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12 Abstract

13 Biominerals are crucial to the fitness of many organism and studies of the mechanisms of 

14 biomineralization are driving research into novel materials. Biomineralization is generally 

15 controlled by a matrix of organic molecules including proteins, so proteomic studies of 

16 biominerals are important for understanding biomineralization mechanisms. Many such studies 

17 identify large numbers of proteins of unknown function, which are often of low sequence 

18 complexity and biased in their amino acid composition. A lack of user-friendly tools to find 

19 patterns in such sequences and robustly analyse their statistical properties relative to the 

20 background proteome means that they are often neglected in follow-up studies. Here we present 

21 ProminTools, a user-friendly package for comparison of two sets of protein sequences in terms 

22 of their global properties and motif content. Outputs include data tables, graphical summaries in 

23 an html file and an R-script as a starting point for data-set specific visualizations. We 

24 demonstrate the utility of ProminTools using a previously published shell matrix proteome of the 

25 giant limpet Lottia gigantea. 

26

27
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28 Introduction

29 Mineralized structures are formed by many organisms across the tree of life including bacteria, 

30 metazoans, plants and algae (Skinner & Jahren 2007). These biominerals are critical for fitness, 

31 playing roles in support, defence, buoyancy, regulation of ion budgets and orientation among 

32 others. Proteins have been found to be associated with many biominerals, and are hypothesised 

33 to have a key role in mineral synthesis (Evans 2019a; Evans 2019b; Wang & Nilsen-Hamilton 

34 2012). In some cases the roles of such proteins is relatively well understood, and some of the 

35 best studies examples come from molluscs (Song et al. 2019). For example, the proteolytic 

36 products of the Pif protein in molluscs have been shown to bind CaCO3 crystals and induce 

37 formation of the aragonite polymorph of CaCO3 in vitro (Suzuki et al. 2009). Knock-down of 

38 the Pif gene results in disordered growth of the aragonite crystals in the nacreous layer of the 

39 shell. In other systems, well studies examples include Amelogenin from tooth enamel, Silicatein 

40 from sponge spicules and Mms6 from magnetosome synthesising bacteria (Wang & Nilsen-

41 Hamilton 2012).  However in the majority of cases the function of biomineral associated proteins 

42 remains elusive. 

43 A common workflow in biomineralization research is to first clean a mineral preparation using 

44 detergents or oxidizing agents to remove loosely associated organic matter, and subsequently to 

45 dissolve the mineral, releasing tightly mineral-associate proteins into solution that can then be 

46 analysed using proteomic methods (Marie et al. 2013b). It is generally hypothesised that these 

47 proteins are likely to be involved in mineralization, and that proximity to the site of 

48 mineralization results in their incorporation into the mineral as it grows. Some of the proteins 

49 identified may have homology to proteins of known function or recognisable domains strongly 

50 suggestive of a certain function. For example, carbonic anhydrases have been found associated 
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51 with calcium carbonate minerals in several organisms (Le Roy et al. 2014) and may aid 

52 generation of bicarbonate as a substrate for calcification. However there are generally many 

53 proteins in such data sets which lack similarity to proteins of known function (e.g. Jackson et al. 

54 2015; Kotzsch et al. 2016; Mann et al. 2006). Intriguingly, these proteins of unknown function 

55 often display unusual primary sequence characteristics, such as low complexity, biased 

56 composition and a high degree of predicted intrinsic disorder.

57 Informatic tools which allow biologists to easily investigate the global features of groups of 

58 proteins of unknown function relative to the background proteome are currently lacking. Thus 

59 many studies restrict their analysis of these proteins to noting the compositional biases or motifs 

60 which are obvious from manual inspection of the protein sequences. This method has the risk 

61 that important patterns in the data are missed and that rules are not applied consistently in 

62 identifying these patterns. Ideally the context of the proteome as a whole should also be taken 

63 into account. The more specific a feature is to the proteins of interest (POIs) the more likely it is 

64 to be involved in the specific function of those proteins. This notion is based on the well-

65 established biological principle that the primary sequence of a protein is a strong determinant of 

66 molecular function, and that proteins with similar functions tend to share regions of sequence 

67 similarity. Thus, sequence motifs shared by a group of biomineral associated proteins are more 

68 likely to be involved in the specific function of those proteins if they are rare in the background 

69 proteome than if they are commonly found motifs.  This principle is already used in various 

70 sequence analysis tools, including those seeking to identify important motifs (Wagih et al. 2016).

71 Although there are many tools available that allow researchers to investigate the properties of 

72 protein sequences in silico, including analysis of compositional bias, sequence complexity, 

73 intrinsic disorder and sequence motifs, such tools are not always easy to use. Some require 
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74 command line use, data input formats differ, some can only run on one protein at a time and most 

75 require post-processing of the output to format the data for statistical and graphical analyses in 

76 commonly used environments such as Microsoft® Excel® or R. These tools also rarely allow 

77 researchers to compare two sets of sequences.

78 Here we present ProminTools, a set of easy-to-use tools for the statistical comparison of two sets 

79 of protein sequences, available as apps in the CyVerse Discovery Environment 

80 (https://de.cyverse.org/) (Merchant et al. 2016)  or to run locally from a Docker™ container. The 

81 inputs are simply two fasta files containing the proteins of interest (POIs) and the background 

82 proteome respectively, while the outputs include data tables and an html document containing 

83 graphical summaries of the data and interactive tables for data exploration. To demonstrate the 

84 utility of these tools, we reanalyse a published data set of shell matrix proteins (SMPs) from the 

85 giant limit Lottia gigantea (Mann & Edsinger 2014). 

86 Materials and Methods

87 ProminTools structure

88 The inputs for ProminTools are two fasta formatted files: the first containing the protein set of 

89 interest (POI set), and the second the reference or background proteins (typically the predicted 

90 proteome of the organism of interest). The background proteins are used for statistical 

91 comparisons with the POI sets, allowing the user the answer the following question: ‘Are the 

92 features observe in the POI common in the background sequences or are they unusual?’.

93 ProminTools has two component programmes: “Protein Motif Finder” and “Sequence Properties 

94 Analyzer”. Both are written in Perl and R and bundled with all dependencies in DockerTM 

95 (www.docker.com) containers. They can be run from Apps within the CyVerse Discovery 

96 Environment (Merchant et al. 2016) or on a personal computer via Docker™ Desktop. The 
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97 primary outputs of the tools are data tables summarising key information from the comparison of 

98 the two sequences sets. The tools use these tables to generate an html file with a graphical 

99 summary of the information along with explanations, statistical analyses and interactive versions 

100 of certain data tables. A publication ready SVG (Scalable Vector Graphic) formatted figure is 

101 also generated by Protein Motif Finder. The R script that generates the html file from the data 

102 tables is also an output of the tools, allowing the user to reproduce the figures in the html report 

103 and to provide a starting point for further analyses specific to the data set. For licence 

104 information for all components of ProminTools the reader is referred to Data S1.

105 Analyses performed by “Protein Motif Finder”

106 Motif finding with motif-x

107 Protein Motif Finder uses the motif-x engine (Schwartz & Gygi 2005; Wagih et al. 2016) for 

108 motif finding. This engine was chosen because it breaks sequences down into their constituent 

109 motifs, by an iterative procedure that avoids oversimplification of motifs and prioritises motifs 

110 that are most enriched relative to a background sequence set. It is exhaustive for a given p-value 

111 and generates definite motifs rather than a position weight matrix, which simplifies downstream 

112 analyses and is more useful to molecular biologists. In this work it was always run with the 

113 recommended, conservative, binomial p-value of 10-6, but this parameter is user customisable in 

114 Protein Motif Finder. The motif width is also user customisable, while the minimum occurrences 

115 parameter is hard coded at a value of five. Motif-x is run via the R module rmotif-x, centred on 

116 each amino acid sequentially and the results are combined. This procedure means that some 

117 motifs are likely to be redundant. For example, if the central residue is ‘S’ and the motif width 7 

118 then the motifs ‘…S.S..’ and ‘..S.S… (where dot represents any amino acid) may both be 

119 identified, but these would be collapsed to the single motif ‘S.S’. Note that this procedure is 
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120 conservative with respect to the original p-value calculated by motif-x. Significant motifs are 

121 then enumerated in the POI and the background sequence sets, and motif counts and enrichments 

122 reported in the output tables. Downstream analyses do not rely on the motif-x p-value, but only 

123 on calculated enrichment values for the motifs.

124 Graphical representations of motif data

125 To provide a visual summary of the motif data, the motifs are represented in three wordclouds in 

126 the Protein Motif Finder output, which take into account two distinct measures of ‘importance’. 

127 The first is the number of proteins in which that motif is found. The more proteins containing the 

128 motif, the more likely it is to have general importance in the function of the group of proteins. 

129 The second measure is the enrichment of the motif. The more enriched the motif the more 

130 unusual it is and thus is more likely to be involved in the specific function of these sets of 

131 proteins. A third measure attempts to combine the previous two by scaling them equivalently and 

132 then taking the product of the scaled values (PS-value).  This measure prioritises motifs that are 

133 both highly enriched and found in a high proportion of the proteins. 

134 In the output, proteins that are biased in sequence composition are also clustered based on their 

135 motif number and motif enrichment. The distance measure for clustering was calculated as one 

136 minus the Distance Correlation (Szekely et al. 2013) for all pairwise combinations of proteins or 

137 motifs, since this method is especially robust to outliers and produces reasonable results across a 

138 variety of datasets. Hierarchical clustering was performed using the Ward.D method. In Heatmap 

139 1, the following filters are applied to select proteins and motifs for clustering: 1) Select proteins 

140 that contain a biased region (fLPS p-value < 10-20; user adjustable), 2) Remove infinitely 

141 enriched motifs. 3) Remove motifs not present in at least 3 POI proteins (if >10 proteins in POI 

142 set). 4) Select the 70 overall most enriched motifs. 5) Select proteins with a good motif based 
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143 correlation to at least one other protein (dcor > 0. 65, user adjustable). The filters for Heatmap 2 

144 are the same except that filter 3 is not applied. The same protein and motif set is displayed in 

145 Heatmap 3 as in Heatmap 2 except that motif count is displayed instead of motif enrichment. 

146 Analyses performed by “Sequence Properties Analyzer”

147 Sequence Properties Analyzer performs the following analyses:

148 Amino acid enrichment

149 Compositional bias is analysed using fLPS (Harrison 2017) and the results collated to several 

150 files described in the html output of the program.

151 Significance of sequence bias

152 To estimate the probability of obtaining the observed bias in amino acid composition in the POI 

153 set by random sampling of the background proteome, the following procedure was implemented. 

154 First the degree of bias was quantified by calculating a bias index (BI):

155 𝐵𝐼 = ∑𝐴𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 (𝑃𝑂𝐼 𝑓𝑟𝑒𝑞. ‒ 𝑃𝑟𝑜𝑡𝑒𝑜𝑚𝑒 𝑓𝑟𝑒𝑞.)2
156 Where POI freq. is the frequency of the amino acid in the POI proteins, while Proteome freq. is 

157 the frequency of the amino acid in the background sequence set.  The BI is calculated for 1000 

158 random samples of the background sequence set, each containing the same number of sequences 

159 as the POI set. A kernel density estimate of the distribution of BI is calculated, and a function 

160 approximating this distribution is generated. The area under the curve greater than the BI value 

161 of the POI set is used as an estimate of the probability of obtaining a sequence set of this degree 

162 of bias by chance, given this particular background proteome. 

163 The only program we are aware of that makes a similar calculation is Composition Profiler 

164 (Vacic et al. 2007). However this makes the assumption that all POI sequences come from the 

165 same underlying distribution of amino acid frequencies and tests whether this distribution is 
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166 significantly different from the background. ProminTools does not make this assumption, but 

167 accepts that the POI set my contain proteins with different types of bias, and thus analyses bias 

168 per se without reference to the type of bias.

169 Sequence complexity

170 The program SEG (Wootton & Federhen 1993) is used to identify low complexity regions in the 

171 datasets using default parameters, although these are customisable by the user in Sequence 

172 Properties Analyzer. For each protein, the percentage of the sequence identified as low 

173 complexity is calculated, and a Wilcoxon rank sum test with continuity correction is used to test 

174 whether there is a significant difference in the distribution of this percentage length between the 

175 POI and the background sequence set.

176 Intrinsic disorder

177 Predicted intrinsic disorder was calculated using the VSL2 predictor (Peng et al. 2006), due to its 

178 speed and good accuracy (Nielsen & Mulder 2019). This is the most time consuming step of 

179 Protein Sequence Analyzer and is thus parallelized in the implementation. For each protein, the 

180 percentage of the sequence identified as intrinsically disordered is calculated and a Wilcoxon 

181 rank sum test with continuity correction is used to test whether there is a significant difference in 

182 the distribution of this percentage length between the POI and the background sequence set.

183 Charged clusters

184 Clusters of charged amino acids are identified using the SAPS software (Brendel et al. 1992).

185 Data and methods for validation of ProminTools

186 Representative CxxC  Zn finger proteins were chosen from the Wingender database (Wingender 

187 et al. 2013) and compared to the human proteome Swissprot database accessed on the 28/05/20. 

188 For the analysis of human low complexity proteins, all models were downloaded from Ensemble 
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189 version 100. Models shorter than 100 amino acids were removed, as were models with internal 

190 stop codons, resulting in 89562 proteins that were used as the background sequence in the 

191 analysis. The foreground sequence set was the 500 most biased proteins identified using fLPS 

192 (Harrison et al. 2017). These proteins were annotated using eggNOG mapper (Huerta-Cepas et 

193 al. 2017, 2019) with parameters “taxonomic scope hominidae, -target_orthologs all --

194 seed_ortholog_evalue 0.001 --seed_ortholog_score 60 --query-cover 20”.

195 L. gigantea shell matrix proteome data

196 To illustrate the utility of the ProminTools package, we used the shell matrix proteome of the 

197 giant limpet, L. gigantea as published by Mann and Edsinger (2014)  which is a reanalysis of 

198 their original data (Mann et al. 2012). The protein identifiers were extracted from table S1 of 

199 (Mann & Edsinger 2014) and the protein sequences extracted from files 

200 Lotgi1_GeneModels_AllModels_20070424_aa.fasta and  

201 Lotgi1_GeneModels_FilteredModels1_aa.fasta which were downloaded from the JGI 

202 (https://mycocosm.jgi.doe.gov/Lotgi1/Lotgi1.home.html) on the 5/02/2020. The final set of 

203 proteins consisted of 381 sequences, and are available in Data S2. This is one less than the 

204 number of accepted identifications in (Mann & Edsinger 2014) since the protein Lotgi|172500 

205 was not available in any database.

206 Analyses of L. gigantea data using ProminTools

207 ProminTools was run locally using the shell matrix proteins as the foreground sequences and the 

208 ‘Lotgi1_GeneModels_FilteredModels1_aa.fasta’ file as the background proteome. The filtered 

209 models were chosen as they were considered likely to be a closer representation of the true 

210 proteome of L. gigantea than the ‘All Models’ set, and thus the more appropriate set for 

211 statistical comparisons.
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212 Additional analyses

213 Proteins were clustered based on motif content as an output of the Protein Motif Finder tool. To 

214 determine an optimal cluster number, manual inspection of a plot of the cindex (Hubert & Levin 

215 1976) for cluster sizes 2 – 50 was carried out. A cluster number of 8 seemed appropriate for the 

216 present work, since it captured the major patterns in the data without becoming too granular. 

217 These clusters were the input for further runs of Protein Motif Finder.

218 Sequence similarity was quantified using and all vs all pairwise BLASTp analysis, reporting the 

219 percentage identity of the top scoring high scoring pair (HSP), after applying an e-value cut-off 

220 of 0.01 and a cut-off specifying that the HSP alignment length must be at least 20% of the query 

221 length. 

222 Results

223 ProminTools provides a user-friendly method to analyse biomineralization proteomes

224 The DockerTM image containing ProminTools can be run via a GUI on the CyVerse Discovery 

225 Environment without any need for use of the command line. Runtimes on CyVerse are variable 

226 due to variable resource availability, but a typical analysis with either Protein Motif Finder or 

227 Sequence Properties Analyzer takes between 30 and 120 minutes to complete.  Although 

228 ProminTools is designed to run in a Unix environment, it can also be run on a windows PC via 

229 DockerTM Desktop with simple commands in Windows® Power Shell™ (for details see 

230 https://github.com/skeffington/Promin-tools). On a Window® 10 machine with an Intel® Core™  

231 i7-2600 3.4 GHz processer and 16 GB RAM, Protein Motif Finder completed analysing the L. 

232 gigantea data set in 11 min 30 s provided with 1 core and 2.5 GB RAM, while the Sequence 

233 Properties Analyser completed in 32 min 2 s provided with 5 cores and 5 GB RAM. The 

234 ProminTools workflow is summarised in Fig. 1.
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235 Validation of ProminTools

236 Suitability for a range of data inputs

237 To ensure stability and good performance, we have tested ProminTools on a number of 

238 published and unpublished biomineralization datasets and used synthetic data to ensure that the 

239 program deals sensibly with unusual situations, such as small numbers of POI sequences or no 

240 motifs being found. An example analysis of a second data set, of proteins from freshwater 

241 mussel shells (Marie et al. 2017), is provided in Data S3.

242 Validation with negative control protein sets

243 Five sets of 100 proteins were drawn at random from the L. gigantea proteome and each used as 

244 the POI set to run ProminTools in five separate analyses. No enriched motifs were reported in 

245 any of the analyses. In all analysis, there were no significant differences in the degree of 

246 sequence bias, sequence complexity or intrinsic disorder between the random ‘POI’ set and the 

247 background proteome. Representative analyses are provided in Data S4.

248 Validating motif retrieval in Protein Motif Finder

249 Motif finding in ProminTools relies on the motif-x motif finding engine, which has already been 

250 well validated (Schwartz and Gygi 2005). However to  ensure that there were no bugs in our 

251 post-processing of the output we spiked motifs at known frequencies into a set of protein 

252 sequences and ran Protein Motif Finder with these sequences as foreground, and the un-spiked 

253 sequences as background. The spiked motifs were recovered at the expected frequencies.

254 We also validated Protein Motif Finder on a groups of sequences containing motifs that have 

255 already been established as important for protein function.  For example CXXC class zinc finger 

256 factors are transcription factors and histone methyltransferases that bind to CpG elements via 

257 zinc fingers. The Zn binding residues consist of cysteines arranged in CGxCxxC motifs 
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258 (Wingender et al. 2013). Using a set of CXXC zinc fingers factors as the POI set and the human 

259 proteome as the background set, Protein Motif Finder correctly identified CG.C..C as the most 

260 important motif, and found it to be 194 fold enriched in these proteins relative to the background 

261 proteome (Data S5). 

262 It should be noted that not all motifs important for a protein’s function will be enriched relative 

263 to the background. For example the L..LL motif is important in protein-protein interactions that 

264 regulate transcription (Plevin et al. 2005). Using the 55 Swissprot proteins annotated as 

265 possessing an L..LL motif as the POI set and the Swissprot human proteome as background, 

266 Protein Motif Finder does not recover the L..LL motif (Data S6). This is because L..LL is 

267 relatively common in other contexts, and so is not significantly enriched in the POI set.  

268 Validating the biological meaning of clustering by motif enrichment

269 A key output of Protein Motif Finder is clustering of the POIs based on their motif enrichment. The 

270 usefulness of this clustering is based on the assumption that proteins within a cluster are likely to be 

271 involved in similar molecular processes. To test this assumption on a well annotated proteome, but 

272 focusing on biased sequences similar to those expected from biomineral associated proteins, we analysed 

273 the 500 most biased sequences from the human proteome. Of these, 303 could be annotated by eggNOG 

274 mapper (Huerta-Cepas et al. 2017) and they fell into 120 clusters when analysed with Protein Motif 

275 Finder (Data S7).  Remarkably, proteins within a cluster all shared the same eggNOG functional 

276 annotation in 117 of the clusters, even when the proteins diverged significantly in primary sequence 

277 similarity as assessed by global alignments (Table 1). Of the input proteins, 53 were collagens, and 11 

278 different types of collagen were successfully separated into separate clusters.  The members of three 

279 clusters mapping to more than one annotation  were clearly related within a cluster: two clusters contained 

280 two different types of collagen, while one cluster contained two types of epidermal growth factor-like 

281 domains. 
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282 Global properties of L. gigantea shell matrix proteome

283 Previous analyses of the L. gigantea shell matrix proteome (Mann et al. 2012; Mann & Edsinger 

284 2014; Marie et al. 2013a) had noted a tendency for the proteins to be low complexity and 

285 disordered and that some proteins were enriched in particular residues. Here, ProminTools was 

286 used to put these observations on a more quantitative footing (Data S8, Data S9) and to discover 

287 enriched sequenced motifs in the data set from Mann et al. (2014), which contained 381 proteins.  

288 G and P rich motifs were found to be enriched most frequently among the proteins (Fig. 2A). 

289 Given that we are seeking to find the motifs that are shared within a group of proteins, Protein 

290 Motif Finder excludes motifs found in fewer than four proteins from certain plots to prevent the 

291 picture being dominated by a highly enriched motif found in very few proteins. The result can be 

292 seen in Fig. 2B, where Q containing motifs displayed the greatest enrichments relative to the 

293 background proteome. For example QQP was enriched 7.5 fold while Q.N.Q was enriched 6.1 

294 fold (see data tables in Data S8 for these numbers). In general there is often a negative 

295 correlation between the number of proteins in a set containing motifs and the enrichment of those 

296 motifs. These two measures are combined (see Materials and Methods) in Fig. 2C, which 

297 emphasises motifs found in a high number of proteins with high enrichment (a high PS-value). 

298 For example, GG is found in 270 proteins and is 1.8 fold enriched, G..D in 234 proteins at 1.4 

299 fold enrichment and NG in 249 proteins at 1.53 fold enrichment (Data S8). 

300 The analysis of sequence bias and amino composition bias with Sequence Properties Analyzer 

301 was concordant with the motif finding results, in that G, P, Q and A were the most enriched 

302 amino acids (Fig. 2D). H, I, K, L, W, E and  F were found to be the most depleted relative to the 

303 background proteome. The most commonly enriched amino acids were P, G, A and C (enriched 

304 in 87, 82, 74 and 69 proteins respectively, Fig. 2E). Amino acid residues C and A are not found 
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305 among the most enriched motifs or the motifs with the highest PS-value, indicating that the 

306 proteins are sometimes enriched in an amino acid without that amino acid being embedded in a 

307 particular primary sequence context. 

308 The shell matrix proteins showed a clear tendency to contain more low complexity sequence than 

309 the background proteome (Wilcoxon rank sum test, p = 7.6 × 10-6, Fig. 2F) but there was no 

310 significant tendency for the sequences to contain a greater proportion of predicted disordered 

311 sequence than the background proteome (p = 0.1). The shell matrix protein set contained a 

312 similar proportion of proteins with negative and positive clusters of amino acids to the 

313 background proteome (Fig. 2H).

314

315 Clustering of proteins based on motif content reveals relationships not found by blast 

316 searches

317 The Sequence Properties Analyzer carries out three hierarchical clustering analyses (Data S8, 

318 Materials and Methods). Eight protein clusters were identified (Fig. 3A), six of which contained 

319 more than two proteins. To investigate the nature of each cluster, Protein Motif Finder was re-

320 run on each of the six main clusters (Data S10). Clusters 1 and 2 were riche in G containing 

321 motifs, especially NG.GG in cluster 1. Cluster 3 contained proteins rich in D containing motifs 

322 (especially D.NDD); cluster 4 in a variety of Q containing motifs; cluster 5 in C.I.P.D and 

323 C..YC..G and cluster 6 in various T and P containing motifs. By analysing the specific set of 

324 proteins in each cluster, the motifs identified are more specific to those proteins, and thus differ 

325 from the most enriched motifs in the data set as a whole displayed in Fig. 3A. For example 

326 D.NDD is the most prominent motif from the reanalysis of cluster 3, but is not among the most 
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327 enriched motifs in the global analysis of the entire data set, demonstrating the value of this 

328 iterative approach. 

329 Given the results of our validation analysis with human low complexity proteins, it can be 

330 hypothesised that proteins found within the same cluster have related function. Only one of the 

331 proteins (Lotgi1|143247, cluster 5) has an annotation:  a ‘four disulphide core domain protein’ 

332 (Pfam PF00095), suggesting that it may function as a protease inhibitor. Given the lack of 

333 annotations, it was not possible to further test the relationship between cluster membership and 

334 function  using the L. gigantea data.

335 We next asked whether the motif clusters reflected larger scale sequence similarity between the 

336 proteins within a cluster. To this end, protein sequences in each cluster were subject to an all-vs-

337 all pairwise BLASTp analysis, which is summarised in the matrices in Fig. 3C for six of the 

338 clusters. In general larger scale sequence similarity was low within clusters, with only three 

339 protein pairs from the five clusters displaying identity above 50% for the highest scoring HSP. 

340 This demonstrates that the clustering method can be used to find similarities that are not obvious 

341 from BLAST searches. 

342 Discussion

343 Proteins are a prominent part of the organic matrices of many biominerals and are thought to 

344 have a number of roles including catalysis, templating, and control of nucleation and crystal 

345 growth. Studies of biomineral associated proteins understandably often emphasise proteins with 

346 conserved domains, which lend themselves to discussions of their possible molecular functions. 

347 However most studies also identify many proteins of unknown function, many of which appear 

348 to be low complexity in nature, with biased compositions and a high proportion of intrinsic 

349 disorder. Although authors often carefully inspect their protein sequences and note sequences 
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350 that appear particularly rich in certain residues or motifs, and note the degree of disorder,  this 

351 information is rarely put in the context of the predicted proteome as a whole.  

352 Here we introduce ProminTools, a user friendly package that allows researchers to glean more 

353 information from primary sequences of proteins of unknown function and put this in the context 

354 of the background proteome. Importantly, ProminTools allows users with minimal bioinformatic 

355 skills to run a suite of analyses and produce visualization that would otherwise require a lot of 

356 scripting. The giant limpet L. gigantea has a complex shell matrix proteome for which two 

357 different data sets exist. The data analysed in the present study derives from all shell layers 

358 (Mann et al. 2012, Mann & Edsinger 2014), and is thus more complex than the second data set 

359 that is derived from the aragonite shell layers only, excluding the calcitic layers (Marie et al. 

360 2013a). 

361 ProminTools revealed a complex array of strongly enriched motifs in the Mann et al. (2014) data 

362 set, which were not uncovered in the original study. Q, P and G rich motifs were particularly 

363 prominent and the proteins could be clustered based on their motif content even when they 

364 shared little larger scale sequence similarity. Re-running Protein Motif Finder on each of these 

365 clusters revealed unique motif profiles that could be hypothesised to be important for the 

366 molecular function of proteins in the group. For example, one group was enriched in acidic (D 

367 rich) motifs, another in Q and P rich motifs and other  in G rich motifs. Interestingly, the Marie 

368 et al. study also identify a group of low complexity proteins rich in Q, suggesting that the 

369 functions of these proteins could be important for formation of all shell layers or just the 

370 aragonite layers, but that they are unlikely to be specific to the calcite layers. 

371 We hypothesise that clustering protein sequences with biased composition based on their motif 

372 enrichment patterns can be used to group proteins of related function. Although this hypothesis 
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373 has yet to be confirmed on biomineral associated protein data sets, we show that this procedure 

374 can group functionally related proteins of biased composition from humans. Additional support 

375 for the idea comes from a previous study in which accurate predictors of enzyme function were 

376 built using the motif content of protein sequences (Ben-Hur et al. 2006).

377 We found that the shell matrix proteins as a group were significantly lower in complexity than 

378 the background proteome, providing a statistical underpinning for this observation, and 

379 supporting the conclusion of Marie et al. (2013a) who noted the high proportion of low 

380 complexity sequences in their data set. The Mann et al. studies (Mann et al. 2012; Mann & 

381 Edsinger 2014) highlight several proteins in their data which have high degrees of intrinsic 

382 disorder. Here, using the Sequence Properties Analyzer we were able to demonstrate that this is 

383 not a general feature of the data set, which is not predicted to be significantly more disordered 

384 than the background proteome. This highlights the importance of the proteome context when 

385 assigning significance to protein features, and demonstrates that the generally observed 

386 correlation between protein disorder and low complexity (Mier et al. 2019) does not hold in 

387 every data set.

388 The role of low complexity regions in biomineralization has only been determined in a very few 

389 cases. For example, the enamel protein Amelogenin has a central block of hydrophobic sequence 

390 rich in P, H and Q. Intramolecular hydrophobic interactions involving this regions are thought to 

391 be critical for self-assembly of Amelogenin into nanospheres and higher order structures that 

392 regulated crystal growth (Wang & Nilsen-Hamilton 2012).  It is possible that the Q and P rich 

393 regions in the L. gigantea shell matrix proteins might have a similar role in driving self-assembly 

394 processes. 
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395 Although at present we can only speculate on the role of low complexity proteins in 

396 biomineralization, it is clear that low complexity sequences are not unique to biomineralization 

397 related proteins. Depending on the species,  22 – 36 % of residues in eukaryotic proteins fall into 

398 low complexity regions (Wootton 1994). It remains to be investigated whether the low 

399 complexity regions of biomineralization related proteins have features that set them apart from 

400 other low complexity regions in proteomes, and ProminTools could be used to investigate such 

401 questions.

402 ProminTools allows researchers to easily find patterns in their data, but it has limitations and 

403 judgement should be applied in interpreting the output. For example, patterns found by 

404 ProminTools can reflect technical biases as well as biological signals. Post-translational 

405 modifications of particular residues could affect peptide detectability and thus protein inference, 

406 leading to biases in the input data. It should also be remembered that ProminTools is primarily a 

407 tool for hypothesis generation. For example, proteins which share similar motifs can be 

408 hypothesised to perform similar molecular functions, but this may or may not be the case for a 

409 particular biological system, and experimental validation is required. ProminTools will be at its 

410 most useful when combined with other methods for spotting repeating patterns in sequences (e.g. 

411 HhpreID (Zimmermann et al. 2018), Meme (Bailey et al. 2009) or simply inspecting dot-plots) 

412 and when put in the context of additional information such as known domain content, post-

413 translational modifications, phylogenetic distributions and expression patterns. 

414 We would like to point out that ProminTools can be used for any pairwise comparison of sets of 

415 protein sequences. For examples, protein sets associated with different part of a biomineral or 

416 different developmental stages could also be compared, and if carefully carried out, cross-species 

417 comparisons could also be made. The latter could be particularly useful, since the fast evolving 
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418 nature of low complexity sequences (McDougall et al. 2013) can make it difficult to detect 

419 homology. It could also be applied to other protein sets rich in low complexity sequences, such 

420 as proteins found in pathological amyloids associated with diseases such as Alzheimer’s and 

421 Parkinson’s (Kumari et al. 2018).

422 Conclusions

423 ProminTools will help researchers generate new hypotheses about the important of particular 

424 motifs and protein chemistries in their system of interest and provide new directions for 

425 experimental work. Putting the patterns identified into the context of the rest of the proteome 

426 ensures that features that are genuinely overrepresented in the POIs are prioritised for further 

427 study.
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433 Software availability

434 ProminTools is available in two apps with graphical user interfaces from the Cyverse Discovery 

435 Environment (https://de.cyverse.org/). Users need to create an account, but then have access to a 

436 large number of tools and high performance computing. Docker images are most easily accessed 

437 from Docker Hub (https://hub.docker.com/repositories/biologistatsea/), but the user must have a 

438 (free) account.  The images can also be downloaded from FigShare (Data S11, Sequence 
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439 Properties Analyzer: https://doi.org/10.6084/m9.figshare.12670817.v1 Protein Motif Finder: 

440 https://doi.org/10.6084/m9.figshare.12667070.v1) and detailed and accessible instructions on 

441 usage are available at https://github.com/skeffington/Promin-tools.
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Table 1(on next page)

Annotations of the 10 largest clusters identified by ProminTools in an analysis of human
proteins of biased sequence composition
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1

2 Table 1:

3 Annotations of the 10 largest clusters identified by ProminTools in an analysis of human 

4 proteins of biased sequence composition.

Cluster 

ID

Cluster 

size

Identity (%) in all-

vs-all alignments

(min ; mean ; max)

eggNog annotation Proteins in cluster 

carrying this 

annotation (%)

1 21 68.9 ; 87.7; 100 Extracellular domain of unknown 

function in nidogen (entactin) and 

hypothetical proteins

100

2 19 93.4; 96.9; 100 Collagen type XI alpha 2 100

3 14 99.8; 99.9; 100 Coiled-coil 2A 100

4 13 76.2; 88.1; 100 Collagen triple helix repeat (20 

copies)

100

30 5 99.6; 99.7; 100 Nebulin repeat 100

33 5 78.0; 86.6; 99.5 Titin Z 100

39 5 57.4; 74.5; 100 Neuroblastoma breakpoint family 

member

100

40 5 94.6; 97.8; 100 WAS WASL interacting protein 

family member 1

100

41 5 67.9; 80.5; 95.9 Golgin subfamily A member 100

114 5 99.8; 99.9; 100 Neurogenic locus notch homolog 

protein 4

100

5

6
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Figure 1
Summary of ProminTools

Proteomic datasets derived from analysis of biomineralizing organisms result in a fasta file
containg the POI set which, along with the fasta file of the background proteome, make up
the inputs for the ProminTools apps. The graphical interface shown is from the Cyverse
Discovery Envronment (reproduced with permission). The outputs of the tools are detailed at
the bottom of the figure. Attributions for the biomineral images are as follows: top left -
Vittina waigiensis by H. Zell (licence: CC BY-SA 3.0), top right - Radiolarian skeleton by
Hannes Grobe (licence: CC BY 3.0), bottom left - Coccolithus pelagicus by Richard Lampitt
and Jeremy Young, The Natural History Museum, London (licence: CC BY 2.5), bottom right -
Lottia mesoleuca by H. Zell (licence: CC BY-SA 3.0).
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Figure 2
Properties of L. gigantea shell associated soluble proteome revealed by ProminTools.

Wordclouds are displayed where the height of the letter is proportional to: A the number of
proteins in the SMP set containing the motifs, B the enrichment of the motif relative to the
background proteome, and C the product of protein number and enrichment after scaling
(PS-value). D The enrichment of amino acids in the SMP set relative to the background
proteome. Values above zero indicate enrichment, and values below zero depletion. E The
number of proteins in the SMP set enriched in each amino acid. Insert is a wordcloud
summarizing the same data. F Density plot showing the distribution of the proportion of
sequence length that is low complexity for the SMP proteins (labelled POI for Proteins Of
Interest) and the background proteome. G Density plot showing the distribution of the
proportion of sequence length that is predicted to be intrinsically disordered for the SMP
proteins (POI) and the background proteome. H The proportion of sequences containing
negatively and positively charged clusters of amino acids in the SMP proteins (POI) and the
background proteome.
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Figure 3
L. gigantea shell matrix proteins can be clustered based on motif content despite low
sequence identity.

Figure 3: L. gigantea shell matrix proteins with biased composition can be

clustered based on motif content despite low sequence identity. The heatmap
displays (A) motif enrichment in the SMP set relative to the background proteome. Proteins
are clustered by their motif enrichment pattern and motifs are clustered by their distribution
amongst the proteins. Each motif is a row in the heatmap and each protein is a vertical
column. For clusters1 - 6, a wordcloud (B) representing the PS-value of the enriched motifs
are displayed in addition to a heatmap (C) representing the percentage identity between all
pairs of proteins in the cluster in an all-vs-all blastp analysis (see Materials and Methods).
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