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ABSTRACT
Drought is a natural hazard, which is a result of a prolonged shortage of precipitation,
high temperature and change in the weather pattern. Drought harms society, the
economy and the natural environment, but it is difficult to identify and characterize.
Many areas of Pakistan have suffered severe droughts during the last three decades
due to changes in the weather pattern. A drought analysis with the incorporation
of climate information has not yet been undertaken in this study region. Here, we
propose an ensemble approach for monthly drought prediction and to define and
examine wet/dry events. Initially, the drought events were identified by the short term
Standardized Precipitation Index (SPI-3).Drought is predicted based on three ensemble
models i.e., Equal Ensemble Drought Prediction (EEDP),Weighted Ensemble Drought
Prediction (WEDP) and the Conditional Ensemble Drought Prediction (CEDP)model.
Besides, two weighting procedures are used for distributing weights in the WEDP
model, such as Traditional Weighting (TW) and the Weighted Bootstrap Resampling
(WBR) procedure. Four copula families (i.e., Frank, Clayton, Gumbel and Joe) are
used to explain the dependency relation between climate indices and precipitation in
theCEDPmodel. Among all four copula families, the Joe copula has been found suitable
for most of the times. The CEDPmodel provides better results in terms of accuracy and
uncertainty as compared to other ensemble models for all meteorological stations. The
performance of the CEDPmodel indicates that the climate indices are correlated with a
weather pattern of fourmeteorological stations.Moreover, the percentage occurrence of
extreme drought events that have appeared in the Multan, Bahawalpur, Barkhan and
Khanpur are 1.44%, 0.57%, 2.59% and 1.71%, respectively, whereas the percentage
occurrence of extremely wet events are 2.3%, 1.72%, 0.86% and 2.86%, respectively.
The understanding of drought pattern by including climate information can contribute
to the knowledge of future agriculture and water resource management.
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INTRODUCTION
In the last few decades, global warming has become an undeniable fact which causes climate
irregularities i.e., extreme weather events and droughts (Bai et al., 2020;Horton et al., 2016;
Mishra & Singh, 2010). Drought is the most complicated hazard among other natural
disasters (e.g., flood, earthquake, tropical cyclones) and has a huge impact on society, the
economy and natural environments, such as reducing air and water quality, and causing
erosion, landscaping (dust), and ecological habitat damage (Bonsai & Wheaton, 2005).
It is challenging to determine the characteristic of droughts such as beginning, ending,
intensity and duration (Vicente-Serrano, Beguería & López-Moreno, 2010). Sharafati &
Pezeshki (2020) proposed a robust approach to assess climate change impact variability on
future extreme events over Dehbar catchment in Iran. They used the Lars-WG6 model to
generate future climate weather variables such as temperature and rainfall depth using five
coupled models with several emission scenarios. They concluded that trends in extreme
rainfall depth and river discharge is increasing due to climate and inferred that the future
extreme rainfall depth at more than 500-year return periods has more variability.

Several drought indices are used for the detection and characterization of
drought, i.e., Standardized Precipitation Index (SPI) (Mckee, Doesken & Kleist, 1993),
Standardized Anomaly Index (SAI) (Katz & Glantz, 1986), Standardized Precipitation
Evapotranspiration Index (SPEI), (Vicente-Serrano, Beguería & López-Moreno, 2010),
Standardized Precipitation Temperature Index (SPTI) (Zulfiqar et al., 2019; Zuliqar et
al., 2017) and Reconnaissance Drought Index (RDI) (Tsakiris & Vangelis, 2005). SPI is a
popular drought index and is used to identify and monitor drought in the past studies
(Achour et al., 2020; Bai et al., 2020; Caloiero & Veltri, 2019; Ellahi et al., 2020). During
the estimation phase of SPI, the selection of unsuitable probability distribution may
provide biased values of SPI (Zulfiqar et al., 2019; Stagge et al., 2015). Zulfiqar et al. (2019)
fitted several appropriate probability distributions in the estimation phase of SPI, SPEI
and SPTI. The goodness of fit test was used with 5% level of significance to check the
appropriateness of candidate probability distribution and the lowest value of Bayesian
Information Criterion (BIC) was used for the selection of suitable probability distribution.
Mishra & Desai (2005) used the Autoregressive Integrated Moving Average (ARIMA) and
the Seasonal Autoregressive Integrated Moving Average (SARIMA) model on the SPI
series (1965–2001) in Kansabati River of India to predict the drought for 2–3 month time
scale, and also stated that predicted results are consistent with the observed data. Belayneh,
Adamowski & Khalil (2016) used the SPI-3 and SPI-6 of Awash River basin in Ethiopia
to forecast drought through Artificial Neural Network (ANN), Support Vector Machine
(SVM), and Wavelet Neural Network (WNN) model. The ARIMA model was applied
to SPI-12 and SPI-24 to forecast drought and the results of the forecast were compared
with machine learning models (Belayneh, Adamowski & Khalil, 2016). Among these several
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models, theWNNperformed better based onR square,MAE andRMSE.Choubin, Malekian
& Golshan (2016) utilized the rainfall data from January 1967 to December 2009 of four
stations to compute the SPI (1–12) months in Iran. They applied the Adaptive Neuro Fuzzy
Inference System (ANFIS), M5P model tree and the Multilayer Perceptron (MLP) model
to predict the SPI with the incorporation of climate signal. The accuracy results indicated
that the performance of MLP model is better in comparison to other models.

Moradkhani & Meier (2010) used two procedures e.g., Linear Regression (LR) and
Ensemble Streamflow Prediction (ESP), for the ensemble prediction. The use of a statistical
approach with large scale climate variable is effective for the hydrological prediction
(Moradkhani & Meier, 2010; Najafi, Moradkhani & Piechota, 2012). Choubin et al. (2019)
applied the Multivariate Adaptive Regression Splines (MARS), M5 Model Tree and the
Least Squares Support Vector Machine (LSSVM) to predict the streamflow pattern over
the Mediterranean region of Turkey. They concluded that the performance of the LSSVM
model is better in comparison to other models that utilized the climate information for
streamflow modelling. Also, it is stated that the North Pacific (NP) and the East Central
Tropical Pacific Sea Surface Temperature (ECTP-SST) damage the streamflow patterns.
Choubin et al. (2014) used the rainfall data from January 1967 to December 2009 of four
stations in Iran. They used eight most relevant climate indices in the prediction of drought.
They observed that the Atlantic surface temperature had the inverse relationship with SPI
andAtlanticMeridionalMode (AMM)had the highest correlation. It was concluded that the
forecast performance of the Neuro-Fuzzy (NF) model is better as compared to the Stepwise
Regression (SR) model at the two-year lag. AghaKouchak (2015) proposed a Multivariate
Standardized Drought Index (MSDI) for the ensemble drought prediction in Africa. In
their study, firstly the ESP procedure was applied on the monthly rainfall series and soil
moisture series to predict the seasonal changes. The estimation ofMSDI is based on the joint
probability of accumulated predicted seasonal changes of rainfall and soil moisture from
ESP procedure. The ensemble model estimates the amount of severe drought and provide
information about their probability of occurrence and results were found to be consistent
with the observed data. Bradley, Habib & Schwartz (2015) applied a bootstrap sampling
resampling procedure on the daily flow time series (1992–2010) of the Blue Nile river of
Ethiopia to produce the ensemble stream flow forecast. The results of the technique were
compared with the traditional weighting approach. Moreover, the traditional procedure
utilized the Gaussian kernel function for the weighting scheme, whereas the sampling
resampling approach uses the concept of Bayesian updating (Smith & Gelfand, 1992). Both
techniques assigned weights to each ensemble member in a dissimilar way, but the results
of Bayesian updating was found to be better. Zhang, Dong & Chen (2019) proposed three
ensemble models, i.e., Equal Ensemble Drought Prediction (EEDP), Weighted Ensemble
Drought Prediction (WEDP) and Conditional Ensemble Drought Prediction (CEDP) to
forecast themonthly droughts of 26meteorological stations in Jiangxi province of China. As
a result, the CEDPmodel was found to be better in parameter estimation and accuracy than
other models. The choice of climate variables is based on the strong correlation between
the forecast variable and climate variable (Najafi, Moradkhani & Piechota, 2012; Zhang,
Dong & Chen, 2019; Sharafati, Nabaei & Shahid, 2020) and further climate variables were
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combined into one Integrated Climate Predictor (ICP) through linear regression model.
The hydrological variables do not fulfill the requirement of independence and normality.
Zhang & Singh (2006) fitted the joint frequency distribution of flood peak, volume and
duration using the data of Amite River Basin, Louisiana, USA. Several techniques were
applied to obtain the conditional returned periods such as Archimedean copula, Gumbel
mix, and bivariate normal Box–Cox transformation. The copula distribution was found
to be better in frequency estimation than others. The choice of suitable copula family is
problematic, especially the hydrological variables provide imprecise information about the
dependence structure (Renard & Lang, 2007). Therefore, the appropriate bivariate copula
was fitted between the climate index and the rainfall series in Jiangxi province of China.
The choice of appropriate copula family i.e., Frank, Clayton, Gumbel and AMH copula
were based on the minimum value of BIC. Among these copula families, the performance
of the Frank copula was better in comparison to others in the copula family (Zhang, Dong
& Chen, 2019). Nabaei et al. (2019) have made a comprehensive spatial drought analysis to
observe the joint return periods of droughts by using Copula. They applied Archimedean
Copulas on various combinations of three characteristics of meteorological droughts
(Severity (S), Peak (P) and Duration (D)) and concluded that the Gumbel Copula was
the most appropriate for S-P according to the Copula Information Criterion, while the
Clayton was most appropriate for S-D and P-D.

Changes in the weather pattern have become a serious problem for the biodiversity,
hydrology, water resources, agriculture, forestry, human and livestock health (Farooqi,
Khan & Mir, 2005). A drought analysis with the incorporation of climate information
has not yet been undertaken in this study region. Therefore, the EEDP, WEDP and CEDP
models have been used for describing the effect of climate indices on the drought condition.
This study aims to describe and classify the short term wet and dry events. Further, these
events will be examined, to find out the most occurring event.

MATERIALS AND METHODS
Study area
The study area consists of four meteorological stations of Pakistan (Multan, Bahawalpur,
Barkhan and Khanpur). These selected stations are located in the southern part of Pakistan,
mostly very hot and mildly cold areas. According to the Meteorological Department of
Pakistan, climate change in recent years has led to severe droughts in Southern Pakistan.
Agricultural sector plays a leading role in Pakistan’s economy. These stations are popular
based on the agriculture sector. So, these stations have been selected based on the agriculture
sector and also located in the Southern region (see Fig. 1). For the statistical analysis, the
monthly quantitative data of temperature and precipitation from January 1990 toDecember
2018 has been obtained from the Karachi Data Processing Center through the Pakistan
Meteorological Department, Karachi. Initially, the monthly average precipitation and
temperature are computed for all stations which are depicted in Fig. 2.
According to (PMD, 2019), many climate indices are the reason for climate change

in Southern Pakistan. So, the monthly data of eleven climate indices (Sea Surface
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Figure 1 Locations of selected meterological stations.
Full-size DOI: 10.7717/peerj.9853/fig-1

Figure 2 Monthly average precipitation (A) and temperature (B) plots for all meteorological stations.
Full-size DOI: 10.7717/peerj.9853/fig-2
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Table 1 Eleven climate indexes (Sea Surface Temperature) are described.

Climate index Abbreviation

East pacific/North Pacific Oscillation EP/NP
Tropical Northern Atlantic Index TNA
Western Pacific Index WP
Atlantic Meridional Mode AMM
Pacific North American Index PNA
Tropical Northern Atlantic Index TNA
Artic Oscillation (AAO) AO (AAO)
Central Tropical Pacific SST (Nino4) CTP (Nino4)
North Pacific Pattern NP
Antarctic Oscillation (AAO) AO/AAO
Southern Oscillation Index SOI*

Temperature) from January 1990 to December 2018 has been obtained from the Source:
https://www.esrl.noaa.gov/psd/data/climateindices/list/. A detailed description of climate
indices is described in Table 1.

Standardized precipitation index
McKee, Nolan & Kleist (1993) proposed a Standardized Precipitation Index (SPI) for
defining and monitoring of wet and dry events i.e., beginning, ending and intensity. The
SPI is used to measure the precipitation shortage from the long-term historical record of
precipitation and represents the quantitative definition of droughts on multiple time scales
i.e., 3, 6, 9, 12, 24 and 48 months. Among these time scales, 3-months SPI is used for the
short term, 6-months SPI is used for medium-term and 48-months SPI is used for long
term drought analysis (Wu et al., 2007).

In this paper, the cumulative precipitation series such as 3 months’ time scale is used
to calculate SPI. This cumulative precipitation time series is utilized to examine the
appropriate probability distribution. In the next stage, the appropriateness of candidate
probability distributions is checked by Kolmogorov Simonov (KS) (Justel, Peña & Zamar,
1997) and Anderson Darling (AD) (Anderson & Darling, 1952) test. We used the Easy fit
(Schittkowski, 2002) software to compare the goodness of fit measure of several probability
distributions. The selection of suitable probability distribution is identified based on the
lowest value of BIC. After this, the parameters of each fitted probability distribution
are utilized to compute the Cumulative Distribution Function (CDF). In various cases,
precipitation time series consist of zero values, due to this reason CDF could be undefined
at y = 0. For example, we fit the gamma distribution over a precipitation time series and
the CDF of gamma distribution could be undefined at y = 0. According to Zulfiqar et al.
(2019) andMishra & Desai (2005), an equation is used for this purpose that is given below:

G(y)= q+ (1−q)F(y) (1)
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where, q represents the probability of zero precipitation in time series, while F(y) is the
CDF of a selected probability distribution.

q=
m
n

(2)

where, m is the number of zeros and n represents the total number of observations in the
precipitation time series. Following Mckee, Doesken & Kleist (1993) and Mishra & Desai
(2005), applying the procedure of approximate conversion developed by Abramowitz &
Stegun (1948) that converts the CDF into a standard normal variable Z with mean zero
and unit variance.

The SPI index is as follows:
If,

0<G(y)< 0.5

t =

√√√√ln

[
1(

G(y)
)2
]

(3)

Then, it will be used,

SPI =Z =−(t−
c0+ c1t+ c2t 2

1+d1t+d2t 2+d3t 3
) (4)

Otherwise,

0.5<G(y)< 1

t =

√√√√ln

[
1(

1−G(y)
)2
]

(5)

SPI =Z =+(t−
c0+ c1t+ c2t 2

1+d1t+d2t 2+d3t 3
) (6)

where,
c0= 2.515517 c1= 0.802853 c2= 0.010308
d1= 1.432788 d2= 0.189269 d3= 0.001308.
In both cases, these multipliers are used. According to Edwards & McKee (1997) and

Mckee, Doesken & Kleist (1993), the classification of SPI is presented in Table 2.
The positive values of SPI are indicating wet conditions with greater than median

precipitation. Whereas, the negative values of SPI are indicating dry conditions with lower
than median precipitation. The Standardized Precipitation Index (SPI) is a versatile tool in
drought monitoring and analysis. The climatologists around the world had extensively used
it for monitoring droughts. SPI is a simple index and only one indicator precipitation is
required for the computation. SPI is also used in operational monitoring systems in various
countries around the world and is recognized by the World Meteorological Organization
(WMO). So, the authors mostly consider SPI based on these features.
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Table 2 Drought classification based on standardized precipitation index.

SPI value Class

> 2 Extremely wet
1.5–1.99 Very wet
1.0–1.49 Moderately wet
−0.99 to 0.99 Near normal
−1 to−1.49 Moderately dry
−1.5 to−1.99 Severely dry
<−2 Extremely dry

Ensemble models
Zhang, Dong & Chen (2019) proposed ensemble models for the drought prediction that
is based on the concept of Ensemble Steamflow Prediction (ESP) model (Liu & Hwang,
2015). The ESP model is a hydrological model that incorporates weather and climate
information to represent weather uncertainty in its prediction (Stedinger & Kim, 2010).
Ensemble models are divided into three categories based on several weighting techniques
that are the EEDP, WEDP and CEDP model.

Ensemble streamflow prediction model
ESPmodel uses the three types of series such as temperature, precipitation and SPI. The aim
of using the ESP model is to assess monthly dry conditions. The inclusion of dependence
structure (between precipitation and SPI) in the ESP model can strengthen the statistical
drought analysis and are useful for estimating inter-annual variability. The choice of the
precipitation series is based on the strong relationship between SPI and precipitation.Due to
strong correlation, which potentially allows authentic monthly prediction of precipitation
that improvesmonthly SPI prediction. The detailedmethodology of initial mean prediction
and ensemblemean prediction is described in Liu & Hwang (2015).Moreover, the statistical
analysis has been done by the R package ‘locfit ’ (Loader, 2011). In the ESP model, the
prediction of temperature, precipitation and SPI is required. Hydrological time series
include various components such as periodically, serial correlation and this feature can be
described only by ARIMA and SARIMA modelsMishra & Desai (2005).

Non-seasonal model (ARIMA). Geurts (1977) provide a new forecasting tool known as
ARIMA model. It is a modification of the ARMA model, which deals with non-stationary
series. According toMishra & Desai (2005), the general ARIMA model is as follows,

ϕ(β)∇dyt = θ(β)ct (7)

where, ϕ(β) is polynomial of Autoregressive (AR) model of order p, θ(β) is polynomial of
the moving average model of order q and ∇d is d th differencing operator.

Seasonal model (SARIMA). The SARIMA model is a generalization of the ARIMA model.
The major advantage of using the SARIMA model is that it deals with the non-stationary
series as well as the seasonal series. According to Durdu (2010) andMishra & Desai (2005),
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the general SARIMA model is represented as,

ϕp(β)φp(β s)∇d
∇

D
s yt = θq(β)2Q(β s)ct (8)

where p and q are the order of non-seasonal part of AR and MA and drepresents the
non-seasonal differencing parameter. Besides, P and Q are the order of seasonal part of
the AR and MA model, D is a seasonal differencing parameter and srepresents the length
of the season.

The development of time seriesmodel includes three stages e.g., identification, estimation
of parameters and diagnostic check. Initially, the normality assumption of the time series
is checked. In case of non-normal series, Box–Cox transformation and log transformation
are applied to satisfy the normality condition. After this, Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF) were used to scrutinize the structure of
transformed series and this information is helpful for fitting the appropriate model. So, the
initial parameters have been estimated visually from the plot of ACF and PACF of the time
series. Then, the parameters of the model have been done by using Maximum Likelihood
Estimation (MLE). Various combinations of parameters were used for the fitting of an
appropriate model. Among these appropriate models, the choice of a suitable model was
based on the minimum value of AIC. Further, the normality condition of residuals was
checked by histogram and normal probability plot. We use the R package ‘forecast’ for the
time series modelling.

Equal ensemble drought prediction model
The concept of EEDP model is based on the ESP model. In the EEDP model, the historical
series that is assumed to have equal weights in the future. The climate series contains the n
years for a study area so that the number of ensemble members are corresponding to the
historical years in the time series and can be generated.

Therefore, the ensemble members of the target month are as follows:

SPIn+1= (SPI 1n+1,SPI
2
n+1,...,SPI

n
n+1). (9)

EEDP model assigns equal weights (1/n) to each ensemble member of the target month
because there is no information about the climate change to assign divergent weights
(Belayneh, Adamowski & Khalil, 2016).

Weighted ensemble drought prediction model
One way to represent the impact of climate change is to weight the climate index (Bradley,
Habib & Schwartz, 2015). The WEDP model deals with climate index to assign weights
to all ensemble members. The aim of assigning weights to each ensemble member is to
reflect the change of season when predicted (Belayneh, Adamowski & Khalil, 2016). There
are two types of procedure for assigning weights such as Traditional Weighting (TW) and
Weighted Bootstrap Resampling (WBR) procedure.

Weighted ensemble drought prediction model algorithm. The procedure for generating
ensemblemembers inWEDPmodel is similar to that of the EEDPmodel Eq. (9). According
to Zhang, Dong & Chen (2019), WEDPmodel algorithm is divided into the following steps:
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• The appropriate climate index should be chosen based on the strong correlation with
the target month of precipitation (Pi,j,k).
• Assign weights to climate indices through linear a regression model to simplify them
into one integrated climate predictor (ICP) ϕ.
• Calculate the weight of each ensemble member based on the similarity of climate indices
between ICP of observed and predicted year.

Traditional weighting procedure. The impact of climate indices can be signified by an
unequal weighting of the ensemble members. Traditional weighting procedure utilizes the
Gaussian kernel K (y) to assign a weight to each ensemble member which is based on the
similarity of climate indices between the ICP of predicted and observed year (Belayneh,
Adamowski & Khalil, 2016; Najafi, Moradkhani & Piechota, 2012; Zhang, Dong & Chen,
2019). A Gaussian kernel function is used to calculate the climate distance between the ICP
of predicted and observed year. Therefore, the weight wi for ith ensemble member is as
follows:

wi=
K (|ϕi−ϕn+1|)∑n
i=1K (|ϕi−ϕn+1|)

(10)

where, ϕi is the ICP of observed year, whereas ϕn+1 is ICP of predicted year, which is
obtained from a linear regression model. The Gaussian kernel function is defined as:

K (y)=
1
√
2πh

e−
y2

2h2 . (11)

The ‘ h’ is the bandwidth kernel parameter and h= σε (σε represents the variance of
error between the ICP of observed year and ICP of the predicted year).

Weighted bootstrap resampling procedure. Smith & Gelfand (1992) proposed the simplest
resampling approach known as Weighted Bootstrap Resampling (WBR) procedure. The
procedure of WBR is based on random variates via acceptance and rejection method. The
procedure of WBR is as follows:

Suppose ϕi i= 1,2,3,..,n are samples from g and f .

qi=
f (ϕi)
g (ϕi)

(12)

and then,

ωi=
qi∑n
i=1qi

(13)

where, qi is the ith ratio between f and g . Therefore, wi, i= 1,2,...,n are the n weights
which are corresponding to ‘ n’ ensemble members and by definition

∑n
i=1ωi= 1.

Conditional ensemble drought prediction model
Algorithm of conditional ensemble drought prediction model. According to Zhang, Dong &
Chen (2019), the first and second steps of the CEDP model are similar to WEDP model in
section 2.3.3.1. The three to five steps of CEDP model are defined as:
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• Use the copula function to fit the bivariate distribution between the ICP (ϕ) and target
month of precipitation (Pi,j,k), i.e., C(Fϕ(ϕ),FPi,j,k (Pi,j,k)).
• Generate conditional precipitation events 1,000 times given the ICP (ϕ) of the observed
year through the bivariate copula distribution.
• Use the conditional precipitation events i.e., P1

i,j,k,P
2
i,j,k,...,P

1000
i,j,k to generate the

ensemble members of the target month.

Copula ensemble. The basic aim of using the appropriate copula family is to define the
dependency structure between ICP and Pi,j,k . The bivariate copula distribution between
ICP (ϕ) and target month of precipitation (Pi,j,k) is as follows:

C(Fϕ(ϕ),FPi,j,k (Pi,j,k)) (14)

These, Fϕ(ϕ) and FPi,j,k (Pi,j,k) are the marginal distribution of copula function. Marginal
distribution has ranged between 0 and 1 because, Fϕ(ϕ) and FPi,j,k (Pi,j,k) are the CDF of
ICP and Pi,j,k respectively.

According to Zhang, Dong & Chen (2019), the conditional density function is as follows:

f (Pi,j,k |ϕ )=
f (ϕ,Pi,j,k)

f (ϕ)
(15)

where, f (ϕ,Pi,j,k) is the joint density distribution between ICP and Pi,j,k . The density
f (ϕ) is the marginal density distribution of ICP. Therefore, the 1,000 times conditional
precipitation events are obtained from conditional density Eq. (15), i.e.,

P1
i,j,k,P

2
i,j,k,...,P

1000
i,j,k . (16)

Finally, the conditional ensemble members are generated by the SPI approach described
in section 2.2 on the conditional precipitation events Eq. (16), i.e.,

SPIn+1= (SPI 1n+1,SPI
2
n+1,...,SPI

1000
n+1 ) (17)

Copula
In 1959, the general notation of copula was first introduced (Ward, Glorig & Sklar,

1959). A major feature of the Copula function is to examine the dependence structure
between the random variables. Following Kao & Govindaraju (2007) and Zhang & Singh
(2006), the one-parameter Archimedean copula is expressed as,

Cφ(p,q)=ψ−1
{
ψ(p)+ψ(q)

}
0< p,q< 1 (18)

The notation ψ−1(·) represents the copula generator and it is a convex decreasing
function. The notation φ is the parameter of Copula function and φ(1)= 0. In the present
study, four families of Archimedean copulas such as Clayton, Joe, Frank and Gumbel are
used.

Performance measurement tools
Accuracy measure tools. Various tools are used to evaluate the accuracy of predictions
(Chen et al., 2014; Pai & Lin, 2005). There are several accuracy measurements tools such
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as Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square
Error (RMSE), which are scale-dependent measurement tools. Mean Absolute Percentage
Error (MAPE) is widely used for measuring the accuracy of predictions of time series
models, it is independent of scale. MAPE measures the magnitude of error in term
of percentage. According to Parmar & Bhardwaj (2014) and Swanson, Tayman & Bryan
(2011), the accuracy measurement tools are described as follows. i.e.,

MAE =
∑n

i=1

∣∣yobs,i−ypred,i∣∣
n

(19)

MSE =
∑n

i=1(yobs,i−ypred,i)
2

n
(20)

RMSE =

√∑n
i=1(yobs,i−ypred,i)2

n
(21)

MAPE =
1
n

n∑
1=1

∣∣∣∣yobs,i−ypred,iyobs,i

∣∣∣∣ (22)

where, yobs,i is the observed value, ypred,i is the predicted value and n is the length of time
series.

Normalize Root Mean Square Error (NRMSE) is a non-dimensional form of RMSE and
it is the standardized disaggrement between observed and predicted value. It is used to test
the predictive accuracy between observed and predicted value. According to Zhang, Dong
& Chen (2019), NRMSE is defined:

NRMSE =
RMSE

yobs,max−yobs,min
(23)

where, yobs,max and yobs,min are the maximum and minimum value in the observed time
series. The smallest value of MAE, MSE, RMSE, MAPE and NRMSE is an indication of
better prediction.

Uncertainty measure tool (average bandwidth). In probabilistic prediction, Chen et al.
(2014) presented Average Bandwidth (AB) to measure the prediction uncertainty. The AB
provides very important information about the prediction uncertainty., AB is defined as
follows:

AB=
∑n

i=1(Q
1−a/2

i −Qa/2
i )

n
(24)

where, Q
1−a/2

i and Qa/2
i is an indication of quantiles result of ith the year and a is the level

of significance. Therefore, the smallest value of AB is an indication of better prediction.

RESULTS
Our first objective is to define and monitor the short-term wet and dry events, which is
done by SPI-3. In the estimation phase of SPI-3, several distributions are fitted on 3months
aggregated precipitation series (P-3). A detailed description of fitting suitable probability
distribution is illustrated in Table 3.
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Table 3 Several probability distributions are fitted on the P-3 series of four meteorological stations. The CV represents the critical value of KS
and AD test.

Station Distribution Method Parameter BIC KS test/CV AD test/CV

Multan Exponential MOM a= 0.0164 3542.00 0.0313/0.0730 0.4363/2.5018
Bahawalpur Burr (4P) MLE c = 994.69, a= 1.0053,

b= 52811.0, r = 0.60942
3488.32 0.0324/0.0730 0.5087/2.5018

Barkhan Fitgue Life (3P) MLE a= 0.91399, b= 82.187,
r =−4.0011

3936.46 0.0308/0.0730 0.4367/2.5018

Khanpur Log normal MOM r = 3.3099, b= 1.0996 3350.00 0.0357/0.0730 0.5202/2.5018

Notes.
The b, r and k are the scale, location and rate parameter respectively. As well as both a and c are the shape parameter.

After this, the cumulative distribution function (CDF) is computed. Later, the CDF of
P-3 is utilized for the construction of SPI-3 by following the procedure described in section
2.2.

According to Table 2, all meteorological stations are distressed from various categories
of wet and dry events e.g., normal, moderate, severe and extreme. But the occurrence
percentage of extreme drought events have appeared in the Multan, Bahawalpur, Barkhan
and Khanpur is 1.44%, 0.57%, 2.59% and 1.71% respectively. Whereas, the occurrence
percentage of extremely wet events are 2.3%, 1.72%, 0.86% and 2.86% for Multan,
Bahawalpur, Barkhan and Khanpur, respectively.

In the ESP procedure, the prediction of Temperature (T), Precipitation (P), P-3 and
SPI-3 are needed. In this regard, the T, P, P-3 and SPI-3 are divided into two sets known as
a training and testing set. The entire series of T, P, P-3 and SPI-3 are from the year 1990 to
2018. The length of the series in a training set is from the year 1990 to 2011. Whereas, the
length of the series in the testing set is from the year 2012 to 2018. The prediction accuracy is
measured by several tools i.e., MSE, RMSE, MAE andMAPE. Hence, the detailed summary
of time series model fitting is described in Table 4.

The selection of P-3 is based on the correlation between P-3 and SPI-3 for all stations.
Therefore, the correlation between P-3 and SPI-3 has been found strong in all stations
i.e., Multan (0.90), Bahawalpur (0.93), Barkhan (0.93) and Khanpur (0.77). Due to this
strong correlation, which permits the reliable monthly predictions of P-3 potentially, which
improves the monthly SPI-3 prediction. The selection of the target and the current month
has been based on average low precipitation and high temperature of all meteorological
stations (Fig. 2). Thus, resulting from the time series models, the observed and predicted
values of SPI-3, T and P-3 kept as the current month (April). Whereas, the values of SPI-3,
T and P-3 of May, June and July kept as target month. After this, the ensemble members
of the target month (i.e., May, June and July) are generated by applying the procedure
of initial mean prediction described in section 2.3.1. Therefore, seven ensemble members
are generated because the test set consists of seven years of observation, i.e., (2012–2018).
In the EEDP model, the equal weights i.e., (1/7 = 0.1428) are distributed to all ensemble
members. After this, the ensemble means the prediction of EEDP model is obtained by
taking the average of ensemble member. The detailed results of EEDP model are presented
in Table 5.
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Table 4 Two-time series models are applied to the P, P-3, T and SPI-3 of all meteorological stations. The term non-seasonal represents the pa-
rameters of the ARIMA model while the term seasonal represents the parameters of the SARIMA model.

Station Series Model Non-Seasonal Seasonal AIC MSE RMSE MAE MAPE

Multan T ARIMA (1, 0, 0) (0, 0, 0) 1486.84 0.0114 0.1069 0.0867 0.3781
SPI-3 ARIMA (0, 2, 1) (0, 0, 0) 718.79 0.0000 0.0028 0.0021 0.3294
P-3 ARIMA (0, 1, 1) (0, 0, 0) 883.19 0.0013 0.0355 0.0244 0.9477
P ARIMA (0, 1, 0) (0, 0, 0) 3585.84 0.0000 0.0000 0.0000 0.0000

Bahawalpur T ARIMA (1, 0, 0) (0, 0, 0) 1483.58 0.0138 0.1174 0.0947 0.3851
SPI-3 ARIMA (0, 2, 1) (0, 0, 0) 642.33 0.0000 0.0025 0.0020 0.3294
P-3 SARIMA (0, 0, 0) (0, 2, 1) 787.75 0.0002 0.0123 0.0119 0.3294
P ARIMA (0, 1, 0) (0, 0, 0) 3437.33 0.0000 0.0000 0.0000 0.0000

Barkhan T ARIMA (1, 0, 0) (0, 0, 0) 1992.95 0.1709 0.4133 0.2339 1.1762
SPI-3 ARIMA (0, 2, 1) (0, 0, 0) 607.19 0.0000 0.0030 0.0023 0.3294
P-3 SARIMA (0, 0, 0) (0, 2, 1) 593.70 0.0002 0.0147 0.0144 0.3294
P ARIMA (0, 2, 1) (0, 0, 0) 3671.28 0.0254 0.1594 0.0881 0.3187

Khanpur T ARIMA (1, 0, 0) (0, 0, 0) 1476.00 0.0116 0.1079 0.0848 0.3579
SPI-3 ARIMA (0, 2, 1) (0, 0, 0) 715.24 0.0000 0.0029 0.0024 0.3294
P-3 SARIMA (0, 0, 0) (0, 2, 1) 787.10 0.0001 0.0113 0.0108 0.3294
P ARIMA (0, 2, 1) (0, 0, 0) 3597.36 0.0000 0.0000 0.0000 0.0000

Table 5 Equal Ensemble Drought Prediction (EEDP) model results.

Station Month MAE MSE RMSE NRMSE AB

Multan May 0.8377 1.8846 1.3728 0.8351 0.1585
June 1.0247 1.5137 1.2303 0.9325 0.1532
July 0.8884 1.2422 1.1145 0.7140 0.1976

Bahawalpur May 0.9816 1.4192 1.1913 0.4759 0.1388
June 1.1423 2.2539 1.5013 0.6756 0.1076
July 0.9788 1.7295 1.3151 0.8470 0.1947

Barkhan May 1.3706 2.3978 1.5485 0.5375 0.2134
June 1.0361 1.3170 1.1476 0.3793 0.1714
July 1.0705 1.4418 1.2008 0.3439 0.1869

Khanpur May 1.3213 2.7753 1.6659 0.8180 0.1100
June 1.3191 2.1641 1.4711 0.6950 0.2692
July 0.9841 1.2493 1.1177 0.7597 0.2142

Table 5 summarizes the statistical results of accuracy and uncertainty of EEDP. TheMAE,
MSE, RMSE and NRMSE indicate the amount of error between observed and predicted
SPI-3 for all the target months of meteorological stations. The prediction uncertainty has
been tested by AB at the 5% level of significance. The smallest value of AB indicates less
uncertainty in the prediction for all target months of meteorological stations.

Eleven climates indices (sea surface temperature) have been used for weighting the
ensemble members of target months (i.e., May, June and July) which is described in
Table 2. Initially, the correlation is computed between the climate index and P4,5,6. Then,
three highly correlated climate indices are selected for each target month.
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Table 6 Weighted Ensemble Drought Prediction (WEDP) is obtained by the TraditionalWeighting
(TW) andWeighted Bootstrap Resampling (WBR) procedure.

Stations Technique Month MAE MSE RMSE NRMSE AB

Multan TW May 0.8581 1.7314 1.3158 0.8004 0.1585
June 1.0583 1.5545 1.2468 0.9450 0.1532
July 0.8680 1.2918 1.1366 0.7281 0.1976

WBR May 0.7448 1.1928 1.0922 0.6644 0.1985
June 0.9614 1.2309 1.1094 0.8409 0.1878
July 0.7606 0.7472 0.8644 0.5538 0.1722

Bahawalpur TW May 0.9611 1.4377 1.1990 0.4789 0.1388
June 1.1560 2.3033 1.5177 0.6830 0.1076
July 1.0124 1.7004 1.3040 0.8399 0.2125

WBR May 0.9389 1.1797 1.0862 0.4339 0.1260
June 1.0364 1.4484 1.2035 0.5416 0.1037
July 1.0501 1.6186 1.2722 0.8194 0.2917

Barkhan TW May 1.3502 2.3512 1.5334 0.5323 0.2134
June 1.0565 1.3745 1.1724 0.3874 0.1714
July 1.0909 1.4710 1.2128 0.3474 0.1869

WBR May 1.1808 1.7197 1.3114 0.4552 0.1718
June 0.9895 1.1720 1.0826 0.3578 0.1413
July 0.9577 1.2130 1.1014 0.3155 0.1909

Khanpur TW May 1.3054 2.8336 1.6833 0.8265 0.0924
June 1.1878 2.1540 1.4677 0.6934 0.1611
July 0.8808 1.2154 1.1025 0.7494 0.2049

WBR May 1.2864 2.3129 1.5208 0.7467 0.0935
June 1.1301 1.9354 1.3912 0.6573 0.2157
July 0.8082 0.9790 0.9894 0.6725 0.2090

According to Bradley, Habib & Schwartz (2015), select only one climate index to
represent climate information. Thus, the LR model has been used to simplify the climate
indices into one ICP. Our purpose of climate index prediction is to construct the ICP
of observed and predicted year. Further, the estimation of weighting parameters in the
LR model is based on the least sum of squared of error between the climate index and
P4,5,6. Two weighting procedures i.e., TW and WBR are used in WEDP model to assign
the weights to seven ensemble members. The detailed results of WEDP are presented in
Table 6.

Table 6 showed that the numerical values of MAE, MSE, RMSE and NMSE of WBR
procedure are lower as compared to TW procedure for all target months. While the AB
indicates that the uncertainty in the prediction of SPI-3 by WBR procedure is higher as
compared to TW procedure for some target months.

According to Zhang, Dong & Chen (2019), the log-normal distribution is fitted on the
marginal distribution of observed ICP and P4,5,6 in the construction of the CEDP model.
The parameters estimation of log-normal distribution is done by MLE. Their specified
distribution is tested by KS and AD test at the 5% level of significance which satisfies
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Table 7 Log-normal distribution is fitted on the ICP and P4,5,6. The CV represents the critical value of
KS and AD test.

Station Month Variable Parameter KS test/CV AD test/CV

Multan May P r =−0.7430, b= 3.5715 0.2888/0.4834 0.5896/2.5015
May ICP r = 2.7755, b= 0.5200 0.2195/0.4834 0.4733/2.5015
June P r =−1.0108, b= 2.5039 0.2288/0.4843 0.5277/2.5018
June ICP r = 3.5203, b= 0.1075 0.1488/0.4834 0.1782/2.5018
July P r =−0.7430, b= 3.5715 0.2888/0.4834 0.5896/2.5018
July ICP r = 1.7909, b= 0.8844 0.2404/0.4834 0.4290/2.5018

Bahawalpur May P r = 0.0394, b= 2.5990 0.1835/0.4838 0.3180/2.5018
May ICP r = 2.9823, b= 0.8369 0.2544/0.4838 0.5062/2.5018
June P r=-0.0916, b= 2.3209 0.2310/0.4838 0.4438/2.5018
June ICP r = 2.7978, b= 0.6074 0.2949/0.4834 0.8844/2.5018
July P r = 0.0394, b= 2.5990 0.1835/0.4838 0.3180/2.5018
July ICP r = 3.0684, b= 0.4993 0.2299/0.4838 0.3049/2.5018

Barkhan May P r = 2.2407, b= 1.4177 0.1799/0.4838 0.2628/2.5018
May ICP r = 3.4541, b= 1.2763 0.3072/0.4838 0.6141/2.5018
June P r = 2.0067, b= 0.3757 0.2909/0.4838 0.6682/2.5018
June ICP r = 4.1071/b= 0.4194 0.1754/0.4838 0.2233/2.5018
July P r = 2.2407, b= 1.4177 0.1799/0.4838 0.2628/2.5018
July ICP r = 3.4602, b= 1.2493 0.1860/0.4838 0.2411/2.5018

Khanpur May P r = 1.7262, b= 1.19029 0.2260/0.4834 0.2552/2.5018
May ICP r = 2.4307, b= 0.2685 0.2423/0.4834 0.3672/2.5018
June P r = 0.6564, b= 2.3527 0.2534/0.4834 0.5869/2.5018
June ICP r = 2.7886, b= 1.1610 0.3961/0.4834 1.0010/2.5018
July P r = 1.7262, b= 1.1902 0.2260/0.4834 0.2552/2.5018
July ICP r = 2.4341, b= 0.2567 0.1566/0.4834 0.1700/2.25018

Notes.
b indicates scale parameter and r is the location parameter

the specified distribution. Hence, the description of the log-normal fitting is presented in
Table 7.

However, the estimated parameters are used for the computation of CDF of ICP and
P4,5,6. Besides, four copula families are used i.e., Frank, Joe, Gumbel and Clayton copula
for fitting the bivariate distribution between the CDF of observed ICP and P4,5,6. The
parameter estimation of bivariate copula distribution is done by MLE. Also, the choice of
suitable copula family is based on the lowest value of BIC. Therefore, the detailed numerical
description of copula fitting is presented in Table 8.

After this, 1,000 times conditionally precipitation events of the P4,5,6 given the observed
ICP are generated. These conditional precipitation events are transformed into SPI by
fitting the suitable probability distribution. Their proper fitting is tested through the KS
and AD test at the 5% level of significance. Among these appropriate candidate probability
distributions, the suitable probability distribution is selected based on the lowest value of
BIC. The description of suitable fitted probability distribution on conditional precipitation
events is described in Table 9.
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Table 8 Fitting of suitable copula family for each target month.

Station Month Family BIC Parameter

Multan May Frank 0.92 −3.0232
June Joe −2.89 3.1327
July Frank 1.78 −1.3276

Bahawalpur May Joe −5.71 2.2591
June Joe −6.27 4.6327
July Joe −0.45 1.6008

Barkhan May Joe 1.83 1.2306
June Joe −2.58 1.6724
July Clayton 0.54 0.9117

Khanpur May Frank 0.12 −4.0846
June Frank 0.91 −3.1953
July Gumbel −3.41 2.3232

Table 9 Several suitable probability distributions are fitted on the conditional precipitation event for concerned target month. The CV repre-
sents the critical value of KS and AD test.

Station Month Distribution Method Parameter BIC KS test/CV AD test/CV

Multan May Gen. Extreme value MLE a= 0.61254, r = 0.05452,
b= 0.09311

−12.28 0.2489/0.4834 0.3677/2.5018

June Log normal MLE r =−0.49346, b= 1.9194 25.98 0.1961/0.4834 0.2875/2.5018
July Gen. Extreme value MLE a= 0.93593, r = 0.06398,

b= 0.17494
0.12 0.2540/0.4834 0.6516/2.5018

Bahawalpur May Frechet (2P) LSM a= 0.33393, b= 0.00218 −18.29 0.2103/0.4843 0.3708/2.5018
June Gamma MOM a= 0.64578, b= 1.4947 16.20 0.1274/0.4834 0.1786/2.5018
July Gamma MOM a= 0.36233, b= 1.7781 6.53 0.1429/0.4834 0.1827/2.5018

Barkhan May Gamma MOM a= 0.65139, b= 0.08513 −23.60 0.1280/0.4834 0.1366/2.5018
June Frechet (3P) MLE a= 1.0743, b= 0.09702,

r = 0.03801
1.84 0.2684/0.4834 0.5208/2.5018

July Weibull LSM a= 0.49131, b= 0.04994 −20.00 0.1911/0.4834 0.3757/2.5018
Khanpur May Gen. Pareto MLE a= 0.03028, r=-0.00273,

b= 0.09218
−13.05 0.2527/0.4834 0.5247/2.5018

June Burr MLE c = 3704.5, a= 0.81555,
b= 2967.3

−6.44 0.1910/0.4834 0.4012/2.5018

July Gen. Extreme value MLE a= 0.2735, r = 0.03681,
b= 0.05368

−13.05 0.1602/0.4834 0.2219/2.5018

Lately, CDF of the suitable fitted probability distribution is transformed into 1,000-time
conditional ensemble drought member. Finally, the CEDP is obtained by taking the average
of conditional ensemble drought member. The prediction accuracy is tested by several tools
i.e., MSE, RMSE, MAE and NRMSE. Moreover, the prediction uncertainty is checked at
the 5% level of significance. The detailed description of the CEDP model is described in
Table 10.

From Table 10, it can be observed that numerical values of prediction accuracy (i.e.,
MAE, MSE, RMSE and NRMSE) and uncertainty (i.e., AB) indicate better prediction.
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Table 10 Conditional Ensemble Drought Prediction (CEDP) model results.

Station Month MAE MSE RMSE NRMSE AB

Multan May 0.672 0.789 0.888 0.540 0.004
June 0.740 0.775 0.880 0.667 0.006
July 0.362 0.232 0.481 0.308 0.006

Bahawalpur May 0.774 0.717 0.846 0.338 0.001
June 0.423 0.505 0.711 0.320 0.007
July 0.491 0.489 0.700 0.451 0.005

Barkhan May 0.684 0.773 0.879 0.305 0.005
June 0.605 0.851 0.922 0.305 0.004
July 0.681 1.032 1.016 0.291 0.003

Khanpur May 0.695 0.708 0.842 0.413 0.006
June 0.641 0.557 0.747 0.353 0.004
July 0.438 0.290 0.538 0.366 0.007

Because, the lowest value of MAE, MSE, RMSE, NRMSE and AB is an indication of better
prediction. Moreover, it is an indication of climate indices are correlated with the weather
pattern of four meteorological stations.

DISCUSSION
It is challenging to define the features of drought i.e., beginning, ending, intensity and
duration (Vicente-Serrano, Beguería & López-Moreno, 2010). Initially, the SPI-3 is used
for the definition and monitoring of wet and dry events because the SPI is used in
operational monitoring systems in various countries and also acknowledged by the World
Meteorological Organization (WMO). It is observed from the temporal plots (Fig. 3), most
of the meteorological stations have severely been damaged by various categories of wet
and dry events. The highest percentage of extremely dry events is in Barkhan (2.59%) as
compared to Khanpur (1.71%), Multan (1.44%) and Bahawalpur (0.57%). In contrast, the
high percentage of extremely wet events are found in Khanpur (2.86%) as compared to
Multan (2.3%), Bahawalpur (1.72%) and Barkhan (0.86%).
Drought is a complicated phenomenon, so one indicator (i.e., precipitation) may be

inadequate to explain the characteristics of drought (AghaKouchak, 2015). The prediction
of drought based on the SPI may be insufficient to provide information to overcome
drought, so that premature action can be taken. Furthermore, various variables, such
as precipitation, climate indices and temperature can be involved in drought conditions
in several ways and should also be taken into account in the evaluation and prediction
of drought (Hao, Hao & Singh, 2016). In this regard, ensemble models were used which
are based on the concept of ESP model that incorporates the weather information in the
prediction. In this paper, three ensemble models are used for the drought prediction.
Further, two weighting procedures i.e., TW and WBR are discussed in the WEDP model.
Among these three models, the EEDP model does not use climate information whereas
WEDP and CEDP models incorporate climate information. However, we assigned equal
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Figure 3 Temporal representation of SPI-3 for four meteorological stations (Multan (A), Barkhan (B),
Bahawalpur (C) and Khanpur (D)).

Full-size DOI: 10.7717/peerj.9853/fig-3

weights to seven ensemble members. The prediction of drought with the incorporation of
climate indices is essential and effective.

Eleven climates indices are selected based on correlation with target months of
precipitation (Table 11). Then highest correlated climate indices are further simplified
into ICP by LR model as the LR model contemplates the importance of climate index
to simplifies into climate index. Najafi, Moradkhani & Piechota (2012) were utilized the
Spearmen correlation and PCA to consider the predictors. There is one problem that the
PCA obtain the information from climate indices to provide in several components. So, it
is very hard to fit the joint distribution.

Two weighting procedures, i.e., TW and WBR, used the climate indices in the ensemble
prediction. Then the drought is predicted by EEMD, WEDP and CEDP model. It is found
that the accuracy and uncertainty which is obtained by TW procedure is like the EEDP
model (Tables 5 and 6). Whereas, the results of accuracy which is obtained by WBR is
almost better as compared to TW procedure and EEDP model (Tables 5 and 6). But the
results of uncertainty indicate similarity to TW procedure and EEMD model. Prediction
uncertainty is related to variability. The high variability in predictionmay cause of reducing
the reliability. The AB is based on the difference between lower and upper quantile. These
lower and upper quantiles are associated with the confidence level. According to Xiong et
al. (2009), the bandwidth of the prediction bounds is as narrow as possible as it captures the
most important information about the prediction uncertainty. In the CEDP model, four
Archimedean copula families are used to explain the dependency structure between climate
indices and precipitation. The choice of best copula family is based on the lowest value of
BIC, and it is observed that Joe copula has been used for most of the times (Table 8). As
seen, the results of accuracy and uncertainty indicate CEDP model is better as compared to
WEDP and EEDP (Tables 5, 6 and 10). The achieved results of CDEP model indicate that
the climate indices are correlated with weather patterns for four meteorological stations.
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Table 11 The CIM represents the selected climate index month, TM represents the target month and the given correlation is representing the
relationship between the P4,5,6 and CIM. These described parameters are of the ARIMA model.

Station Climate index CIM TM Correlation Parameter AIC MSE RMSE MAE MAPE

Multan EP /NP August May 0.32 (0, 1, 0) 88.10 7E-33 8E-17 3E-17 3E-15
TNA November May 0.32 (0, 1, 0) 110.03 3E−32 2E−16 9E−17 2E−14
WP August May 0.37 (0, 1, 0) 88.10 7E−33 8E−17 3E−17 3E−15
AMM June June 0.44 (0, 1, 0) 79.02 4E−34 2E−17 8E−18 2E−15
PNA May June 0.4 (0, 1, 0) 96.49 1E−33 3E−17 2E−17 2E−01
TNA June June 0.39 (0, 1, 0) 23.68 2E−34 1E−17 5E−18 1E−14
AO (AAO) September July 0.33 (0, 2, 1) 72.92 4E−33 6E−17 5E−17 1E−14
CTP (Nino4) November July 0.31 (0, 1, 0) 24.39 1E−35 3E−18 1E−18 1E−14
NP March July 0.32 (0, 2, 1) 86.28 1E−33 3E−17 2E−17 2E−14

Bahawalpur AO (AAO) September May 0.35 (0, 1, 0) 72.92 4E−33 6E−17 5E−17 1E−14
AMM June May 0.3 (0, 1, 0) 79.02 4E−34 2E−17 8E−18 2E−15
EP /NP August May 0.32 (0, 1, 0) 88.10 7E−33 8E−17 3E−17 3E−15
AO/AAO October June 0.38 (0, 1, 0) 94.62 2E−33 5E−17 3E−17 1E−14
AMM June June 0.34 (0, 1, 0) 79.02 4E−34 2E−17 8E−18 2E−15
PNA May June 0.42 (0, 1, 0) 96.49 1E−33 3E−17 2E−17 2E−14
AO/AAO September July 0.46 (0, 1, 0) 91.60 5E−34 2E−17 1E−17 4E−15
NP February July 0.35 (0, 1, 0) 110.25 7E−33 9E−17 4E−17 2E−14
SOI January July 0.29 (0, 2, 1) 147.56 6E−03 8E−02 7E−02 4E+00

Barkhan AO/AAO September May 0.48 (0, 1, 0) 103.74 7E−33 8E−17 3E−17 2E−15
EP /NP August May 0.43 (0, 1, 0) 88.10 7E−33 8E−17 3E−17 3E−15
NP March May 0.36 (0, 1, 0) 101.99 4E−33 7E−17 5E−17 2E−14
AO (AAO) September June 0.36 (0, 1, 0) 72.92 4E−33 6E−17 5E−17 1E−14
EP/NP May June 0.35 (0, 2, 1) 105.13 1E−03 4E−02 3E−02 4E+00
PNA September June 0.35 (0, 1, 0) 96.49 1E−33 3E−17 2E−17 2E−14
CTP (Nino4) September July 0.32 (0, 1, 0) 91.60 5E−34 2E−17 1E−17 4E−15
NP March July 0.33 (0, 1, 0) 86.28 1E−33 3E−17 2E−17 2E−14
PNA December July 0.33 (0, 2, 1) 98.35 5E−33 7E−17 5E−17 9E−15

Khanpur EP /NP August May 0.46 (0, 1, 0) 88.10 7E−33 8E−17 3E−17 3E−15
AO (AAO) July May 0.31 (0, 1, 0) 103.47 7E−33 8E−17 3E−17 9E−15
WP August May 0.49 (0, 1, 0) 88.10 7E−33 8E−17 3E−17 3E−15
AO/AAO June June 0.27 (0, 1, 0) 111.90 9E−33 9E−17 5E−17 2E−14
NP October June 0.29 (0, 2, 1) 123.92 2E−03 5E−02 4E−02 4E−03
PNA September June 0.28 (0, 1, 0) 91.60 5E−34 2E−17 1E−17 4E−15
AO (AAO) September July 0.29 (0, 1, 0) 72.92 4E−33 6E−17 5E−17 1E−14
AMM February July 0.3 (0, 1, 0) 110.25 7E−33 9E−17 4E−17 2E−14
EP /NP May July 0.31 (0, 1, 0) 105.13 1E−03 4E−02 3E−02 4E+00

In TW procedure, we always need the parameter of Gaussian kernel function for
computing the weights. The estimation of Gaussian kernel parameter decreases the accuracy
of prediction and requiredmore investigation in the computationwhile theWBRprocedure
only utilizes the ICP of observed year. The ratios are obtained between ICP of observed year
and corresponding ensemble member. The traditional bootstrap resampling procedure is
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dissimilar from WBR procedure (Burnham & Efron, 1983) because the weight is obtained
by dividing the ratio further. The EEDP and WEDP model have generated the ensemble
members corresponding to the historical year in series while the generation of ensemble
members is not restricted to the historical year in CEDP model. Therefore, the CEDP
model is more convenient as compared to the EEDP and WEDP model. But, there is a
limitation in the CEDP model. The ensemble prediction by CEDP model required the
accurate fit of bivariate copula distribution and probability distribution for conditional
precipitation events. In contrast, ensemble prediction will not be accurate. Additionally,
these techniques can be used to further improve the study. To deal with stations which are
seasonally influenced by droughts, the seasonal drought analysis can be done instead of
monthly drought prediction.

CONCLUSION
The present analysis consists of four meteorological stations i.e., Multan, Bahawalpur,
Barkhan and Khanpur. Initially, SPI-3 was selected to define and classify the drought for
all stations. It was observed that the highest percentage of extremely dry events were in
Barkhan. In contrast, the high percentage of extremely wet events were found in Khanpur.

Later, three ensemble models are used for the monthly drought prediction. Further, two
weighting procedures i.e., TW and WBR were included in the WEDP model. Among these
three models, the performance of the CEDP model in terms of accuracy and uncertainty is
better in comparison to EEDP andWEDP for all meteorological stations. The performance
of the CEDP model indicates that the climate indices are correlated with a weather pattern
of four stations as the construction of the CEDP model based on the correlated structure
of climate index and precipitation.
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