). Interestingly, a large set of sites (49.6%) were 
evolving under divergent selective pressures, with weaker purifying selection in the DmdA-clade 
(ω = 0.169) than non-DmdA-clade (ω = 0.100). We identified 77 sites evolving under divergent 
selective pressures between DmdA and non-DmdA (Table 6). Nineteen sites were located within 
the alpha helix (red tube in Supplementary Fig 24) of the secondary structure prediction and 
sixteen were located in the beta sheet (green arrows in Supplementary Fig 24). According to the 
global dN/dS estimates, for all divergent positions dmdA sequences seem to be more conserved 
than non-dmdA sequences. Moreover, this data is only compatible with recombination breaking 
linkage disequilibrium within the gene set that we observed with the HGT analysis.

Finally, we are interested in knowing if adaptive evolution has occurred in the lineages 
immediately following the main duplication event (Supplementary Fig 25). We applied two 
branch-site models to test for sites under selection on the ancestor associated with the DmdA and 
non-DmdA clades (Table 5). The LRT was significant for both ancestral branches (LRT > 7 and 
p-value < 0.05). Nonetheless, the foreground ω for class 2 sites tended to infinite (ω=999) in both
cases, indicating lack of synonymous substitutions (dS=0) in these sites. We also performed two-
ratio models to estimate global ω on these branches, but both estimates tended to infinite 
(Supplementary Table 5), suggesting lack of synonymous substitution in the divergence of DmdA
and non-DmdA ancestors. Therefore, although the fixation of only non-synonymous substitutions
following gene duplication might indicate strong positive selection driving functional divergence 
of DmdA and non-DmdA families, we cannot confirm it with the applied tests.

Discussion
In this study we evaluated three scenarios for the evolutionary history of the DmdA gene family 
in marine bacteria. The results for each one are discussed separately.

First scenario: a recent common ancestry between DmdA and GcvT
In relation to the first scenario, we found that contrary to our initial expectations, DmdA and 
GcvT have not a recent common ancestry, but they share an old common ancestor. However, the 
clear separation between DmdA and putative non-DmdA gene families that originated in the 
Archean ca. 2,400 Mya after a gene duplication, supports a common recent ancestry for DmdA 
and non-DmdA (Fig. 7; down and up). Our tertiary structure analyses indicate that they share a 
putative GcvT protein (EC 2.1.2.10) as their ancestor sequence. Indeed, our results agree with 
other studies in the case of DmdA (Reisch et al., 2008). Then, this clade seems to have originally 
been a GcvT (Fig. 7) as Bullock et al. (2017) suggested. 

The DmdA clade is a member of aminomethyltransferase (AMT/GCV_T) family with DMSP-
dependent demethylase tertiary structure while non-DmdA clade includes an ancestor with a 
tertiary structure that better matches the dimethylglycine dehydrogenase oxidorreductase 
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(DmgdH, EC 1.5.99.2) (Fig. 7) and members with DmdA tertiary structure. To establish 
structural convergence as the reason of this DmdA structure coincidence between DmdA and 
non-DmdA members, we used a phylogenetic approach based on reconstructing ancestral 
sequences of the two clades, and then to model the ancestral proteins. We determined different 
structural features between ancestral sequence reconstructed from DmdA and non-DmdA 
families. In the first case, the ancestral sequence reconstructed coincides with a DmdA tertiary 
structure, as well as with a DmdA sequence with physico-chemical properties inferred in this 
study and agree with previous ones (Reisch et al., 2008). However, the non-DmdA ancestral 
sequence reconstructed is a DmgdH that seems to be kept in the clade called DmgdH (Fig. 7: 
yellow color) as well as in some members of DmdA clades (within non-DmdA clade) where the 
majority of sequence gained DmdA structure (Fig. 7). Therefore, DmdA structural features seem 
to have emerged independently in both clades: DmdA and non-DmdA. This finding is extremely 
interesting, since known cases of structural convergence of proteins are rare (Zakon, 2002). 
Experimental assays expressing and screening the activity of the ancestral proteins at different 
conditions will be required to corroborate the structural convergence.

Since GcvT does not share the most recent common ancestry with DmdA, we examined the 
functional divergence between DmdA and non-DmdA clades to explain how natural selection 
could have driven the divergence of the DmdA gene family. We found 77 codon sites evolving 
under divergent selective pressures between DmdA and non-DmdA gene families. Structural 
divergence seemed to be imposed on the protein during sequence divergence, since nineteen sites 
were located within the alpha helix of 2D structure and sixteen in the beta sheet. Nonetheless, 
essential regions of the enzymes as active sites seem to be under strong purifying selection, 
suggesting preservation of the ancestral function. The observation that DmdA sequences have 
less conserved divergent sites than non-DmdA sequences, suggests that non-DmdA conserves the
ancestral function, whereas DmdA evolved to acquire new functions in different environments, 
probably as a response to the Huronia ice ball Earth (Zhang, 2003).

Second scenario: coevolution between Roseobacter and DMSP-producing-phytoplankton
In the second scenario, our data does not support the hypothesis of a co-evolution sceneario 
between Roseobacter and DMSP-producing-phytoplankton (Luo et al., 2013). On the contrary, 
we found an ancestor sequence of DmdA cluster similar to DmdA from a strain of Ca. P. ubique 
that diverged after a more recent duplication event, before the dinoflagellate radiation in the late 
Permian. This finding indicates that the enzyme activity has not changed in the course of DmdA 
evolution. Indeed, we found that most of the codons in DmdA clade are under purifying selection
probably due to the importance of this pathway for sulfur acquisition. Nonetheless, we also 
detected episodic positive selection in four sequences affecting a few sites, suggesting that 
adaptive evolution fine-tuned the function of DmdA in Roseobacter. Furthermore, positively 
selected residues were located around the GcvT domain and close to the residue involved in 
conserved interaction with THF, reinforcing the idea of adaptive evolution in response to the 
external environment.

During the study of this scenario, we suspected that dmdA was acquired by HGT in Roseobacter 
and SAR11. This agrees with Luo et al., (2013) and Tang et al. (2010) which found that the 
expansion of dmdA was by HGT. Moreover, our study evidence that DmdA ancestral sequence in
our phylogeny comes from a marine heterotrophic bacteria adapted to presence of DMSP in the 
Archean, after a HGT event from this bacteria to another linage that acquired the dmdA ancestral 
sequence. However, after the HGT events, some dmdA sequences have acquired similar residue 
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changes by independent (parallel) evolution, reinforcing the idea of functional/ecological 
constrains. Therefore, Rhodobacteraceae can live in an environment where DMSP is the main 
source of sulfur because they acquired the DmdA ancestor sequence by HGT, prior to have been 
exposed to the environment in which this protein proved useful, as Luo & Moran (2014) 
suggested. We did not find any signal of positive selection in Roseobacter group, but in contrast 
we found episodic evolution between SAR11 sequences. Yet, as we already mentioned DMSP is 
part of an ancient pathway in Alphaproteobacteria (Bullock et al., 2017) and it could explain the 
ancient origin of DmdA.

On the other hand, Roseobacter paralogs analyzed in this study were functionally annotated as 
DmdA function (González et al., 2019), as they perform the same function as the original gene 
(DmdA ancestor). However, we found differences in predicted isoelectric point values (pI), 
which were inferred in this study. Then, these paralogs could be considered as ecoparalogs as 
Sánchez-Pérez et al (2008) proposed for their study. Isoelectric point of a protein provides an 
indication of its acidic nature (Oren et al., 2005) and in this case, differences in pI suggest that the
proteins differ in halophilicity. We observed proteins with the highest pI values in the DmdA 
ancestor sequence, as well as Ca. P ubique sequence and this last one has a pI similar to the first 
(DmdA ancestor) (Fig. 7). Therefore, we deduced that DmdA ancestor was adapted to a higher 
concentration of salinity, which could have modulated the selection of the DMSP enzymatic 
degradation routes as in bacteria such as the model organism R. pomeroyi DSS-3 (Salgado et al., 
2014). Interestingly, R. pomeroyi degradates more DMSP by the demethylation pathway under 
high salinity conditions, and then produces a high amount of MeSH (Howard et al., 2008; 
Magalhães et al., 2012; Salgado et al., 2014). 

Given our data, we propose that the ancestor of the pathway that evolved in the Archean, was 
exposed to a higher concentration of DMSP in a sulfur rich atmosphere and in an anoxic ocean, 
compared to recent ecoparalogs which should adapt to lower concentration of DMSP (Fig 7). 
Indeed, the ancestral ecoparalog from which recent ecoparalogs derived (Ca Puniceispirilum 
marinum IMCC1322 or ADE38317.1 and the Roseobacter clade) could have undergone episodes 
of adaptation (the branch showed positive selection in branch-models) which would explain the 
change in protein stability (Pál et al., 2006). As consequence, the protein could have 
experimented slight reductions or loss of function. 

Third scenario: pre-adapted enzymes to DMSP prior to Roseobacter origin
In this evolutionary scenario, Roseobacter clade was pre-adapted to the conditions created by 
eukaryotic phytoplankton at the late Permian, including dinoflagellates that released vast amounts
of DMSP (Bullock et al., 2017; Luo & Moran, 2014). Our analyses indicate that the Roseobacter 
ancestor has already adapted to a high DMSP before Roseobacter clade arose (Luo et al., 2013). 
Therefore, we support Reisch et al. (2011 a,b) hypothesis where DMSP demethylation pathway 
enzymes are adapted versions of enzymes that were already in bacterial genomes, and evolved in 
response to the availability of DMSP. Since the first step in DMSP demethylation is a reaction 
catalyzed by DMSP demethylase encoded by dmdA gene (Dickschat et al., 2015), DMSP 
adaptation could have been evolved in this gene that originated in the Archean, a time where 
several lineages of bacteria produced DMSP as an osmolyte or antioxidant in the presence of the 
early cyanobacteria, or as a cryoprotectant in the Huronian glaciation. In bacteria, a 
methyltransferase gene, dysB, is up-regulated during increased salinity, nitrogen limitation, and at
low temperatures (Curson et al., 2017), conditions already predicted to stimulate DMSP 
production in phytoplankton and algae (Bullock, et al., 2017; Ito, et al., 2011). Afterward, those 
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roles may have helped to drive the fine adaptation of existing enzymes for DMSP metabolism, 
and those adaptations came handy in the late Precambrian glaciations that allowed the radiation 
of algae and animals. 

Conclusions
In conclusion, we found that Roseobacter adaptation to DMSP occurred via functional 
diversification after duplication events of the DmdA gene and adaptations to environmental 
variations via ecoparalogs of intermediate divergence. Our findings suggest that salinity could 
have been a trigger for the adaptation to DMSP metabolism.  
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Table 1(on next page)

Topology tests of DmdA phylogenetic tree with respect to species tree

*p-values under the Kishino-Hasegawa (KH) test, the Shimodaira-Hasewaga (SH) test and the
approximately unbiased (AU) test, respectively.
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Group pKH* pSH* pAU*

DmdA family 0.0010 0.0010 0.0001
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Table 2(on next page)

Structural model predicted by I-TASSER for each sequence used in the evolutionary
study of DmdA gene family and the best identified structural analogs in PDB by TM-
align.

1A confidence score for estimating the quality of predicted models 2A standard for measuring

structural similarity between two structures 3The Protein Data Bank structure name 4DmdA

DMSP-dependent demethylase 5Glycine cleavage system T protein 6Dimethylglycine
dehydrogenase complexed with tetrahydrofolate
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Sequence information Predicted model Best structural analog from PDB

Gene
name ID

C-
score1

TM-score2 ±
dev

Gene
name Organism

PDB
ID3

TM-
score

dmdA4 AAV95190.1 1.45 0.92 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.974

dmdA AHD01041.1 1.69 0.95 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.990

dmdA WP_04702946

7.1

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA WP_04853600

0.1

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA AHM05061.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.989

dmdA ABF64177.1 1.62 0.94 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfiA 0.947

dmdA WP_06527340

1.1

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA WP_07662728

0.1

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA AEI94210.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA ABG31871.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA ABD55296.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA WP_04983419

7.1

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA AGI72139.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA ABV94056.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.998

dmdA AAZ21068.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA AFS46782.1 1.95 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA AFS48343.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.995

dmdA AGI68776.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.997

dmdA ASJ73090.1 1.77 0.96 ± 0.05 dmdA Ca. P. ubique 3tfhA 0.956
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HTCC1062

dmdA ADE38317.1 1.96 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.992

gcvT5 AEM59334.1 2.53 0.42 ± 0.14 dmgdh6 Rattus 

norvegicus

4p9sA 0.637

gcvT WP_09638981

6.1

0.48 0.78 ± 0.10 dmgdh Rattus 

norvegicus

4p9sA 0.885

gcvT CAJ51984.2 0.23 0.68 ± 0.12 dmgdh Rattus 

norvegicus

4p9sA 0.855

gcvT CCC39909.1 -0.06 0.71 ± 0.12 dmgdh Rattus 

norvegicus

4p9sA 0.865

gcvT AFS48830.1 0.64 0.80 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.894

gcvT AGM40509.1 0.55 0.79 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.887

gcvT AHI32422.1 0.61 0.80 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.896

gcvT WP_05311283

5.1

0.56 0.79 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.997

gcvT CBV41552.1 0.68 0.81 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.906

gcvT WP_07194184

1.1

1.11 0.87 ± 0.07 dmgdh Rattus 

norvegicus

4p9sA 0.997

gcvT AAV94935.1 1.96 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.994

gcvT AII87408.1 1.64 0.94 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.985

gcvT ADE40415.1 2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.995

gcvT AHM03102.1 1.69 0.95 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.981

gcvT WP_07197292

0.1

1.99 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.988

gcvT BAN00949.1 1.13 0.87 ± 0.07 dmg Arthrobacter 

globiformis

1pj6A 0.948

gcvT WP_05381998

0.1

1.71 0.95 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.988

gcvT ABF63906.1 1.53 0.93 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.960

gcvT AGI71303.1 1.65 0.95 ± 0.05 dmdA Ca. P. ubique 3tfhA 0.960
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HTCC1062

gcvT AII85872.1 1.52 0.93 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.960

gcvT WP_06754545

2.1

1.59 0.94 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.961

gcvT ADE39159.1 1.50 0.92 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.950

gcvT AGI71500.1 1.47 0.92 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.949

gcvT AFS47213.1 1.66 0.95 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.966

gcvT AFS48354.1 1.60 0.94 ± 0.05 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.963

gcvT WP_05382073

0.1

0.34 0.67 ± 0.13 dmgdh Rattus 

norvegicus

4p9sA 0.874

gcvT WP_06535384

5.1

1.56 0.93 ± 0.06 dmdA Ca. P. ubique 

HTCC1062

3tfhA 0.961

gcvT Ancestral 

DmdA and 

non-DmdA 

sequence

1.25 0.89 ± 0.07 gcvT Thermotoga 

maritima

1wooA 0.960

dmdA Ancestral 

DmdA 

sequence

2 0.99 ± 0.04 dmdA Ca. P. ubique 

HTCC10626

3tfhA 0.997

gcvT Ancestral non-

DmdA 

sequence

0.76 0.82 ± 0.09 dmgdh Rattus 

norvegicus

4p9sA 0.940
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Table 3(on next page)

Divergence time estimates in Mya, and node 95% highest posterior density interval for
the clades of the MRCA of Halobacteriales, SAR11 and Alphaproteobacteria from each
set of calibration priors.
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Taxonomic group of 
MRCA

Clade Age 95% HPD

Halobacteriales (455) Mrca1 438 311.1 – 572.3

SAR11 (826) Mrca2 827.5 588.3 – 1089.8

Alphaproteobacteria (2480) Mrca3 2118.6 1543 – 2717.1
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Table 4(on next page)

Parameters of branch-models.

* ω values are shown in Supplementary Fig 19. 1Log-likelihood score under the model
2Likelihood ratio test.
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Model ω1 ω2 -lnL
1

LRT
2

P-value

One ω (one-ratio)one-ratio) 0.08518 NA -14580.019867 NA NA

Two ω (one-ratio)two-ratio) 0.0767 0.1494 -14568.131038 23.777658 0.0

 38 ω (one-ratio)free-ratio) * * -14428.881747 302.27624 0
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Table 5(on next page)

Parameters of PAML branch-site models.

Branch identifiers follow the nomenclature of Supplementary Fig 19 Colors show same
mutation in different lineages. *Amino acids refer to the first sequence in the alignment:

AFS48343.1 1Log-likelihood score under the model under Null model 2Log-likelihood score

under alternative model 3Likelihood ratio test 4Uncorrected p-value: raw- p-value without

correction for multiple testing 5p-value corrected for multiple testing by Bonferroni
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Branch Ho (-lnL)1 Ha (-lnL)2 LRT3 P-value4 Corrected

P-value5 

Pos. Selected sites*

(BEB>0.95)

ADE38317.1 -14465.244 -

14463.099

4.290 0.038 0.767 NA

AAV95190.1 -14476.763 -

14476.763

0 1 1 NA

AHD01041.1 -14476.763 -

14476.763

0 1 1 NA

WP_047029467.1 -14476.763 -

14437.565

78.397 0.00 0.00 7V; 17E; 47H; 65D; 

68Y; 87Y; 89A; 152K;

157M; 163N; 203V; 

279G; 290P; 319T; 

320H 

WP_048536000.1 -14476.763 -

14476.763

0 1 1 NA

AHM05061.1 -14466.948 -

14460.844

12.206 0.000 0.000 17E ; 152K; 178E; 

285V

ABF64177.1 -14476.763 -

14476.763

0 1 1 NA

WP_065273401.1 -14476.763 14476.763 0 1 1 NA

WP_076627280.1 -14476.763 14476.763 0 1 1 NA

AEI94210.1 -14476.763 -

14476.763

0 1 1 NA

ABG31871.1 -14476.763 -

14476.763

0 1 1 NA

ABD55296.1 -14476.764 -

14476.764

0 1 1 NA

WP_049834197.1 -14476.763 -

14476.763

0 1 1 NA

AGI72139.1 -14476.763 -

14476.763

0 1 1 NA

AGI68776.1 -14476.763 -

14476.763

0 1 1 NA

ABV94056.1 -14462.942 -

14454.885

16.112 0.000 0.000 87Y; 152K; 243N; 

247L; 257F

ASJ730990.1 -14463.474 -

14461.176

4.595 0.032 0.641 NA

AAZ21068.1 -14465.122 -

14462.171

5.902 0.015 0.302 NA

AFS46782.1 -14467.961 -

14464.484

6.954 0.008 0.167 NA
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AFS48343.1 -14460.566 -

14425.923

31.802 0.000 0.000 4S; 5A; 9S; 35S; 38V; 

70T; 83D; 84H; 85I; 

91V; 94D; 95Q; 103L;

109P; 119T; 139T; 

155E; 158K; 168N; 

176N; 179F; 210L; 

211R; 217G;  231S; 

253A; 259P; 270Q; 

274V; 277S; 292N; 

298T; 305S; 311C; 

321T

Ancestral branch 

to the DmdA 

clade

-28761.935 -

28758.081

7.7084 0.005 0.010 39Q

Ancestral branch 

to the non-DmdA 

clade

-28770.533 -

28766.874

7.3182 0.006 0.013 -
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Table 6(on next page)

Parameter estimates of models evaluating functional divergence of DmdA and non-
DmdA after gene duplication.

*Sites with predicted functional divergence between DmdA and non-DmdA at significance

(BEB > 0.95) 1NP: number of free parameters in the model 2Average over all sites 3Kappa
4Log-likelihood score under the model 5Likelihood ratio test
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Model NP1 ω2 Site class 0 Site class 1 Site class 2 K3 -LnL4 LTR5 P-

valu

e

Divergent 

sites*

ω0      po ω1 p1 ω2 p2

M0 95 0.05

3

1.341 -

28818.86

6

na na

M3 

(k=3) 

99 0.05

8

0.006 0.2380.04

5

0.506 0.132 0.2551.342 -

28079.17

1

1479.39

1

0.00

MD 

(k=3)

100 0.006 0.2350.04

2

0.492 ω2a0.10

0

ω2b:0.16

9

0.2721.337 -

28061.80

8

34.725 0.00 2V, 9Q, 

12E, 14Y, 

16Q, 17A, 

28S, 32N, 

36N, 37H, 

52E, 57D, 

58Y, 60T, 

62L, 69S, 

70Q, 71A, 

72K, 73D, 

77Y, 85Q, 

98K, 101T, 

118I, 127T, 

132N, 142F,

146K, 

147R, 150E,

156K, 

157R, 158Y,

159A, 

161N, 

163H, 

164E, 166L,

185D, 

187V, 

188Q, 

192Q, 

194L, 

198K, 

199D, 211S,

218M, 

226A, 229S,

230P, 240K,

241K, 242S,

244S, 247I, 

248M, 

250D, 253T,

254L, 258C,

259Y, 

264G, 

265K, 
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272Q, 

273L, 

274D, 

275Q, 

276D, 

277L, 

278K, 

280Q, 

283K, 285T,

286N, 287L
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Figure 1
GcvT phylogenetic tree based on 20 DmdA orthologs protein sequences and 184 DmdA
homologs using Beast and the same parameters set for molecular dating but with 100
million generations.

DmdA sequences are indicated with green color and closer homologs for those with yellow
color. Tip labels include a maximum e-value < e-50.
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Figure 2
Phylogenetic tree of DmdA based on 20 DmdA orthologs protein sequences and 28
DmdA homologs (more information in Supplementary Table 1) using RaxML.

A non-parametric bootstrap is shown to establish the support for the clades. DmdA
sequences are indicated with blue branch. Tip labels show color for first dmdA gene identified
or taxonomy classification. Tip labels include a maximum e-value <e-80.
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Figure 3
Phylogenetic tree of DmdA based on 20 DmdA orthologs protein sequences and 28
DmdA homologs using BEAST2.

Bayesian posterior probabilities (PP) is shown to establish the support for the clades. Red
color indicates DmdA clade.
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Figure 4
(Upper) BEAST divergence time estimates from dmdA and non-dmdA genes under
uncorrelated relaxed clock model and Birth-death tree model. (Lower) Absolute time
scale in Ma.

Nodes are at mean divergence times and gray bars represent 95% HPD of node age. Nodes
used as calibrated priors in BEAST analysis are marked as mrca1, mrca2 and mrca3 as well
as colored. Arrows indicate duplication events occurred 1894 Mya (red), 300 Mya (blue) and
1000 Mya (green).
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Figure 5
Posterior probabilities for dN/dS categories under the M3 model. Grey, red and blue bars
depict the three dN/dS categories (values for each category are provide in the key).

Sites that are mostly grey denote codons under strong purifying selection, whereas those
predominantly red show codons under weaker purifying selection. Red, blue and grey colors
indicate codon sites with ω2= 0.2483, ω1=0.06923 and ω0=0.00485, respectively.
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Figure 6
Tertiary structure of DmdA (PBD: 3tfh) with sites under episodic positive selection
mapped in yellow color through Pymol.
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Figure 7
Hypothesis of DmdA evolution. BI phylogeny under uncorrelated relaxed clock model
and Birth-death tree model.

Node names represent the ancestral sequences reconstructed; GcvT prior to main
duplication, DmdA for DmdA clade and DmgdH for non-DmdA clade. In DmdA clade, blue
color represents ecoparalogs where pI is < 5.7 and they are adapted to less concentration of
DMSP in comparison with DmdA paralogs (red color) which have pI => 6.5. In non-DmdA
clade, yellow branches represents paralogs with DmgdH tertiary structure and black
branches paralogs with DmdA tertiary structure.
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