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Collaborative hunting by complex social groups is a hallmark of large dogs (Mammalia:
Carnivora: Canidae), whose teeth also tend to be hypercarnivorous, showing a
specialization toward increased cutting edges for meat consumption and robust p4-m1
complex for cracking bone. The deep history of canid pack hunting is obscure, however,
because behavioral evidence is rarely preserved in fossils. Dated to the early Pleistocene
(~1.2 Ma), Canis chihliensis from the Nihewan Basin of northern China is one of the
earliest canines to feature a large body size and hypercarnivorous dentition. We present
the first known record of dental infection in C. chihliensis, likely inflicted by processing
hard food, such as bone. An individual also suffered a displaced fracture of its tibia and,
despite such an incapacitating injury, survived the trauma to heal. The long period
required for healing the compound fracture implicates social hunting and family care
(food-sharing). Comparison with abundant paleopathological records of the putatively
pack-hunting late Pleistocene dire wolf, Canis dirus, at the Rancho La Brea asphalt seeps in
southern California, U.S.A., suggests similarity in feeding behavior and sociality between
Chinese and American Canis across space and time. Pack hunting in Canis can thus be
traced back to the early Pleistocene, well before the appearance of modern wolves.
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27 Abstract

28 Collaborative hunting by complex social groups is a hallmark of large dogs (Mammalia: 

29 Carnivora: Canidae), whose teeth also tend to be hypercarnivorous, showing a specialization 

30 toward increased cutting edges for meat consumption and robust p4-m1 complex for cracking 

31 bone. The deep history of canid pack hunting is obscure, however, because behavioral evidence 

32 is rarely preserved in fossils. Dated to the early Pleistocene (~1.2 Ma), Canis chihliensis from the 

33 Nihewan Basin of northern China is one of the earliest canines to feature a large body size and 

34 hypercarnivorous dentition. We present the first known record of dental infection in C. 

35 chihliensis, likely inflicted by processing hard food, such as bone. An individual also suffered a 

36 displaced fracture of its tibia and, despite such an incapacitating injury, survived the trauma to 
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37 heal. The long period required for healing the compound fracture implicates social hunting and 

38 family care (food-sharing). Comparison with abundant paleopathological records of the 

39 putatively pack-hunting late Pleistocene dire wolf, Canis dirus, at the Rancho La Brea asphalt 

40 seeps in southern California, U.S.A., suggests similarity in feeding behavior and sociality 

41 between Chinese and American Canis across space and time. Pack hunting in Canis can thus be 

42 traced back to the early Pleistocene, well before the appearance of modern wolves.

43

44 Introduction

45 Large, hypercarnivorous dogs (family Canidae)—such as gray wolves (Canis lupus), African 

46 hunting dogs (Lycaon pictus), and Asian dholes (Cuon alpinus)—are known to be highly social 

47 because of their need for collaborative hunting (Van Valkenburgh 1991). In all three species, 

48 energetic requirements necessitate that they pursue prey species that are larger than themselves 

49 (Carbone et al. 1999). But, unlike their felid (cat family) counterparts, canids lack retractile 

50 claws and are usually unable to bring down their prey single-handedly (Wang et al. 2008), 

51 making collaborative (pack) hunting a useful compensatory strategy. Despite the importance of 

52 pack hunting as a key biological indicator for social interactions, trophic relationship, and diets, 

53 however, fossil records rarely preserve direct information on behavior.

54 Discovery of an injured and healed skeleton and jaws of a large ancestral wolf, Canis 

55 chihliensis, from the early Pleistocene hominine site of Nihewan Basin, northern China, is of 

56 considerable interest in inferring their social behavior. Evidence of healing raises the possibility 

57 that individuals survived incapacitating injuries by sharing food with family members (Palmqvist 

58 et al. 1999), a question to be explored in this paper.

59

60 Materials & Methods

61 The methods employed in this study include morphological observations, CT scanning, and X-

62 ray examination. CT slicing intervals followed that of Rothschild et al. (1994). The osteological 

63 terms are from Mescher (2018). The stages of fracture healing follow Edge-Hughes & Nicholson 

64 (2007). Age determination follows Sumner-Smith (1966) for epiphyseal fusion and Gipson et al. 

65 (2000) for tooth wear. Body-mass estimates were calculated using regressions on canid femur 

66 shaft diameter by Anyonge & Roman (2006) and m1 length by Van Valkenburgh (1990). 

67 Permission for excavation was granted by the State Administration of Cultural Heritage with a 

68 permit number of 2018-090.

69

70 Institution and Locality Abbreviations. HPICR, Hebei Province Institute of Cultural Relics; 

71 IVPP, Institute of Vertebrate Paleontology and Paleoanthropology; MNHN, 

72 Muséum national d'Histoire naturelle; NM, Nihewan Museum; NNNRM, Nihewan National 
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73 Nature Reserve Management; SSMZ, Shanshenmiaozui; TNHM, Tianjin Natural History 

74 Museum; V, Prefix in the catalog numbers for vertebrate fossils in IVPP. 

75 Morphological Abbreviations: DAP: anteroposterior diameter; DT: transverse diameter; MC: 

76 medullar cavity; NF: nutrient foramen.

77

78 Locality and Fauna. A large sample of early Pleistocene wolf, Canis chihliensis, comprising 

79 more than 200 specimens including excellently preserved pathological conditions, affords an 

80 opportunity to examine the social consequences of family care for the disabled. A left dentary 

81 (IVPP V17755.11), a right dentary (IVPP V17755.12), and a right tibia (IVPP V18139.20) of 

82 Canis chihliensis are all from the Shanshenmiaozui (SSMZ) Site in Nihewan Basin. C. 

83 chihliensis from SSMZ is dominated by older individuals as inferred from wear on teeth (Chen 

84 2018; Chen & Tong 2015). The SSMZ locality (40˚13' 08"N, 114˚ 39' 54"E) lies at the southern 

85 bank of the Sangganhe River, and at the edge of the Haojiatai fluviolacustrine platform in 

86 Yangyuan County, Hebei Province (Fig. S1). The fossiliferous layer was dated to ca. 1.2 Ma by 

87 magnetostratigraphy and associated fauna (Liu et al. 2016; Tong et al. 2011).

88 Canids are the most abundant carnivorans in the Early Pleistocene Nihewan Fauna (Qiu 

89 2000; Teilhard de Chardin & Piveteau 1930), as also confirmed by our recent excavations at 

90 SSMZ (Fig. S2). The dominate taxon of the canid guild in the SSMZ Fauna is Canis chihliensis 

91 (Tong et al. 2011; Tong et al. 2012). The mammalian fauna associated with C. chihliensis at the 

92 SSMZ site are as follows: Lepus sp., Ochotona sp., Pantherinae gen. et sp. indet., Pachycrocuta 

93 sp., Mammuthus trogontherii, Coelodonta nihowanensis, Elasmotherium peii, Proboscidipparion 

94 sp., Equus sanmeniensis, Sus sp., Eucladoceros boulei, Spirocerus wongi, Bison palaeosinensis, 

95 and Gazella sinensis. Our fieldwork between 2015-2018 recovered additional taxa, e.g. Alactaga 

96 sp. (represented by metacarpal), Acinonyx sp. (radius), Panthera sp. (partial mandible and manus 

97 bones), Lynx sp. (partial mandible with m1, mandible), Paracamelus sp. (partial metatarsal), 

98 Pseudodama sp. (partial antler and metacarpal), and Gazella subgutturosa (metatarsal) (Tong & 

99 Chen 2015; Tong et al. 2017; Tong et al. 2018; Tong et al. 2011; Tong et al. 2012; Tong & Wang 

100 2014; Tong & Zhang 2019).

101

102 Rancho La Brea Canis dirus. The best records of paleopathology in extinct canids are from the 

103 world’s largest collection of late Pleistocene dire wolf, Canis dirus, from the Rancho La Brea 

104 asphalt seeps in Los Angeles, California, U.S.A. The Rancho La Brea paleopathology collection 

105 comprises about 3,200 specimens of dire wolves assembled from over 200,000 specimens 

106 representing a minimum of 3,500 individuals (dire wolves represent greater than 50% of all 

107 mammal specimens from the Rancho La Brea) (Shaw & Ware 2018). As the largest Canis that 

108 ever lived and presumably preferring larger prey, dire wolves are widely considered a social 

109 predator (Anyonge & Roman 2006; Carbone et al. 2009; Hemmer 1978; Merriam 1912; Stock 

110 1930; Van Valkenburgh & Hertel 1998; Van Valkenburgh & Sacco 2002). The Rancho La Brea 

111 dire wolf collection preserves a range of pathological conditions throughout the skeleton 

112 (Hartstone-Rose et al. 2015; Lawler et al. 2017; Moodie 1918; Shaw & Howard 2015; Stock 
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113 1930; Ware 2005), with particularly debilitating examples offering evidence that strong social 

114 bonds existed to allow weakened or disabled individuals to survive for extended periods of time 

115 (Shaw & Howard 2015; Shaw & Ware 2018).

116 Focusing on Canis dirus from a single deposit (Pit 61/67) at Rancho La Brea, Brown et al. 

117 (2017) quantified patterns of traumatic pathology—injuries that likely resulted from hunting, 

118 including healed fractures and evidence of severe or chronic muscle strain as well as 

119 osteoarthritis—and predicted skull injuries to be common because of the probability of being 

120 kicked while chasing prey. Contrary to expectation, the cranium showed a low incidence of 

121 traumatic injury (1.6%) and the dentary even less so (0.18%) (Brown et al. 2017). This study, 

122 however, excluded dental injuries likely incurred from feeding—such as abscesses and alveolar 

123 resorption stemming from infection—which were also sustained by and preserved in C. dirus 

124 from Rancho La Brea. In the current study, we quantify these dental injuries, as well as traumatic 

125 damage to the dire wolf tibia, for comparison with dental and tibial injuries in C. chihliensis.

126 Results

127 Taxonomic and Phylogenetic Remarks. As far as we are aware, there are few reports of 

128 debilitating injuries to large hypercarnivorous canines in the fossil record, including early 

129 Pleistocene Canis falconeri from Venta Micena of Spain (Palmqvist et al. 1999), Cuon from late 

130 Pleistocene of Italy (Iurino & Sardella 2014), and the latest Pleistocene occurrences of Canis 

131 dirus in the Rancho La Brea asphalt seeps (Shaw & Howard 2015).  This is despite a generally 

132 excellent fossil record for large canids in the late Cenozoic because of canids’ preference for 

133 mid-latitude open habitats, where terrestrial fossil records are best preserved and most 

134 extensively explored (Tedford et al. 2009; Wang 1994; Wang et al. 2008; Wang et al. 1999).

135 The holotype of Canis chihliensis was originally described based on a maxillary fragment 

136 with P3-M2 from Feng-Wo at Huang-Lu village (Locality 64) in Huailai County, Hebei (Chihli) 

137 Province by Zdansky (1924). Teilhard de Chardin & Piveteau (1930) referred additional 

138 specimens to this species from Nihewan Basin. Rook (1994) synonymized C. chihliensis with C. 

139 antonii Zdansky, 1924, but Tedford et al. (2009) returned to C. chihliensis by restricting the 

140 concept to large Nihewan Canis. The systematics of C. chihliensis from SSMZ has been treated 

141 by Tong et al. (2012)

142 Rook (1994) and Sotnikova (2001) referred the Pliocene-Early Pleistocene species Canis 

143 falconeri from Europe, C. antonii from Asia and C. africanus from Africa to the supraspecific 

144 group Canis (Xenocyon) ex gr. falconeri. All of them readily fall into the category of 

145 hypercarnivores based on dentition and C. falconeri has also been hypothesized to be a 

146 hypercarnivore similar to modern gray wolves (Palmqvist et al. 1999). Canis chihliensis shares 

147 some similarities with Sinicuon dubius (Tong et al. 2012). Furthermore, C. chihliensis is among 

148 the largest Canis species of Eurasia in the early Pleistocene.

149

150 Dental Fracture and Inflammations as Related to Bone-crushing and Hypercarnivory. The 

151 left dentary (IVPP V17755.11) and right dentary (IVPP V17755.12) belong to the same 
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152 individual. The left dentary (Fig. 1.A1-4) has c, p1-3 and m2-3 intact, while the crown of p4 and 

153 trigonid of m1 and mesial root of m1 are fractured and lost, apparently due to injuries suffered 

154 during life. Both root fragments of p4 are retained. On m1 only the talonid is preserved.  Note on 

155 Fig 1.A1 that the alveolar bone in the region of the missing mesial root of m1 shows no residual 

156 socket, which indicates antemortem bone remodeling. This is consistent with the radiographic 

157 evidence of periapical bone resorption associated with the apices of the retained roots of p4 and 

158 the distal root of m1 (described below). There is also partial loss of the enamel on c and m1 and 

159 fracturing of the crowns of p2, p3, and root of m1. The pulp cavities of p4 and m1 are exposed. 

160 The dentin of all teeth is stained brown. All remaining cusps are moderately worn.

161 There are multiple fractures of the buccal and lingual cortical surfaces of the mandible 

162 primarily in the regions of p2-p3, m1-m2, and the posterior surface of the mandibular ramus 

163 including the condylar process. All fractures appear to be postmortem as suggested by the 

164 absence of any repair.

165 There is loss of the cortical bone on the alveolar ridge in the regions of p3, p4, and m1. This 

166 was most likely caused by periodontitis in vivo although there may have also been some 

167 postmortem fracturing of the alveolar bone around m1.

168 The right dentary (Fig. 1.B1-4) preserves i2-3, c, p1-4, and m1-2 in situ; the crown of m3 is 

169 missing, but one root tip remains deep in the alveolus. The crown of m1 is brownish due to loss 

170 of most of the enamel cap, and with the pulp cavity exposed; m2 was broken during excavation; 

171 and other teeth are moderately worn. There are multiple fractures of the buccal and lingual 

172 cortical bone, predominantly in the regions of p1 and m2, that are postmortem defects.

173 The right dentary also suffered serious injury. The bone surrounding the m1 root is 

174 perforate on the buccal cortex (purple arrow on Fig. 1.B4) by an apparent fistula and there is 

175 extensive loss of alveolar bone over the buccal aspect of the mesial root of m1 (red arrow on Fig. 

176 1.B4). The buccal cortical surface is porous adjacent to p4 and m1 (white arrows on Fig. 1.B2). 

177 This is most likely the result of increased number and size of vascular canals associated with 

178 inflammation in this region.

179

180 Radiographic Observation. The radiographic images of the right and left hemi-mandibles 

181 reveal periapical bone loss (rarefying osteitis) (blue arrows on Figs. 1.A4 and 1.B4) associated 

182 with exposed pulp cavities, a periodontal pocket between the right p4 and m1 (red arrow on Fig. 

183 1.B4), and an apparent fistula from the periodontal pocket to the surface (purple arrows on Figs. 

184 1.B2 and 1.B4).

185

186 Interpretation and Implications for Dental Injury. IVPP V17755 suffered from repeated 

187 dental injuries in similar locations on both left and right sides. Although both lever models and in 

188 vivo experimentation (Ellis et al. 2008) show that biting forces are greatest on the posterior-most 

189 molars, patterns of tooth wear suggest that the lower p4-m1 are used more frequently than more 

190 posterior molars (Tseng & Wang 2010; Wang et al. 2008; Werdelin 1989), although in the case 

191 of the most hypercarnivorous canid, Lycaon, bone consumption may be at a more posterior 
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192 location (Van Valkenburgh 1996). Dental modifications for bone consumption in fossil 

193 borophagine canids are most apparent in the p4-m1 region, indicating that this was the location 

194 of most bone-cracking behavior (Wang et al. 1999). We interpret the loss of the left p4-m1 in 

195 IVPP V17755 as owing to bone-cracking—the p4 and m1 are the largest lower cheek teeth in 

196 Canis and their loss must have been inflicted by a strong biting force. Preservation of the roots of 

197 both the p4 and the m1 trigonid (Fig. 1.A4) suggests tooth fracture from a strong bite and/or 

198 encountering hard objects. The alveolar bone in the region of the missing m1 mesial root 

199 eventually healed, but the periapical infections associated with both retained root fragments of p4 

200 and the distal root of m1 still show active lesions.

201 The need for bone-crushing in IVPP V17755 would have continued during and after the 

202 healing of the wounds on the left side. Accordingly, the right p4-m1 suffered excessive wear, 

203 likely to compensate for the loss of the same function on the left side. Again, we infer that the 

204 heavy wear is due to chewing on bones. The wear on the crown of m1 led to exposure of the pulp 

205 chamber through two pulp horns in the mesial cusp and directly to the periapical lesions 

206 (abscess) (blue arrows in Figs. 1.A4 and 1.B4). This lesion grew sufficiently that it created a 

207 fistula to the buccal surface of the dentary to allow drainage of pus. It is also likely that excessive 

208 use on the right side led to bone splinters (shards, fragments) being imbedded into the gum tissue 

209 between p4 and m1, causing a periodontal pocket.

210 The above scenario suggests prolonged and possibly repeated injuries and infections, first to 

211 the left p4-m1 (possibly broken in a single bite), and then to the right jaw perhaps after the left 

212 side had partially healed. Such a scenario is consistent with a hypercarnivorous dentition in C. 

213 chihliensis frequently used for bone consumption, as also seen in late Pleistocene European Cuon 

214 (Iurino & Sardella 2014). Bone-crushing behavior in canids has been linked to collaborative 

215 hunting and competitive consumption of carcasses within the same family group of predators 

216 (Wang et al. 2008; Wang et al. 2018). Such a behavior is especially prevalent among large, 

217 hypercarnivorous canids, and Van Valkenburgh et al. (2019) recently linked high tooth fractures 

218 in extant gray wolves to limited prey availability.

219

220 Comparison to Rancho La Brea Canis dirus. In Pit 61/67 alone, 35 dentaries of adult age (14 

221 left, 21 right)—out of 64 pathological adult dentaries (25 left, 39 right; 55%) and 617 dentaries 

222 total (both pathological and non-pathological; 5.7%)—exhibit dental injuries similar to those in 

223 the Nihewan C. chihliensis dentaries examined in this current study (Fig. S3). Across Rancho La 

224 Brea deposits, abscesses and alveolar resorption likely due to infection were preserved in 43% 

225 (Pit 16) to 77% (Pit 3) of pathological dentaries (Fig. 2.A). Most of the remaining pathological 

226 dentaries also preserved dental anomalies, predominantly supernumerary teeth (particularly in 

227 the first and second premolars) or a missing lower first premolar (p1) and/or third molar (m3). 

228 Because both the p1 and m3 (Balisi et al. 2018; Buchalczyk et al. 1981; Wang 1994) vary in their 

229 presence among canids, we excluded anomalies in these teeth from our comparison with 

230 Nihewan C. chihliensis. Across 200 C. dirus jaws (both left and right) bearing abscesses and 

231 alveolar infections, the lower first molar or carnassial showed the highest frequency of injury (87 
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232 total specimens with m1-associated injuries), likely inflicted by bone-crushing during the 

233 consumption of prey, followed by the second premolar (79 total specimens with p2-associated 

234 injuries), likely the result of biting and killing while chasing prey or in fighting with conspecifics 

235 or competitors of other species (Fig. 2.B). The fourth premolar was the third most frequently 

236 injured tooth (57 specimens); often, it was injured in conjunction with the lower first molar (34 

237 specimens), as in the case of C. chihliensis. As C. dirus is a predator widely recognized to have 

238 had a forceful bite capable of processing bone (Anyonge & Baker 2006; Brannick et al. 2015; 

239 Van Valkenburgh & Hertel 1993), the high frequency of injury in its p4-m1 complex—similar to 

240 that found in the specimens of C. chihliensis examined here—supports the inference that C. 

241 chihliensis also processed bone using p4 and m1.

242

243 Tibia Fracture. A normal left tibia (IVPP V18139.21) and pathologic right tibia (IVPP 

244 V18139.20) of Canis are present in the collection from Shanshenmiaozui (SSMZ). The 

245 pathologic tibia has healed fractures at the lower one-third of the shaft. Compared with the 

246 normal tibia on the left side (Fig. 3), the pathologic tibia is stouter; it is much broader distally, 

247 especially at the fracture site, and is shorter, the maximum length for the normal tibia being 

248 181.6 mm, in contrast to the pathologic one at 166.5 mm (Table 1). In addition, the nutrient 

249 foramen is much more enlarged in the pathologic tibia. The partially healed bone has a rough and 

250 porous surface (callus).

251 The porous bone surface indicates that the periosteal vessels also took part in the repair of 

252 the fracture, which penetrated into the hard callus. Because the woven/primary bone is not 

253 replaced with secondary lamellar bone, this individual did not survive to the stage of lamellar 

254 bone formation, i.e. the fracture healing stage 6 by Edge-Hughes & Nicholson (2007).
255

256 Foreshortening of tibia. The pathologic tibia has fused overlapping components with 

257 remodeling starting 4 cm from the proximal surface and extending throughout the length. 

258 Accentuation (irregularities) of the enthesial region at the lateral margin of the tibial plateau 

259 suggests increased stress at the proximal tibial-fibular joint. The tibia widens abnormally starting 

260 6 cm distal to proximal surface, with concurrent alteration of surface color and texture, 

261 continuing on to the fused distal component of the tibial fracture, where surface filigree reaction 

262 (characteristic of infection) is more prominent. There are increased vascular markings at the 

263 junction of proximal and middle third (related to current length) of the tibia. A shallow groove 

264 identifies the original demarcation of the fracture components now fused. The fibula was also 

265 fractured, and residual components are noted at the distal 6 cm. A linear defect is noted at the 

266 mid-portion of the tibia, slightly medial to the sagittal line. It appears to be perforated in a 

267 manner more suggestive of vasculature than of draining sinuses. It may be the residua of the 

268 fracture. If so, it would mean that the injury not only caused fracture, separation and overlap of 

269 components, but also caused a “splintering” or at least slight separation of the distal portion of 

270 the proximal component. Increased vascularity is noted 2 cm from the distal end of the tibia.

271
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272 X-ray Examination. Increased density of the medial tibial plateau is noted. If not related to an 

273 artifact (e.g., glued component), this is suggestive of a healed, minimally displaced fracture. 

274 There clearly is a displaced distal fracture, fused incompletely with overlap. The curvature of the 

275 distal portion of the proximal component suggests torsion of the components related to each 

276 other. Several layers of periosteal reaction are noted, with partial disruption of subjacent cortex. 

277 The distal fibula is fused to the tibia, with focal loss of margin definition. Irregular cavities are 

278 noted in the distal portion of the proximal component of the fracture and adjacent to the distal 

279 junction of the tibia and fibula. Both contain radio-dense material. This suggests that this was a 

280 compound fracture, with skin breach and exposure to environmental contamination. The fracture 

281 was incompletely stabilized during the healing process, with continued movement of the 

282 components.

283

284 CT Scan. The CT images show clearly that it was a comminuted fracture, and all three pieces of 

285 the fractures are displaced, which resulted in the division of the medullary cavity into three 

286 chambers whose broken ends were enclosed by callus or woven bones (Fig. 4.B1-2, C1-2). 

287 CT longitudinal sections slice 1 (Fig. 4.B1-2) – There is a focal area of trabecular loss just 

288 distal to the proximal epiphyseal plate.  It is irregularly ellipsoid in shape and contains slightly 

289 thickened bone “fragments” of apparently increased density. Increased density is noted in the 

290 subsequent proximal fracture component. Periosteal reaction is noted with multiple focal areas of 

291 trabecular loss, bounded by sclerotic margins, characteristic of abscesses. There is massive loss 

292 of cortical bone in the region of fragment fusion. Fibular fusion with a distal radio-dense 

293 inclusion is noted. Presence of foreign bodies is consistent with the diagnosis of a compound 

294 fracture.

295 CT longitudinal sections slice 2 (Fig. 4.C1-2) – There is an area of increased density at the 

296 median tibial plateau noted on the x-ray.  The CT shows this area to be separated by a fracture 

297 line from subjacent bone. The trabecular pattern is denser. The lateral portion of the proximal 

298 epiphyseal plate is partially preserved, in contrast to the medial portion, which cannot be 

299 distinguished from the epiphysis. This appears to be a non-displaced fracture through the 

300 epiphyseal plate, only affecting a portion of that plate.

301 There is a linear focal disruption (partially occluded at the surface) of the medial aspect at 

302 the midpoint of the current length and a U-shaped defect (also seen in CT slice 1) with thickened 

303 margins at the distal fifth.  The latter could represent a draining abscess, although the former 

304 suggests the possibility of a penetrating injury.  Radio-dense inclusions are noted, perhaps 

305 representing environmental exposure at time of injury.  The surface imperfection seen on the 

306 reconstructed tibial image (Fig. 4.A) may be a CT averaging artifact.  A series of 8 cross sections 

307 (Figs. 4D.1-8) allows comparisons of healthy cancellous (D1), healthy cortical (D2-3), and 

308 injured and healed bones (D4-8).

309

310 Interpretation, Comparison, and Implications for Limb Injury. That the injury, plus the 

311 subsequent infections, suffered by IVPP V18139 must have been devastating seems not in doubt. 
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312 The displacement of the right hindlimb and the pain associated with a compound fracture with 

313 skin breach and exposure to environmental contamination all but rule out hunting activities. For 

314 modern domestic dogs of more than 1 year of age, fracture healing can take 7 weeks to 1 year 

315 (Edge-Hughes & Nicholson 2007). It is safe to assume that healing of the open fractures in IVPP 

316 V18139 without medical intervention (broken bones not re-aligned nor cast to immobilize 

317 wounds) would take a considerable amount of time, much longer than its metabolic reserve can 

318 sustain. Such a long-term survival by an injured wolf requiring a high degree of meat 

319 consumption thus suggests family care and collaborative hunting.

320 In addition to abnormalities in the jaws and dentition, the Rancho La Brea dire wolf 

321 collection has numerous healed fractures in the limb bones (Moodie 1918; Shaw & Howard 

322 2015; Stock 1930; Ware 2005). Again focusing on Pit 61/67, which has a minimum number of 

323 371 dire wolf individuals, Brown et al. (2017) showed that frequencies of traumatic injury—

324 including healed fractures—were higher than expected for most limb bones, especially the tibia. 

325 Surveying dire wolf tibiae across all Rancho La Brea deposits, we found 11 specimens (5 left, 6 

326 right) of 251 total pathologic tibiae (4.38%) to have suffered an oblique fracture with 

327 foreshortening similar to that in IVPP V18139 (Fig. S4). In studies of modern Saskatchewan 

328 gray wolves and sympatric coyotes, such bone fractures—which likely resulted from conflicts 

329 with large prey—were found to be more common in wolves than in coyotes, a difference thought 

330 to result from wolves’ tendency to prey on larger animals like moose (Wobeser 1992). Similarly, 

331 Rancho La Brea preserves no fractured and healed tibiae belonging to the coyote—which is also 

332 found abundantly in the Pleistocene to Holocene-age asphalt seeps—though this lack may be 

333 confounded by a coyote sample size an order of magnitude smaller than that of the dire wolf.

334 Discussion

335 Life is not easy for large predators. In modern canids, hypercarnivory is almost always 

336 associated with social hunting, such as in the gray wolves (Canis lupus), African hunting dogs 

337 (Lycaon pictus), and Asiatic dholes (Cuon alpinus). Of these, the latter two most 

338 hypercarnivorous species almost invariably hunt cooperatively, whereas gray wolves regularly, 

339 but not exclusively, hunt together for large prey (Macdonald 1983). Group hunting by these 

340 highly social canids offers apparent advantages that are otherwise unavailable to individual 

341 hunters, such as the ability to bring down prey much larger than the predators themselves, plus 

342 coordinated attacks that seal off escape routes as well as relaying strategies that lessen the burden 

343 of individual hunters. These strategies are especially critical to canids because, unlike felids, 

344 canids never evolved fully retractile claws that are effective weapons for grappling and subduing 

345 prey (Wang 1993). Therefore, for canids, group hunting is not optional, as it is for large cats 

346 (only the lions are social hunters), once canids have crossed the critical body mass threshold of 

347 about 21 kg above which energetic costs necessitate feeding on large prey (Carbone et al. 1999). 

348 For canids, it is possible that this body size threshold may even be substantially lowered as in the 

349 case of the Asiatic dholes (10-13 kg) that have the most extremely hypercarnivorous dentitions 
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350 among living canids (Cohen 1978). The Nihewan Canis chihliensis is larger than the dholes 

351 (13.7–16.8 kg based on femur shaft diameter; ~21.2 kg based on the mean of m1 length).

352 Social hunting is characteristic of large canids, hyaenids, and some felids. Such behavior 

353 has important implications not only in the social organizations of large carnivorans but also in 

354 their trophic relationships and diet. Among large, hypercarnivorous living canids, the gray wolf 

355 (Canis lupus) is the best studied in its pack hunting behavior. The basic social unit is the mated 

356 pair; prey size is a factor in pack sizes, which range from a few up to 20 individuals, with the 

357 largest packs preying on bison and moose and smaller packs preying on deer (Mech & Boitani 

358 2003). Social hunting, however, may not always be the most efficient in terms of food intake per 

359 wolf because the packs must share their proceeds (Thurber & Peterson 1993). The formation of 

360 packs, therefore, offers the opportunity to kill prey too large to tackle by one individual alone, as 

361 well as the opportunity both to better defend kills against carcass theft and to steal carcasses from 

362 larger predators (Carbone et al. 1997; Eaton 1979; Van Valkenburgh 2001).

363 It has been long known that large Canis from the Nihewan Basin includes individuals with 

364 highly trenchant lower molars (Teilhard de Chardin & Piveteau 1930). Hypercarnivorous 

365 characteristics (dominance of cutting edge of m1 trigonid and enlargement of hypoconid at the 

366 expense of entoconid, along with reductions of posterior molars) in C. chihliensis are variable 

367 (Tong et al. 2012) but strongly converge on the morphology of living African hunting dogs and 

368 Asiatic dholes (Fig. 5). Such a dental morphology is commonly associated with emphasis in 

369 slicing meat using the sharp carnassial blades. Trenchant molars thus correlate well with 

370 hypercarnivory (Crusafont-Pairó & Truyols-Santonja 1956), i.e., tendency to consume meat 

371 exclusively, which also drives the evolution of larger body size as a macroevolutionary ratchet 

372 (Van Valkenburgh et al. 2004).

373 Wolves have a dangerous life as long-distance pursuit predators. The traumas and infections 

374 inflicted on Canis chihliensis likely are related to hunting behavior, feeding strategies, and 

375 predator-prey interactions, as has also been suggested for other extinct carnivores (Shaw & Ware 

376 2018). Healing of such devastating injuries is also a testimony to its survival for long periods of 

377 time during which the ability to hunt must have been seriously limited or nonexistent, suggesting 

378 that some kind of assisted living was necessary. Debilitating bone diseases in the Pleistocene 

379 apex predator Smilodon, which is even more hypercarnivorous than canids, have also been used 

380 to argue for social or gregarious behaviors (Akersten 1985; Heald 1989; Shaw 1992a; Shaw 

381 1992b; Van Valkenburgh 2009; Van Valkenburgh & Sacco 2002) although the pathology-

382 sociality link has been challenged (McCall et al. 2003). Schleidt & Shalter (2004) also noted that 

383 social predators should have more healed injuries than solitary predators. Often infirm animals 

384 are allowed to feed on group kills, as observed in spotted hyaenas and African wild dogs.

385 Whereas sociality in sabertooth cats has been questioned given its rarity among extant large 

386 felids, all of which are capable of killing on their own, pack hunting in dog-like carnivorans 

387 (wolves, hunting dogs, dholes, hyenas) is the dominant mode of predation and is primarily driven 

388 by the necessity of overcoming larger prey. Dental morphology and pathology in our Nihewan 

389 Canis chihliensis strongly suggest processing of hard food (bone cracking), which is commonly 
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390 associated with hypercarnivory and pack hunting in large canids. Although the massive, healed 

391 tibial fracture may not be a definitive indication of social care, such a devastating injury is highly 

392 suggestive of the necessity of food provisioning that only social groups can offer, as has been 

393 similarly proposed from an early Pleistocene Spanish record of C. falconeri (Palmqvist et al. 

394 1999). With this new record from Nihewan, we extend the history of Canis sociality to the early 

395 Pleistocene, and—by phylogenetic extension, given the probable divergence date between the 

396 lineages leading to Canis chihliensis and the social dire wolf Canis dirus—likely to the Pliocene 

397 as well.

398 Arguably the most definitive (though still correlative) pathological evidence to support 

399 sociality in Canis chihliensis would be a significant prevalence of similar injuries not only in the 

400 extinct Canis dirus but in the three extant hypercarnivorous canines whose pack-hunting 

401 behavior can be observed directly, in contrast to a low prevalence of similar injuries in non-pack-

402 hunting carnivoran species. However, one common challenge in predator paleopathology is the 

403 lack of sufficient samples of large-predator post-crania relative to crania in museum collections 

404 of living mammals. This limitation—and the corresponding lack of published systematic 

405 pathological surveys across large sample sizes within and among extant species—prevents 

406 statistically robust inferences of injury prevalence in extant wild animals. When isolated cases 

407 are available, lack of field documentation on behaviors related to pathological specimens also 

408 hampers interpretations. Such deficiencies make it difficult to ground-truth inferences of extinct 

409 behaviors based on extant relatives, even where large samples of extinct predators are available 

410 (Brown et al. 2017). While such a systematic comparative survey exceeds the scope of the 

411 current paper, future studies that calculate injury prevalence across large museum and zoo 

412 collections of extant species of known behavior (e.g., Rothschild et al. 1998) would bolster 

413 inferences of extinct behavior based on skeletal injuries.

414 As knowledge of the fossil history of hypercarnivorous canids in the Plio-Pleistocene of 

415 Eurasia increases, more complexity than has been previously assumed is now emerging, both in 

416 its chronology and its morphologic diversity. Recent molecular studies placed Cuon and Lycaon, 

417 two of the most hypercarnivorous living canids, near the base of the Canis clade (Lindblad-Toh 

418 et al. 2005), in contrast to morphological analysis suggesting that hypercarnivorous forms are at 

419 the terminal end of the canine phylogeny (Tedford et al. 1995; Tedford et al. 2009).  If the 

420 molecular relationship is correct, then records of Cuon and Lycaon are expected to be at least as 

421 old, if not older, than that of many species of Canis. This new record pushes back the first 

422 occurrence of social care, and pack hunting by extension, by about 1.7 million years to when 

423 early Homo erectus was first recorded in Asia (Ao et al. 2013; Zhu et al. 2004). This record is 

424 important because it coincides with the initial diversification of the large canids (such as Canis 

425 and Lycaon), also known as the Wolf Event (Azzaroli 1983; Sardella & Palombo 2007), and is 

426 associated with pack hunting behavior by large carnivorans in increasingly open habitats.

427 Although records of early wolves have been pushed back slightly (Martínez-Navarro et al. 

428 2009; Rook & Martínez-Navarro 2010; Sardella & Palombo 2007), the wolf event is essentially 

429 confined to the Early Pleistocene, i.e., Late Pliocene before recent redefinition (Gibbard et al. 
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430 2010). A recent new Tibetan record in the Middle Pliocene, Sinicuon cf. S. dubius, seems to 

431 suggest that hypercarnivorous canines may have predated the genus Canis (Wang et al. 2014). 

432 Whatever the detailed relationships of these records, it seems clear that hyper-predators, such as 

433 large wolves and hunting dogs, were associated with the increasingly open habitats in Eurasia 

434 during the onset of the Pleistocene. In this background of large-canine radiation at the beginning 

435 of the Ice Age, our new record of a pathological wolf from the Early Pleistocene of Nihewan 

436 hints at pack hunting as a major step toward social collaboration while procuring food and, as 

437 such, signals a major step in the evolution of large canids.

438
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655 Captions of Figures

656 Figure 1 Two dentaries of the same individual of Canis chihliensis. A, left dentary (IVPP 

657 V17755.11); B, right dentary (IVPP V17755.12). A1, B1, occlusal views; A2, B2, buccal views; 

658 A3, B3, lingual views; A4, B4, X-ray images. White arrows mark resorption of alveolar bone; 

659 red arrows mark periodontal pocket, purple arrows indicate probable fistula from periodontal 

660 pocket, blue arrows mark periapical infections associated with exposed pulp chambers, and white 

661 arrows indicate porous cortical bone.

662 Figure 2 Frequencies of dental injury in the mandible of Rancho La Brea dire wolves, C. 

663 dirus. A, numbers of specimens of adult age bearing injuries similar to those in C. chihliensis 

664 (orange) compared with other dental injuries (gray). Most dental injuries in C. dirus involve 

665 abscesses and alveolar resorption stemming from infection. B, categorization of dental injuries 

666 by tooth position. The m1 shows the highest frequency of infection or injury, followed by p2 and 

667 p4.

668 Figure 3 Tibias of the same individual of Canis chihliensis from SSMZ, Nihewan. A, normal 

669 tibia of left side (IVPP V 18139.21); B, pathologic tibia of right side (IVPP V 18139.20); A1, 

670 B1, anterior views; A2, B2, posterior views; A3, B3, medial views; A4, B4, lateral views. NF: 

671 nutrient foramen.

672 Figure 4 CT scan images of the pathologic right tibia of Canis chihliensis (V18139-20) from 

673 SSMZ, Nihewan. A, 3-D reconstruction of the pathologic tibia; B1-B2, anteroposterior 

674 longitudinal sections; C1-C2, mediolateral longitudinal sections; D1-D8, cross sections; D1-D5, 

675 the upper part of the tibia; D6, the upper and middle parts of the fracture; D7, the middle and 

676 lower parts of the fracture; D8, lower part of the fracture, infection with subtle cortical loss. 

677 MC1-MC3, represent the medullar cavities of the three fractions of the fractured tibia; NP, 

678 nutrient foramen.

679 Figure 5 Lower molars from SSMZ as compared to living hypercarnivorous taxa. Occlusal 

680 views of lower molars, m1-3, of Canis chihliensis (A-C) from SSMZ in Nihewan, as compared 

681 with those of C. lupus (D), Cuon alpinus (E) and Lycaon pictus (F). A, right m1-3 (IVPP 

682 V17755.6); B, right m1-3 (IVPP V17755.4); C, left (inverted) m1-2 (IVPP V17755.5); D, right 

683 m1-3 (IOZ no number, extant, China); E, right m1-2 (IOZ 26747, extant, China); F, right m1-3 

684 (T.M. No. 5560 and BPI/C 223, extant, South Africa). Modified from Tong et al. (2012)

685
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Table 1(on next page)

Dimensional comparisons between the normal and pathologic tibiae of C. chihliensis (in:
mm).

Abbreviations: DAP: anteroposterior diameter; DT: transverse diameter.
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1

2 Table 1 Dimensional comparisons between the normal and pathologic tibiae of C. chihliensis (in: 

3 mm). Abbreviations: DAP: anteroposterior diameter; DT: transverse diameter.

4

Dimensions Normal 

(left) tibia 

(IVPP V 

18139.21)

Pathologic 

(right) tibia 

(IVPP V 

18139.20)

Maximum length 181.6 166.5

Proximal DAP 37.5 >32.2

Proximal DT 36.5 35.8

Distal DAP 17.6 >17.3

Distal DT 24.1 25.7

Shaft DAP at 

nutrient foramen

15.4 17.2

Shaft DT at nutrient 

foramen

13.2 14.8

Shaft DAP at the 

fracture

- 25.5

Shaft DT at the 

fracture

- 29.2

5

6

PeerJ reviewing PDF | (2020:05:48717:0:1:NEW 18 May 2020)

Manuscript to be reviewed



Figure 1
Two dentaries of the same individual of Canis chihliensis.

A, left dentary (IVPP V17755.11); B, right dentary (IVPP V17755.12). A1, B1, occlusal views;
A2, B2, buccal views; A3, B3, lingual views; A4, B4, X-ray images. White arrows mark
resorption of alveolar bone; red arrows mark periodontal pocket, purple arrows indicate
probable fistula from periodontal pocket, blue arrows mark periapical infections associated
with exposed pulp chambers, and white arrows indicate porous cortical bone.

PeerJ reviewing PDF | (2020:05:48717:0:1:NEW 18 May 2020)

Manuscript to be reviewed



Figure 2
Frequencies of dental injury in the mandible of Rancho La Brea dire wolves, C. dirus.

A, numbers of specimens of adult age bearing injuries similar to those in C. chihliensis

(orange) compared with other dental injuries (gray). Most dental injuries in C. dirus involve
abscesses and alveolar resorption stemming from infection. B, categorization of dental
injuries by tooth position. The m1 shows the highest frequency of infection or injury, followed
by p2 and p4.
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Figure 3
Tibias of the same individual of Canis chihliensis from SSMZ, Nihewan.

A, normal tibia of left side (IVPP V 18139.21); B, pathologic tibia of right side (IVPP V
18139.20); A1, B1, anterior views; A2, B2, posterior views; A3, B3, medial views; A4, B4,
lateral views. NF: nutrient foramen.
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Figure 4
CT scan images of the pathologic right tibia of Canis chihliensis (V18139-20) from SSMZ,
Nihewan.

A, 3-D reconstruction of the pathologic tibia; B1-B2, anteroposterior longitudinal sections; C1-
C2, mediolateral longitudinal sections; D1-D8, cross sections; D1-D5, the upper part of the
tibia; D6, the upper and middle parts of the fracture; D7, the middle and lower parts of the
fracture; D8, lower part of the fracture, infection with subtle cortical loss. MC1-MC3,
represent the medullar cavities of the three fractions of the fractured tibia; NP, nutrient
foramen.
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Figure 5
Lower molars from SSMZ as compared to living hypercarnivorous taxa.

Occlusal views of lower molars, m1-3, of Canis chihliensis (A-C) from SSMZ in Nihewan, as
compared with those of C. lupus (D), Cuon alpinus (E) and Lycaon pictus (F). A, right m1-3
(IVPP V17755.6); B, right m1-3 (IVPP V17755.4); C, left (inverted) m1-2 (IVPP V17755.5); D,
right m1-3 (IOZ no number, extant, China); E, right m1-2 (IOZ 26747, extant, China); F, right
m1-3 (T.M. No. 5560 and BPI/C 223, extant, South Africa). Modified from Tong et al. (2012)
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