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Background and Objective: Observational studies and experiments in medicine, pharmacology, and
agronomy are often concerned with assessing whether different methods/raters produce similar values
over the time when measuring a quantitative variable. This paper aims to describe the statistical
package lcc, for are, that can be used to estimate the extent of agreement between two (or more)
methods over the time, and illustrate the developed methodology using three real examples.

Methods: The longitudinal concordance correlation, longitudinal Pearson correlation, and longitudinal
accuracy functions can be estimated based on fixed effects and variance components of the mixed-
effects regression model. Inference is made through bootstrap confidence intervals and diagnostic can be
done via plots, and statistical tests.

Results: The main features of the package are estimation and inference about the extent of agreement
using numerical and graphical summaries. Moreover, our approach accommodates both balanced and
unbalanced experimental designs or observational studies, and allows for different within-group error
structures, while allowing for the inclusion of covariates in the linear predictor to control systematic
variations in the response. All examples show that our methodology is flexible and can be applied to
many different data types.

Conclusions: The lcc package, available on the CRAN repository, proved to be a useful tool to describe
the agreement between two or more methods over time, allowing the detection of changes in the extent
of agreement. The inclusion of different structures for the variance-covariance matrices of random effects
and residuals makes the package flexible for working with different types of databases.
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ABSTRACT14

Background and Objective: Observational studies and experiments in medicine, pharmacology, and

agronomy are often concerned with assessing whether different methods/raters produce similar values

over the time when measuring a quantitative variable. This paper aims to describe the statistical package

lcc, for are, that can be used to estimate the extent of agreement between two (or more) methods over

the time, and illustrate the developed methodology using three real examples.

Methods: The longitudinal concordance correlation, longitudinal Pearson correlation, and longi-

tudinal accuracy functions can be estimated based on fixed effects and variance components of the

mixed-effects regression model. Inference is made through bootstrap confidence intervals and diagnostic

can be done via plots, and statistical tests.

Results: The main features of the package are estimation and inference about the extent of

agreement using numerical and graphical summaries. Moreover, our approach accommodates both

balanced and unbalanced experimental designs or observational studies, and allows for different

within-group error structures, while allowing for the inclusion of covariates in the linear predictor to control

systematic variations in the response. All examples show that our methodology is flexible and can be

applied to many different data types.

Conclusions: The lcc package, available on the CRAN repository, proved to be a useful tool

to describe the agreement between two or more methods over time, allowing the detection of changes in

the extent of agreement. The inclusion of different structures for the variance-covariance matrices of

random effects and residuals makes the package flexible for working with different types of databases.
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INTRODUCTION37

Agreement indices are generally used when the same experimental unit is measured by at least two38

methods or observers (King et al., 2007). Measurements of agreement between raters or methods can be39

used in any field to explore their interchangeability considering a certain degree of agreement between the40

measurements they provide (Barnhart and Williamson, 2001; Chen and Barnhart, 2013). In biomedical41

sciences it is often necessary to study the reproducibility of continuous measurements made using specific42

diagnostic tools or methods, and that measurements can be taken over the time on the subjects of interest,43

such as in the studies of Pandit et al. (2019); Shinar et al. (2019) and Loecher et al. (2019).44

The concordance correlation coefficient (CCC) introduced by Lin (1989) is a statistic commonly45

used to measure the agreement between methods when the response is continuous. Let Y1 and Y2 be two46
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random variables with a joint normal distribution47

[
Y1

Y2

]
∼ N2

([
µ1

µ2

]
,ΣΣΣ =

[
σ2

1 σ12

σ12 σ2
2

])
.

Here the expected value of the squared difference between Y1 and Y2 can be used as an agreement value.48

However, it ranges from 0 (perfect agreement) to infinity, which makes its interpretation difficult. Lin49

(1989) proposed standardizing this agreement index so that its values lie between −1 and +1:50

ρCCC = 1−
E
[
(Y1 −Y2)

2
]

σ2
1 +σ2

2 +(µ1 −µ2)
2
=

2σ12

σ2
1 +σ2

2 +(µ1 −µ2)
2
= ρCb,

where µ1 = E(Y1), µ2 = E(Y2), σ2
1 = Var(Y1), σ2

2 = Var(Y2), and σ12 = Cov(Y1,Y2). This coefficient51

takes the value −1 when there is perfect disagreement, zero when there is no agreement, and +152

when there is perfect agreement. Moreover, ρ , the Pearson correlation coefficient (|ρ| ≤ 1), measures53

how far each observation deviated from the best-fit line (a precision measure), and Cb, the accuracy54

(0 <Cb ≤ 1), measures how far the best-fit line deviates from the 45◦ line through the origin, defined as55

Cb = 2
(
v+ v−1 +u2

)−1
, where v = σ2

1 /σ2
2 is a scale shift and u = (µ1 −µ2)/

√
σ1σ2 is a location shift56

relative to the scale (Lin, 1989). Note that Cb = 1 indicates no deviation from the 45◦ line.57

When pairs of samples (Yi1k,Yi2k),for i = 1,2, . . . ,N subjects and k = 1,2, . . .K repeated measures,58

corresponding to observations on the same subject or experimental unit over time, the use of generalized59

multivariate analysis of variance to compute a weighted version of the CCC for repeated measurements is60

recommended (Chinchilli et al., 1996). Moreover, this coefficient has also been expanded to assess the61

agreement between more than two methods (King and Chinchilli, 2001).62

When it is necessary to add extra variability sources due to within-subject measurements and/or63

other covariates in the model, the CCC can be estimated through the variance components (VC) of a64

mixed-effects model (Carrasco et al., 2009). The advantages of the mixed-effects models are that they65

give a general approach to analyse repeated measures and unbalanced data; they allow for the inclusion66

of different variance-covariance structures for both random effects and sampling errors. The restricted67

maximum likelihood (REML) approach can be used to obtain unbiased estimates of the VC.68

Nevertheless, sometimes the researcher is not interested in reducing the CCC for repeated measure-69

ments to a single value, as proposed by Carrasco et al. (2009) and Carrasco et al. (2013), but in describing70

the extent of agreement between methods over time. To do this, we can consider a linear or non-linear71

function of the time and/or covariates in the model to describe the response variable, as proposed by72

Rathnayake and Choudhary (2017) and Oliveira et al. (2018). Here, we present the implementation of73

this methodology as an R (R core Team, 2019) package lcc (Oliveira et al., 2019), which provides74

functions for estimating the longitudinal concordance correlation (LCC) between methods based on75

variance components and fixed effects using polynomial mixed-effects models. It also computes estimates76

for the longitudinal Pearson correlation (LPC), which measures the precision, and the longitudinal bias77

correction factor (LA), which provides an accuracy measure.78

The lcc() function gives fitted values and non-parametric bootstrap confidence intervals for the79

LCC, LPC, and LA statistics. Moreover, they can be estimated using different structures for the variance-80

covariance matrices of the random effects and different variance functions to model heteroskedasticity of81

within-group errors, with the option of using time as a variance covariate.82

The remainder of the paper is organized as follows: Section introduces the theoretical definition of the83

LCC. Section introduces the lcc() function input and output, describing in detail the various options as84

well the summary() and other generic methods. Section briefly discusses model specification, which85

is illustrated more extensively in Section using three real data examples. The first and third shows86

an application in biomedical science, while the second from food science was the motivation for the87

development of the methodology and software and nicely shows the utility of the approach. Finally,88

Section presents some final remarks about the lcc package.89

MODELS AND COMPUTATIONAL METHODS90

Suppose a researcher is interested in investigating the extent of agreement between two or more methods,91

indexed as j = 1,2, . . . ,J. Let N be the number of subjects in the experiment or observational study,92
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indexed as i = 1,2, . . . ,N, and suppose that each subject is observed ni times (visits) with associated93

nuisance factors and/or covariates, these could include, for example, the effect of block or group. Let94

yi jk be a realization of a random variable Yi jk measured on the i-th subject by the j-th method at time tk,95

k = 1,2, . . . ,ni, with additional subject level (nuisance) covariates xxxi. Here tk assumes values of the time96

covariate t ∈ T , where T denotes the set of measurement times. Hence, the linear mixed-effects model97

including a polynomial function of time per method, random effects of subject, as well random effects for98

as subject/time interactions, is given by99

Yi jk = γγγT xxxi +
p

∑
h=0

βh jt
h
ik +

q

∑
h=0

bhit
h
ik + εi jk,

with bbbi ∼ MVN(000,GGG) and εεε i ∼ MVN(000,RRRi) ,

(1)

where h = 1,2, . . . ,q,q+1, . . . , p is an index identifying the degree of the polynomial, with q ≤ p; Yi jk is100

the response measured on the i-th subject by the j-th method at time tik; tik represents the time (seconds,101

minutes, days, etc) at which the i-th individual was observed; γγγ is a vector of fixed effect parameters102

for the subject level covariates; βββ j =
[
β0 j,β1 j, ...,βp j

]T
is a (p+1)-dimensional vector of fixed effects103

for the j-th method; bbbi = [b0i,b1i, ...,bqi]
T

is a (q+1)-dimensional vector of random effects with mean104

vector 000 and covariance matrix GGG; εεε i is a (J×ni)-dimensional error vector assumed to be independent for105

different i and independent of the random effects, with independent entries over j and k, with mean vector106

000 and diagonal variance matrix RRRi.107

Under model (1), the longitudinal concordance correlation (LCC) function between methods j and j′,108

j 6= j′, is given by109

ρ j j′ (tk) =
tttkGGGtttT

k

tttkGGGtttT
k +

1

2

{
σ2

ε

[
g(tk,δδδ j)+g

(
tk,δδδ j′

)]
+S2

j j′ (tk)
} = ρ

(p)
j j′ (tk)C j j′ (tk) (2)

where S j j′ (tk)= tttk

(
βββ j −βββ j′

)
is the systematic difference between methods j and j′; tttT

k =
(
t0
k , t

1
k , . . . , t

q
k

)T
;110

g(·) is a variance function assumed continuous in δδδ ; δ j is a vector of variance parameters for observations111

measured by j-th method or observer. We have that ρ
(p)
j j′ (tk) is the longitudinal Pearson correlation (LPC)112

that measures how far each observation deviated from the best-fit line at a fixed time tk = t, given by113

ρ
(p)
j j′ (tk) =

tttkGGGtttT
k√[

tttkGGGtttT
k +σ2

ε g(tk,δδδ j)
][

tttkGGGtttT
k +σ2

ε g
(
tk,δδδ j′

)] .

C j j′ (tk), the longitudinal accuracy (LA), measures how far the best-fit line deviates from the 45◦ line at a114

fixed time tk = t, given by115

C j j′ (tk) =
2

v j j′ (tk)+
[
v j j′ (tk)

]−1
+u2

j j′ (tk)
,

where116

v j j′ (tk) =

√
Var

(
Yi jkl

)

Var
(
Yi j′kl

) =

√
tttkGGGtttT

k +σ2
ε g(tk,δδδ j)

tttkGGGtttT
k +σ2

ε g
(
tk,δδδ j′

)

denotes the scale shift at time tk = t, and117

u j j′ (tk) =
E
(
Yi jkl

)
−E

(
Yi j′kl

)
[
Var

(
Yi jkl

)
Var

(
Yi j′kl

)] 1
4

=
tttk

(
βββ j −βββ j′

)

{[
tttkGGGtttT

k +σ2
ε g(tk,δδδ j)

][
tttkGGGtttT

k +σ2
ε g

(
tk,δδδ j′

)]} 1
4

denotes the location shift at time tk relative to the scale (Lin, 1989; Oliveira et al., 2018). Consequently,118

when Var
(
Yi jkl

)
= Var

(
Yi j′kl

)
and E

(
Yi jkl

)
= E

(
Yi j′kl

)
then C j j′ (tk) = 1 and there is no deviation from119

the 45◦ line.120
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Estimation and Inference121

Point estimation and statistical inference for the LCC
(
ρ j j′ (tk)

)
has been proposed by Oliveira et al.122

(2018). It is estimated by replacing βββ and the variance components by their respective REML estimates:123

ρ̂ j j′ (tk) =
tttkĜGGtttT

k

tttkĜGGtttT
k +

1

2

{
σ̂2

ε

[
ĝ
(

tk, δ̂δδ j

)
+ ĝ

(
tk, δ̂δδ j′

)]
+ Ŝ2

j j′ (tk)
} .

Since the variance components are estimated using the REML approach, their estimates are asymp-124

totically normally distributed and the bias is smaller when compared to the maximum likelihood (ML)125

approach. Moreover, Oliveira et al. (2018) showed a satisfactory performance of the LCC even in settings126

with severe imbalance and only a small number of subjects (N = 20).127

A confidence interval (CI) for ρ j j′ (tk) can be constructed using a nonparametric bootstrap based on M128

(e.g. 5000) bootstrap samples with either the percentile method (recommended for N ≤ 30) or, otherwise,129

a normal approximation confidence interval, as described by Oliveira et al. (2018).130

When we use a normal approximation for the CI, the Fisher Z-transformation given by

ρ∗
j, j′ (tk) =

1

2
ln

[
1+ρ j, j′ (tk)

1−ρ j, j′ (tk)

]

should be used with the normal approximation made to the empirical distribution of ρ∗
j, j′ (tk) (Lin, 1989).

Consequently, the confidence limits can be estimated using the bootstrap estimator of ρ∗
j, j′ (tk) for a fixed

time tk = t given by

ρ̂∗
j, j′ (tk = t) =

1

2M

M

∑
m=1

ln


1+ ρ̂

(m)
j, j′ (t)

1− ρ̂
(m)
j, j′ (t)


 , m = 1,2, . . . ,M,

where
{

ρ̂
(m)
j, j′

}
are the estimates from the M bootstrap samples. The standard deviation of the bootstrap

distribution of ρ̂∗
j, j′ (tk) for a fixed time tk = t given by

ŜE
∗
j, j′ (tk = t) =

√√√√√ 1

M−1

M

∑
m=1


1

2
ln


1+ ρ̂

(m)
j, j′ (t)

1− ρ̂
(m)
j, j′ (t)


− ρ̂∗

j, j′ (t)




2

.

Thus, an approximate bootstrap confidence interval of level (1−α) for ρ j, j′ is [LB,UB], where131

LB =
exp

{
2
[
ρ̂∗

j, j′ (tk = t)− z(1− α
2 )

ŜE
∗
j, j′ (tk = t)

]}
−1

exp
{

2
[
ρ̂∗

j, j′ (tk = t)− z(1− α
2 )

ŜE
∗
j, j′ (tk = t)

]}
+1

and132

UB =
exp

{
2
[
ρ̂∗

j, j′ (tk = t)− z α
2

ŜE
∗
j, j′ (tk = t)

]}
−1

exp
{

2
[
ρ̂∗

j, j′ (tk = t)− z α
2

ŜE
∗
j, j′ (tk = t)

]}
+1

,

where z α
2

and z(1− α
2 )

denote the α
2

and (1− α
2
) percentiles of the standard normal distribution.133

On the other hand, the CI based on the percentile method uses the percentiles of the bootstrap

distribution of ρ̂ j, j′ (tk = t) directly and is given by

(
ρ̂ j, j′(α/2)

(tk = t) , ρ̂( j, j′)(1−α/2)
(tk = t)

)
≈
(

ρ̂
(m)
j, j′(α/2)

(tk = t) , ρ̂
(m)
( j, j′)(1−α/2)

(tk = t)
)
,

where ρ̂
(m)
( j, j′)(α/2)

(tk = t) and ρ̂
(m)
( j, j′)(1−α/2)

(tk = t) are the (100× α
2
)−th and (100×1− α

2
)−th empirical134

percentiles of the ρ̂
(m)
j, j′ (tk = t) values, m = 1,2, . . . ,M. If the bootstrap distribution of ρ∗

j, j′ (tk = t) is135

approximately normal, then both proposed methods will give very similar confidence intervals as N136

increases.137
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Inference for C j j′ (tk) can be performed in a similar way as to that presented for the LCC. Since

C( j, j′)(1−α/2)
(tk = t) belongs to the interval [0,1], we suggest the use the arc-sine transformation

C∗
( j, j′)(1−α/2)

(tk = t) = sin−1
√

C j j′ (tk)

instead of the Fisher Z-transformation, nor logistic transformation (used by Oliveira et al. (2018)) to

approximate the distribution of C( j, j′)(1−α/2)
(tk = t) by a normal distribution. Thus, the confidence limits

can be estimated using the bootstrap estimator of C∗
j, j′ (tk) for a fixed time tk = t given by

Ĉ∗
j, j′ (tk = t) =

1

M

M

∑
m=1

sin−1
√

Ĉ
(m)
j, j′ (t), m = 1,2, . . . ,M,

and standard deviation of the bootstrap distribution of Ĉ∗
j, j′ (tk) for a fixed time tk = t is given by

ŜE
∗
C j, j′

(tk = t) =

√
1

M−1

M

∑
m=1

[
sin−1

√
Ĉ
(m)
j, j′ (t)−Ĉ∗

j, j′ (t)

]2

.

Therefore, an approximate bootstrap confidence interval of level (1−α) for Ĉ j, j′ is [LBC,UBC], where138

LBC = sign
[
Ĉ∗

j, j′ (tk = t)− z(1− α
2 )

ŜE
∗
C j, j′

(tk = t)
]{

sin
[
Ĉ∗

j, j′ (tk = t)− z(1− α
2 )

ŜE
∗
C j, j′

(tk = t)
]}2

and139

UBC = sign
[
Ĉ∗

j, j′ (tk = t)− z α
2

ŜE
∗
C j, j′

(tk = t)
]{

sin
[
Ĉ∗

j, j′ (tk = t)− z α
2

ŜE
∗
C j, j′

(tk = t)
]}2

,

where z α
2

and z(1− α
2 )

denote the (α
2
) and (1− α

2
) quantiles of the standard normal distribution. Bootstrap140

percentile intervals are calculated in the obvious way from the bootstrap values Ĉ
(m)
j, j′ (t), m = 1,2 . . . ,M.141

OVERVIEW OF THE PACKAGE LCC AND R SYNTAX142

This section provides some details on the implementation of the function lcc and explains its technical143

arguments, whose default settings were carefully chosen. The package is freely available for download144

from the CRAN website https://CRAN.R-project.org/package=lcc, and installation can be performed145

using146

R> install.packages("lcc")147

R> library(lcc)148

The lcc package has 21 arguments that are briefly summarised in Table 1.149

Table 1. Input arguments for LCC package

Argument Type Description Default Required

data data.frame Specifies the input dataset Yes

resp Character

string

Name of the response variable Yes

subject Character

string

Name of the subject variable Yes

method Character

string

Name of the method variable Yes

time Character

string

Name of the time variable Yes

Continued on next page
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Table 1 – continued from previous page

Argument Type Description Default Required

interaction Logical an option to estimate the interaction

effects between method and time. If

TRUE the interaction effects are es-

timated. If FALSE only the main

effects of time and method are esti-

mated

TRUE No

qf Numeric An integer specifying the degree of

the polynomial time trends, usually

1, 2 or 3 (0 is not allowed).

1 No

qr Numeric An integer specifying terms hav-

ing random effects to account for

subject-to-subject variation, such

that qr≤qf, and qr=0means there

is just a random intercept.

0 No

covar Character vec-

tor

Names of the covariates (factors

and/or variables) to include in the

model as fixed effects, e.g. block,

group, etc.

NULL No

gs Character

string

Name of method level which repre-

sents the gold-standard.

first level No

pdmat Function Standard classes of positive-definite

matrix structures available in the

nlme package.

pdSymm No

var.class Function Standard classes of variance func-

tion structures used to model the

variance structure of within-group

errors using covariates.

NULL No

weights.form Formula An one-sided formula specifying a

variance covariate and, optionally,

a grouping factor for the variance

parameters in the var.class.

If var.class = varIdent,

the form "method", (or ∼ 1 |

method), or "time.ident" (∼
1 | time), must be used. If

var.class = varExp, the form

"time" (∼ time), or "both"

(∼ time | method), must be

used.

NULL No1

time lcc List Regular sequence for time variable

merged with specific or experimen-

tal time values used for LCC, LPC,

and LA predictions.

NULL No

ci Logical An optional non-parametric boost-

rap confidence interval for the LCC,

LPC and LA statistics. If TRUE con-

fidence intervals are calculated and

printed in the output.

FALSE No

Continued on next page

1Required when var.class is specified.
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Table 1 – continued from previous page

Argument Type Description Default Required

percentileMet Logical an optional method for calculating

the non-parametric bootstrap inter-

vals. If FALSE the normal approxi-

mation method is used. If TRUE the

percentile method is used.

FALSE No2

alpha Numeric Confidence level for the CI. 0.05 No2

nboot Numeric An integer specifying the number of

bootstrap samples.

5000 No2

show.warnings Logical an optional argument that shows the

number of convergence errors in the

bootstrap samples. If TRUE shows

in which bootstrap samples the er-

rors occurred. If FALSE shows the

total number of convergence errors.

FALSE No

components Logical An option to estimate the LPC and

LA statistics. If TRUE the estimates

and confidence intervals for LPC

and LA are printed in the output. If

FALSE provides estimates and con-

fidence intervals only for the LCC

statistic.

FALSE No

REML Logical The estimation method. If TRUE the

model is fit by maximizing the re-

stricted log-likelihood. If FALSE

full maximum likelihood is used.

TRUE No

lme.control List A list of control values passed

to the estimation algorithm to re-

place the default values of the func-

tion lmeControl available in the

nlme package.

empty list No

We present a more detailed description of some arguments below:150

1. data: must be a data frame containing the following variables: response, subject identification,151

method, and time;152

2. method: name of the method variable in the dataset. The lcc package recognizes the first level153

of the variable associated with this argument as the gold-standard method, and then compares it154

with all other levels;155

3. qr: when we specify qr = 0 a random intercept is included in the polynomial model while qr156

= 1 specifies random intercepts and slopes. If qr = qf = q, with q ≥ 1, all polynomial terms157

are specified to have random effects at the individual level.158

4. time lcc: a named list with values for arguments time, from, to, and n used in the time lcc()159

function to generate a regular sequence merged with specific or experimental time values of the160

time variable used for LCC, LPC and LA predictions. Argument time is a vector of specific or161

experimental time values of a given length, where the experimental time values are used as default;162

from and to are used to define, respectively, the starting and end values of the time variable, and163

n is used to define the desired length of the sequence. We recommend a grid ttt = (t1, t2, . . . , tn∗)
T

of164

n∗ points in T to construct the agreement curve and confidence intervals. In practice, n∗ between165

30 and 50 is generally adequate. Example:166

2It can only be specified when ci = TRUE
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R> Time <- seq(0,20,1)167

R> str(tk <- time_lcc(time=Time, from=min(Time), to=max(Time),168

+ n=30))169

num [1:49] 0 0.69 1 1.38 2 ...170

5. pdmat: the lcc package provides six standard classes of positive-definite matrix structures that171

can be included in the model to estimate the LCC, LPC and LA statistics. Available standard172

classes are pdSymm, pdLogChol, pdDiag, pdIdent, pdCompSymm, and pdNatural. More173

information about these classes are available in Pinheiro and Bates (2000).174

6. var.class: a class of variance functions that are used to model the variance structure of within-175

group errors using covariates (Pinheiro and Bates, 2000). We generalize this class as176

Var
(
εi jk

)
= σ2

ε g(tk,δδδ ) , (3)

where g(·) is the variance function assumed continuous in δδδ ; tk is the time covariate and δδδ is a177

vector of variance parameters. The lcc package provides two different standard variance functions178

classes that are included in the nlme library (Pinheiro et al., 2017).179

The first one is the varIdent class that represent a variance model with different variances for180

each level of a stratification variable s, s = 1,2, . . . ,S, given by181

Var
(
εi jk

)
= σ2

ε δ 2
si jk

.

As we have S+1 parameters to represent S variances, we need to add the restriction δ1 = 1, and182

consequently δ ′
s∗ = δs∗/δ1, s∗ = 2,3, . . . ,S and δ ′

s∗ > 0. Here each level of method/observer or time183

represents a stratum of a homogeneous subgroup.184

The second variance function is an exponential function of the variance covariate, the varExp185

class, represented as186

Var
(
εi jk

)
= σ2

ε exp
(

2δsi jk
tk

)

where δsi jk
is unrestricted, so the variance model (4) allows Var

(
εi jk

)
to increase or decrease over187

time.188

7. weights.form: a varFunc class object, representing a constructor to the form argument in189

the nlme library. The weights.form argument is based on a one-sided formula specifying a190

variance covariate and, optionally, a grouping factor for the variance parameters. Moreover, this191

argument must be specified only when var.class is specified as well.192

The first class varIdent represents a variance model with different variances for each level of193

the grouping factor and has two options of weights.form in the lcc package:194

(a) "method": specifies a variance model with different variances for each level of factor195

method/observer and is given by196

Var
(
εi jk

)
= σ2

ε δ 2
method j

, j = 1,2, . . . ,J,

where g(method j,δ j) = δ 2
method j

is the variance function, and δmethod j
is the variance param-197

eter for observations measured by the jth method. The form argument in the varFunc is198

form = ∼ 1|method;199

(b) "time.ident": specifies a variance model with different variances for each level of200

stratification in the time variable and is given by201

Var
(
εi jk

)
= σ2

ε δ 2
tk
, k = 1,2, . . . ,K,

where g(tk,δk) = δ 2
tk

is the variance function, and δtk is the variance parameter for obser-202

vations measured at time tk = t, with t ∈ [t0, tK ] and t0 ≥ 0. The form argument in the203

varFunc class is form = ∼ 1|time.204
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The class varExp represents a variance model whose variance function g(.) is an exponential205

function of the variance covariate. This class has also two options of weights.form in the lcc206

package:207

(a) "time": specifies a variance model given by208

Var
(
εi jk

)
= σ2

ε exp(2δ tk),

where the variance function g(tk,δ ) = exp(2δ tk) is an exponential function of the time tk = t;209

and δ is the variance parameter. The form argument in the varFunc class is form = ∼210

time;211

(b) "both": specify a variance model for each level of the factor method given by212

Var
(
εi jk

)
= σ2

ε exp
(

2δmethod j
tk

)
, j = 1,2, . . . ,J,

where the variance function g(tk,method j,δ ) = exp
(

2δmethod j
tk

)
is an exponential function213

of the time tk = t for each level of method; and δmethod j
is the variance parameter for the jth214

level of method. The form argument in the varFunc class is form = ∼ time|method;215

The lcc package uses the REML method as default because it is less biased, less sensitive to outliers,216

and deals more effectively with high correlations when compared to standard ML estimation (Harville,217

1977; Giesbrecht and Burns, 1985). However, we offer the user the possibility to change the estimation218

method to ML because this approach should be used when comparing models with nested fixed effects but219

with the same random effects structure. Furthermore, the package depends on the nlme (Pinheiro et al.,220

2017), and ggplot2 (Wickham, 2009) packages, and imports some functions from packages gdata221

(Warnes et al., 2017), gridExtra (Auguie and Antonov, 2017), and hnp (Moral et al., 2017).222

Generic functions and outputs223

A typical call of the lcc function is similar to a call to lme as the LCC estimation is based on a224

mixed-effects regression model. Several variations in the specifications of linear mixed-effects models to225

estimate the LCC are possible, and we can query the fitted lcc object through different generic functions.226

Table 2 gives details of a set of S3 generic extractor functions for objects of class lcc.227

The output of the summary() function includes the values of Akaike Information Criterion (AIC)228

(Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978), log-likelihood value, and a229

goodness of fit measurement gof, which is calculated using the concordance correlation coefficient (Lin,230

1989) between fitted values extracted from the mixed-effects model and observed values. This measure231

can be used, with care, to describe the overall agreement between observed and fitted values, where a232

value equal to −1 represents a perfect disagreement between them, zero represents no agreement, and233

+1 perfect agreement. Clearly, a high model performance is related with a high positive value of gof234

(generally between 0.8-1).235

The fitted curves of LCC, LPC, or LA values versus the time covariate, as well as their boot-236

strap confidence intervals, can be visualised through the lccPlot() function, which is specified as237

lccPlot(obj, type, control), where obj is an object of class lcc; type specifies required238

output that could be type="lcc" for the LCC, the default, type="lpc" for the LPC, or type="la"239

for the LA statistics; and control is a list of control values or character strings returned by the240

plotControl() function used to modify the plot structure. This function uses the ggplot2 package241

internally to build the final plot, where predicted values are joined by lines, sampled observations are242

represented by circles, and confidence intervals by a ribbon (grey as default) defined by its lower and243

upper bounds.244

SPECIFYING MODELS IN THE LCC() FUNCTION245

In the lcc package, to describe the LCC we need to specify the subject, response, method and time246

variables, a polynomial mixed-effect model, and the data. These arguments are specified through an247
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Table 2. Generic functions for use with objects of class lcc

Function Description

print() a simple printed display

summary() returns an object of class summary.lcc containing the relevant summary

statistics (which has a print() method). If type = "lcc" it provides

information about ρ j j′ (tk), and if components = TRUE in the lcc()

function, also provides information about ρ
(p)
j j′ (tk), and C j j′ (tk). If type =

"model" it provides additional information about the linear mixed-effects fit.

The default is type = "model".

anova() Summarise and compare likelihoods of fitted models from lcc objects

coef() The fixed effects estimated and corresponding random effects estimates are

obtained at subject levels less or equal to N. The resulting estimates are returned

as a data frame, with rows corresponding to subject levels and columns as

coefficients.

fitted() Fitted values for ρ̂ j j′ (tk), ρ̂
(p)
j j′ (tk), or Ĉ j j′ (tk). The output depends on the

argument type, where type = "lcc" (the default), type = "lpc", or

type = "la" gives output for ρ̂ j j′ (tk), ρ̂
(p)
j j′ (tk), or Ĉ j j′ (tk), respectively.

getVarCov() Returns the variance components estimates.

residuals() Extract residuals (response, Pearson, and normalized), defaulting to Pearson.

residuals

ranef() Extract the estimated random effects.

vcov() Returns the variance-covariance matrix of the fixed effects.

AIC() Compute the Akaike criterion

BIC() Compute the Bayesian criterion

logLik() Extract the log-likelihood

plot() A series of six built-in diagnostic plots to evaluate the assumptions underlying

the linear mixed-effects regression model. Comprises: a plot of conditional

residuals against fitted values; plot of conditional residuals over time; box-plot

of residuals given subject; observed against fitted values; normal Q-Q plot

with simulation envelopes for the conditional errors; and normal Q-Q plot with

simulation envelopes for the random effects are provided.

easy-to-use syntax. Consider a first degree polynomial model with random intercepts for a continuous248

dependent variable y observed on N subjects (i = 1,2, . . . ,N) using J methods at times tk (k = 1,2, . . . ,ni).249

Such model can be written as250

Yi jk = β0 j +b0i +β1 jtk + εi jk, with

b0i ∼ N(0,σ2
b0
) and εi jk ∼ N

(
0,σ2

ε

)

Thus, the LCC based on fixed effects and variance components at time tk is given by251

ρ j j′ (tk) =
σ2

b0

σ2
b0
+σ2

ε +
1
2
[β01 −β02 +(β11 −β12) tk]

2

and the syntax to specify this model in the lcc() function is252

R> library(lcc)253

R> data(simulated_hue_block)254

R> m1 <- lcc(data = simulated_hue_block, subject = "Fruit",255

+ resp = "Hue", method = "Method",time = "Time",256

+ qf = 1, qr = 0)257

where qf = 1 represents the polynomial degree for the fixed effects, and qr = 0 specifies a random258

intercepts model. Here, the names of the columns in the dataframe data are supplied as strings to the259

arguments of the lcc() function.260
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Suppose now that the experimental design in the previous example was a randomized complete block261

design. Then, the fixed effect of blocks can be included in that model by specifying the covar argument,262

i.e.263

R> m2 <- update(m1, covar ="Block")264

If we suppose different variances for each level of the method factor, the corresponding model would265

include a variance function such as g(δ j) = σ2
ε δ 2

j , and the syntax would then be266

R> m3 <- update(m2, var.class = varIdent, weights.form = "method",267

+ lme.control = list(opt="optim"))268

To visualize the summary and graphical output of model m3we call summary(m3) and lccPlot(m3),269

respectively.270

Many other possible models can be built to estimate the LCC through the function lcc() options,271

see Section . Model selection can be performed using likelihood-ratio tests for nested models; or using272

the AIC or BIC criteria, e.g.273

R> AIC(m2, m3); BIC(m2, m3); anova(m2, m3)274

EXAMPLES275

We will now use three example datasets, drawn from Lloyd et al. (1998), Martin et al. (2002) and Oliveira276

et al. (2018), to illustrate the implemented functions in the following sections of this paper. The first277

dataset is an observational study of a cohort of 82 adolescent females to assess the percentage body fat278

and the aim is to determine the agreement profile between measurements made over time using a skinfold279

caliper and dual-energy X-ray absorptiometry. The second is a canonical example from agriculture and280

was the motivation for the original development of these methods; here the goal is to investigate if a281

colorimeter can compete with a digital scanner in measuring the peel hue of papayas over time. The282

final example is again related to medicine and the goal here is to verify the agreement between cortisol283

concentration measured on patients every hour and every two hours.284

Percentage body fat dataset285

These data came from a longitudinal observational study conducted as part of the Penn State Young286

Women’s Health Study (Lloyd et al., 1998). Percentage body fat was measured using skinfold calipers and287

dual-energy X-ray absorptiometry (DEXA) on a cohort of 82 adolescent white females attending public288

schools in Pennsylvania. The initial visit occurred at age 12 (baseline) and subsequent visits occurred289

every six months, in which one skinfold caliper and one DEXA measurement were taken to assess the290

percentage of body fat. As the skinfold measurement is the most frequently used method for laboratory291

and field studies, the objective was to determine the agreement profile between the skinfold caliper292

and DEXA measurements. Figure 1 shows that the agreement between skinfold and DEXA apparently293

decreases over the visits. King et al. (2007) explained that this phenomenon may occur because the

12.5 (Visit 2) 13 (Visit 3) 13.5 (Visit 4)
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Figure 1. Scatter plot of body fat data, where the panels represent visits, the blue line is the best fit line,

and the black line is the line of equality.
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skinfold method is only capable of detecting subcutaneous fat, while DEXA detects subcutaneous, breast,295

lower body and visceral fat. Moreover, female adolescents may have a considerable fat increase in breast,296

lower body and/or visceral fat over this age range (King et al., 2007). Consequently, this reinforces the297

interest in estimating the agreement profile between these methods for the body fat measurements over298

ages ranging from 12.5 to 13.5 years old, rather than summarizing it in a single coefficient as proposed299

by King et al. (2007). Hence, we created a new variable called TIME given by 12× (age−12), which300

represents the time in months after the first visit (baseline).301

Now let yi jk be the measurement taken on the i-th individual, by the j-th method at the k-th visit. We

then fit a random intercepts and slopes linear regression model, given by

yi jk = β0 j +b0i +
(
β1 j +b1i

)
tk + εi jk

bbb = [b0i,b1i]
T ∼ N2 (000,GGG) and εi jk ∼ N

(
0,σ2

ε

)
,

(4)

where vech(GGG) =
[
σ2

b0
,σb01

,σ2
b1

]T

(vech(·) is the half-vectorization of a symmetric matrix GGG formed302

from only the lower triangular part). Using model (4), we estimate the LCC, LPC and LA statistics as well303

as their 95% bootstrap confidence intervals based on 10,000 pseudo-samples using the lcc() function:304

R> data(bfat, package = "cccrm")305

R> library(dplyr)306

R> bfat <- bfat %>%307

+ mutate(VISITNO = replace(VISITNO, VISITNO == 2, 12.5)) %>%308

+ mutate(VISITNO = replace(VISITNO, VISITNO == 3, 13)) %>%309

+ mutate(VISITNO = replace(VISITNO, VISITNO == 4, 13.5)) %>%310

+ mutate(SUBJECT = factor(SUBJECT)) %>%311

+ mutate(MET = factor(MET, labels = c("1 hour", "2 hours")))312

R> bfat$TIME <- 12 * (bfat$VISITNO - 12)313

R> m.bfat.1 <- lcc(data = bfat, subject = "SUBJECT", resp = "BF",314

+ method = "MET", time = "TIME", qf = 1, qr = 1,315

+ components = TRUE, ci = TRUE, nboot = 10000)316

Convergence error in 951 out of 10000 bootstrap samples.317

The output of model m.bfat.1 indicates that in 951 (9.51%) of the pseudo-samples, the likelihood318

maximization algorithm failed to converge, where most of these failures were a consequence of specific319

bootstrap sample patterns. An alternative procedure to decrease the percentage of convergence failures320

is by increasing the iteration limit and/or changing the optimization method from nlminb to optim.321

In the lcc() function, the user can include a list of optimisation control additional arguments in the322

lme.control() function:323

R> m.bfat.2 <- update(m.bfat.1, lme.control = list(opt = "optim"))324

Convergence error in 72 out of 10000 bootstrap samples.325

The output of m.bfat.2 shows a lower number of failures (0.72%) compared with the previous326

approach. We proceed to examine the bootstrap confidence intervals computed for the LCC, LPC and LA:327

R> summary(m.bfat.2, type = "lcc")328

Longitudinal concordance correlation model fit by REML329

AIC BIC logLik330

2182.068 2215.59 -1083.034331

332

gof: 0.9201333

334

Lower and upper bound of % bootstrap confidence interval335

Number of bootstrap samples:336

337

DEXA vs. skinfold338

$LCC339

Time LCC Lower Upper340
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1 6 0.6653516 0.5687779 0.7395459341

2 12 0.5589258 0.4516374 0.6442955342

3 18 0.4588008 0.3353932 0.5599172343

344

$LPC345

Time LPC Lower Upper346

1 6 0.8065578 0.7415331 0.8558988347

2 12 0.7826493 0.7092871 0.8378992348

3 18 0.7620551 0.6676806 0.8300397349

350

$LA351

Time LA Lower Upper352

1 6 0.8249273 0.7431156 0.8898124353

2 12 0.7141458 0.6201347 0.7923521354

3 18 0.6020573 0.4934167 0.6961643355

We may then plot the LCC, LPC, and LA with their respective confidence intervals by executing356

R> lccPlot(m.bfat.2)357

R> lccPlot(m.bfat.2, type = "lpc")358

R> lccPlot(m.bfat.2, type = "la")359

The estimates of LCC, LPC and LA, their confidence intervals, and figures indicate that the agreement360

and accuracy profiles between the skinfold caliper and DEXA measurements decrease over time, while361

the precision profile, represented by LPC, remains constant (Figure 2). Therefore, a first conclusion is362

that the agreement profile decreases over time because the accuracy is decreasing.363
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Figure 2. Estimate and 95% bootstrap confidence interval for the (a) longitudinal concordance

correlation (LCC); (b) longitudinal Pearson correlation (LPC); and (c) longitudinal accuracy (LA)

between percentage body fat measured on adolescent girls by skinfold caliper and DEXA. Points

represent (a) the sample CCC, (b) sample Pearson correlation, and (c) sample accuracy.

Moreover, there is a moderate to weak agreement profile, where the greatest LCC estimate was 0.6654364

at age 12.5 (95% CI: [0.5688,0.7395]) and the smallest LCC estimate was 0.4588 at age 13.5 (95% CI:365

[0.3354,0.5599]). This result reinforces the discussion presented by King et al. (2007), who provided366

physiological explanations for this phenomenon due to fact that the skinfold method is not capable to367

detect breast, lower body and visceral fat, which increases over this age range. Clearly, as the skinfold368

method detects less fat than the other, the accuracy between them tends to decrease since the expected369

value difference is greater (Figure 2(c)). The concordance correlation coefficient between fitted values of370

the mixed-effects model and observed values is presented as goodness of fit (gof) and was approximately371

0.92. This result shows that the model can reproduce the observed values quite well.372

The papaya peel hue dataset373

In commercial fruit classification, one of the most important variables is the peel hue because it is used to374

determine fruit ripeness (Mendoza and Aguilera, 2004; Oliveira et al., 2017). This is very important to375
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plan harvesting procedures. In an experiment described in Oliveira et al. (2018), the hue component was376

measured for a sample of 20 papaya fruits using a flat-bed scanner (HP Scanjet G2410) and a colorimeter377

(Minolta CR-300) (Konica Minolta, 2003). The hue of each fruit was measured daily using both devices378

for a period of 15 days, where four equidistant points on the equatorial region were observed using a379

colorimeter, and 1,000 points over the same region were observed using a scanner. The circular mean380

hue was calculated for the ith fruit, i = 1,2, . . . ,N, measured by the jth method, j = 1,2 at time tik,381

k = 1,2, . . . ,ni . As the multivariate von Mises distribution of the hue is highly concentrated around its382

overall mean, we assume that its distribution can be treated as a normal distribution with mean µh̄ and383

covariance matrix RRR = IIIσ2
ε .384

The aim of the agreement study here was to determine whether the scanner can reproduce the mean385

hue measurements taken by the colorimeter on the same fruit over time. The colorimeter is faster and386

easier to use than a flatbed scanner. Additionally, each image obtained with the scanner needs to processed387

by an image manipulation program to select the object and extract its pixel-by-pixel information. Our388

major interest here is in the longitudinal accuracy profile, because high values over time would suggests389

that the fruit’s topography does not influence the measurements taken by the scanner.390

We start by making a plot of individual profiles grouped by measurement device, as well as a scatterplot391

of the hue data (Figure 3). We fit a second-degree polynomial model over time for each fruit considering392

all observations taken by both devices, and obtain the 95% confidence intervals for the coefficients (Figure393

3(c)). Apparently, there is a moderate agreement between the scanner and the colorimeter, which increases394

as the mean hue decreases. However, this could be due to the smaller number of fruits at the end of the395

experiment (fruits that presented disease had to be dropped out of the study).396

R> data(hue)397

R> hue_wide <- dcast(hue, Fruit + Time ˜ Method, value.var="H_mean")398

R> p1 <- ggplot(hue_wide, aes(x = Colorimeter, y = Scanner)) +399

+ geom_point(alpha = 0.7, colour = "black", fill = "gray", size = 1) +400

+ geom_abline(intercept = 0, slope = 1) +401

+ geom_smooth(se = FALSE, method = "lm")402

R> p1 +labs(y = "Scanner", x = "Colorimeter")+403

+ theme(legend.position = "none", aspect.ratio = 1,404

+ axis.line.x = element_line(color="black", size = 0.5),405

+ axis.line.y = element_line(color="black", size = 0.5))406

R> p2 <- ggplot(hue, aes(y = H_mean, x = Time, group = Fruit)) +407

+ facet_wrap(˜ Method) + geom_line(aes(color = Fruit))408

R> p2 +labs(y = "Mean Hue", x = "Time (Day)")+409

+ theme(legend.position = "none", aspect.ratio = 1,410

+ axis.line.x = element_line(color="black", size = 0.5),411

+ axis.line.y = element_line(color="black", size = 0.5))412

R> m.hue.1 <- lmList(H_mean ˜ poly(Time, 2, raw = TRUE)| Fruit, hue)413

R> plot(intervals(m.hue.1))414

Let yi jk be the peel hue measured on fruit i, using method j at time point k. We start by fitting a second415

degree polynomial mixed-effects model with random intercepts, linear and quadratic coefficients, written416

as417

yi jk = β0 j +b0i +
(
β1 j +b1i

)
tk +

(
β2 j +b2i

)
t2
k + εi jk,

bbb = [b0i,b1i,b2i]
T ∼ N3 (000,GGG) and εi jk ∼ N

(
0,σ2

ε

)
,

(5)

where vech(GGG) =
[
σ2

b0
,σb01

,σb02
,σ2

b1
,σb12

,σ2
b2

]T

. Under the model (5), the LCC is given by418

ρ j j′ (tk) =
tttkGGGtttT

k

tttkGGGtttT
k +σ2

ε +
1

2
S2

j j′ (tk)
.

We can fit this model to estimate the LCC, LPC and LA statistics as well as to compute their 95% bootstrap419

confidence intervals based on 10,000 pseudo-samples using the lcc() function directly:420
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Figure 3. (a) Scatterplot of hue data considering all repeated measurements with a blue line representing

the best fit line and the black one the line of equality, (b) Individual profiles of the peel hue of 20 papaya

fruits measured by a colorimeter and a scanner, and (c) individual 95% confidence intervals for second

degree polynomial coefficients fitted to the data on each fruit considering all methods together

R> m.hue.2 <- lcc(data = hue, subject = "Fruit", resp = "H_mean",421

+ method = "Method", time = "Time", qf = 2, qr = 2,422

+ ci = TRUE, nboot = 10000, components = TRUE)423

Convergence error in 3074 out of 10000 bootstrap samples.424

The model used to estimate ρ j j′ (tk) as well as its sampled and fitted values can be extracted by425

using summary(m.hue.2, type = "model") and summary(m.hue.2, type = "lcc"),426

respectively. Moreover, a graphical representation of fitted values and confidence intervals for LCC, LPC427

and LA can be obtained by executing428

R> lccPlot(m.hue.2)429

R> lccPlot(m.hue.2, type = "lpc")430

R> lccPlot(m.hue.2, type = "la")431

Apparently, the estimated LCC increases over time (Figure 4(a)). However, note that it is necessary to432

check whether the model assumptions were fulfilled because the estimates for the LCC and its bootstrap433

confidence intervals may be biased under a misspecified model. We therefore checked (i) the normality434

assumption for the errors, by producing a normal plot of the within-group standardized residuals (Figure435

S1(a)), which indicates that this assumption for the within-group errors is almost plausible, and is not far436

from a normal distribution; ii) the homoscedasticity over time was evaluated via a plot of the standardized437

residuals versus time (Figure S1(b)), which indicates an apparent residual correlation for observations438

taken by the colorimeter and greater between-subject variance for observations taken by the scanner439

(Figure S2); iii) the normality assumption for the random effects (Figure S1(c)), which are verified by440

producing a normal plot for b0i, b1i and b2i. Additionally, the goodness of fit (gof) was 0.992, indicating441

a high concordance among the model fitted values and observed values. Thus, we update the model442

m.hue.2 to include different variances for each level of the factor “method”, where the variance function443

is given by:444

Var
(
εi jk

)
= σ2

ε δ 2
j , with j = 1,2.

15/24PeerJ reviewing PDF | (2020:03:46792:0:2:NEW 17 Mar 2020)

Manuscript to be reviewed



●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

0.00

0.25

0.50

0.75

1.00

0 5 10

Time

L
C

C

Scanner vs. Colorimeter

(a)

●

●

●

●

●

●

●

●

●
● ●

● ● ●

●

0.00

0.25

0.50

0.75

1.00

0 5 10

Time

L
P

C

Scanner vs. Colorimeter

(b)

●
●

●
●

●

● ●

●
●

●

● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 5 10

Time

L
A

Scanner vs. Colorimeter

(c)

Figure 4. Estimate and 95% bootstrap confidence interval for the (a) longitudinal concordance

correlation (LCC); (b) longitudinal Pearson correlation; and (c) longitudinal accuracy between

observations measured by the scanner and the colorimeter with points that represent the (a) sample CCC,

(b) sample Pearson correlation coefficient, and (c) sample accuracy, using model (5)

To ensure identifiability we assume that δ1 = 1. We also created a regular sequence from the time variable445

that can be used to make predictions446

R> lcc_time <- with(hue, list(time = Time, from =min(Time),447

+ to=max(Time), n=50))448

This model can be specified in the lcc() as449

R> m.hue.3 <- update(m.hue.2, var.class = varIdent, weights.form = "method",450

+ time_lcc = lcc_time,451

+ lme.control = lmeControl(opt = "optim"))452

Convergence error in 981 out of 10000 bootstrap samples.453

As models m.hue.2 and m.hue.3 are nested, we can use the likelihood ratio to test the hypothesis454

H0 : δ 2
2 = 1 versus Ha : δ 2

2 6= 1:455

R> anova(m.hue.2, m.hue.3)456

Model df AIC BIC logLik Test L.Ratio p-value457

1 13 1938.125 1994.107 -956.0625458

2 14 1934.920 1995.207 -953.4598 1 vs 2 5.205331 0.0225459

The result shows that we reject H0 in favour of Ha at a significance level of α = 0.05, that is, the460

inclusion of the function g(δ j) = δ 2
j was significantly important in explaining the extra variability461

between observations taken at different times.462

Moreover, the gof between fitted and observed values for m.hue.3 model has, practically, the same463

value as presented for the m.hue.2 model.464

R> summary(m.hue.3, type = "lcc")$gof465

[1] 0.9915905466

Although the parameter δ 2
2 was important to explain the variability by method, we can see in Figure467

S3 that the model assumptions were still not completely fulfilled because there is a possible correlation468

among residuals for the colorimeter methodology. However, this model is more plausible than the first469

one. The sample semivariogram estimate is presented in Figure S3(b) and it appears to vary non-randomly470

around 0.9. Further studies involving the inclusion of correlation structures for the within-group residuals471

to compute the longitudinal concordance correlation function are still in development.472

The agreement profile changes over time, being smaller at the beginning of the experiment and473

increasing to values close to 1 (Figure 5). If we consider values above 0.80 for the lower bound of the CI474

as an indication for interchangeability between the use of the two methods, the colorimeter could be used475

from the 12th day onwards.476
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Figure 5. Estimate and 95% bootstrap confidence interval for the (a) longitudinal concordance

correlation (LCC); (b) longitudinal Pearson correlation; and (c) longitudinal accuracy between

observations measured by the scanner and the colorimeter with points that represent the (a) sample CCC,

(b) sample Pearson correlation coefficient, and (c) sample accuracy, using the model that estimates

different variances for each method

The blood draw dataset477

The blood draw dataset was used as an example in the cccrm package developed by Carrasco et al. (2013).478

This dataset comes from a study conducted by the Asthma Clinical Research Network (ACRN) (Martin479

et al., 2002). In this double-blinded clinical trial, 144 subjects were randomized to one of six inhaled480

corticosteroid combinations, and the primary aim of the study was to estimate dose-response curves with481

respect to adrenal suppression. After two weeks, the subjects were admitted for overnight testing once a482

week, for the next five weeks (visits). Blood samples were collected hourly between 8pm and 8am. Then,483

the plasma cortisol area under the curve (AUC) was calculated using the trapezoidal rule. A secondary484

objective here was to assess the agreement of the results from blood sampling performed hourly or every485

two hours, when calculating the plasma cortisol AUC. As an example, we used all individual profiles486

whose expected value can be described using a second or lower degree polynomial mixed-effects model:487

R> data(bdaw, package = "cccrm")488

R> bdaw$SUBJ <- as.factor(bdaw$SUBJ)489

R> bdaw$MET <- as.factor(bdaw$MET)490

R> levels(bdaw$MET) <- c("1 hour", "2 hours")491

R> length(unique(bdaw$SUBJ))492

R> library(nlme)493

R> fit_list <- lmList(AUC ˜ poly(VNUM, 4) | SUBJ, data = bdaw)494

R> int <- intervals(fit_list)495

R> zero_included <- function(x) {496

+ flag <- min(x) < 0 & max(x) > 0497

+ return(flag)498

+ }499

R> selected_subj<- names(500

+ which(apply(int[,,4], 1, zero_included) &501

+ apply(int[,,5], 1, zero_included)))502

R> bdaw_subset <- subset(bdaw, SUBJ %in% selected_subj)503

The scatterplot of the AUC taken every two hours as a function of the AUC taken each hour and plots of504

the 19 selected individual profiles are presented in Figure 6.505

R> bdaw1 <- bdaw_subset %>%506

+ filter(MET == "1 hour")507

R> bdaw2 <- bdaw_subset %>%508

+ filter(MET != "1 hour")509

R> p1 <- ggplot(bdaw_subset, aes(y = AUC, x = VNUM, group = SUBJ,510

+ color = SUBJ)) +511

+ geom_line(size = 0.6) + facet_wrap(˜MET)512

17/24PeerJ reviewing PDF | (2020:03:46792:0:2:NEW 17 Mar 2020)

Manuscript to be reviewed



R> p1 +labs(y = "AUC", x = "Visits") +513

+ theme(legend.position = "none", aspect.ratio = 1,514

+ axis.line.x = element_line(color="black", size = 0.5),515

+ axis.line.y = element_line(color="black", size = 0.5))516

R> p2 <- ggplot(bdaw1, aes(y = bdaw2$AUC, x = bdaw1$AUC)) +517

+ geom_point() +518

+ geom_smooth(method = "lm", se = FALSE) +519

+ geom_abline(intercept = 0, slope = 1)520

R> p2 +labs(y = "AUC every 2 hours", x = "AUC every 1 hour")+521

+ theme(legend.position = "none", aspect.ratio = 1,522

+ axis.line.x = element_line(color="black", size = 0.5),523

+ axis.line.y = element_line(color="black", size = 0.5))524

(a) Scatter plot

1 hour 2 hours

3 4 5 6 7 3 4 5 6 7

4

5

6

Visits

A
U

C

(b) Subject profiles

Figure 6. (a) Scatterplot of the blood draw data considering all repeated measurements (best fit line in

blue and equality line in black), and (b) individual profiles of the plasma cortisol AUC calculated from

measurements taken every hour and every two hours.

There seems to be a moderate to strong agreement between the plasma cortisol AUC measurements525

from blood draw samples taken hourly and every two hours (Figure 6(a)). Furthermore, we can also see526

high variability between subjects and that the AUC decreases over time for some subjects (Figure 6(b)).527

We begin by fitting a first degree polynomial model with a subject random intercept and slope model.528

R> m.bw.1 <- lcc(data = bdaw_subset, subject = "SUBJ",529

+ resp = "AUC", method = "MET", time = "VNUM",530

+ qf = 1, qr = 1)531

R> summary(m.bw.1, type = "lcc")$gof532

[1] 0.8850628533

This model gives only a moderate fit to the data and this is confirmed by the estimated CCC between534

fitted and sampled values of 0.885 (Figure 7(c)). Two possible reasons are (i) we need a higher degree535

polynomial mixed model to correctly describe some subject profiles, and/or (ii) a possible heteroscedastic-536

ity across time, potentially caused by three somewhat different subject profiles, that should be included in537

the model (7(b)). In addition, the normality assumptions for the within group error and random effects538

were easily checked by producing the normal plot with simulation envelope (7(e)) and seem to be broadly539

plausible.540

R> plot(m.bw.1, which = c(1, 2, 4, 5, 6))541

We mow fit a second degree polynomial model with random subject effects for all coefficients and542

compute the 95% bootstrap confidence intervals based on 10.000 bootstrap samples for LCC, LPC and543

LA components.544

R> m.bw.2 <- update(m.bw.1, qf = 2, qr = 2, components = TRUE,545

+ time_lcc = list(from = 3, to = 7, n = 50),546
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(a) Residuals versus fitted values (b) Residuals versus visits (c) Residuals versus visits

(d) Normal Q-Q Plot (e) Normal Q-Q Plot (random effects)

Figure 7. (a) plot of standardized residuals versus fitted values, (b) standardized residuals versus visits;

(c) observed values versus fitted values; (d) Normal Q-Q plot with 95% simulation envelop for the

conditional residuals; and (e) normal Q-Q plot with 95% simulation envelop for random effects

+ ci = TRUE, nboot = 10000, show.warnings = TRUE,547

+ lme.control = lmeControl(msMaxIter = 200,548

+ msMaxEval = 600, maxIter = 200))549

Convergence error in 0 out of 10000 bootstrap samples.550

The summary of the mixed effects model used to estimate LCC, LPC and LA is presented below:551

R> summary(m.bw.2)552

Linear mixed-effects model fit by REML553

Data: Data554

AIC BIC logLik555

33.93831 75.73247 -3.969153556

557

Random effects:558

Formula: ˜fmla.rand - 1 | subject559

Structure: General positive-definite560

StdDev Corr561

fmla.rand(Intercept) 3.1753653 fm.(I) fd=qr=T562

fmla.randpoly(time, degree = qr, raw = TRUE)1 1.3857944 -0.986563

fmla.randpoly(time, degree = qr, raw = TRUE)2 0.1404521 0.961 -0.991564

Residual 0.1269293565

566

Fixed effects: resp ˜ fixed - 1567

Value Std.Error DF t-value p-value568

fixed(Intercept) 6.0147 0.75167 166 8.0018 0.0000569

fixedmethod2 hours 0.0471 0.26203 166 0.1796 0.8576570

fixedPoly1 -0.0277 0.32744 166 -0.0847 0.9326571
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fixedPoly2 -0.0101 0.03315 166 -0.3046 0.7611572

fixedmethod2 hours:Poly1 0.0107 0.11083 166 0.0967 0.9231573

fixedmethod2 hours:Poly2 -0.0017 0.01101 166 -0.1500 0.8809574

Correlation:575

fxd(I) fxdm2h fxdPl1 fxdPl2 f2h:P1576

fixedmethod2 hours -0.174577

fixedPoly1 -0.986 0.167578

fixedPoly2 0.961 -0.160 -0.991579

fixedmethod2 hours:Poly1 0.172 -0.989 -0.169 0.165580

fixedmethod2 hours:Poly2 -0.168 0.966 0.168 -0.166 -0.993581

582

Standardized Within-Group Residuals:583

Min Q1 Med Q3 Max584

-2.97645030 -0.48398412 0.03947773 0.59922913 1.87267383585

586

Number of Observations: 190587

Number of Groups: 19588

Now we can test the hypotheses

H0 : σ2
b0
> 0,σ2

b1
> 0,σb12

> 0,σ2
b2
= σb02

= σb12
= 0 vs. Ha : D is positive definite

which is equivalent to testing whether the additional variance components of the model m.bw.2 in589

relation to m.bw.1 are equal to zero:590

R> m.bw.3 <- update(m.bw.1, qf = 2)591

R> anova(m.bw.3, m.bw.2)592

Model df AIC BIC logLik Test L.Ratio p-value593

m.bw.3 1 10 207.642 239.792 -93.821594

m.bw.2 2 13 33.938 75.732 -3.969 1 vs 2 179.70 <.0001595

and these results clearly show that those additional variance components are important. Furthermore,596

the CCC between fitted and observed values also indicates that model m.bw.2 fits better than model597

m.bw.1, and m.bw.3.598

R> summary(m.bw.1, type="lcc")$gof599

[1] 0.8850628600

R> summary(m.bw.2, type="lcc")$gof601

[1] 0.9830078602

R> summary(m.bw.3, type="lcc")$gof603

[1] 0.8856218604

Figure 5 shows the fitted LCC, LPC, and LA for concentration of plasma cortisol AUC between605

measurements taken every hour and taken every 2 hours and their respective 95% confidence intervals.606

R> lccPlot(m.bw.2, control = list(scale_y_continuous = c(0.85, 1)))607

R> lccPlot(m.bw.2, type = "lpc",608

+ control = list(scale_y_continuous = c(0.85, 1)))609

R> lccPlot(m.bw.2, type = "la",610

+ control = list(scale_y_continuous = c(0.85, 1)))611

These results show that even though the trend across time is essentially linear at the population level, there612

is a non-linear trend at the individual level to be more investigated. We can observe that the fitted values613

and confidence intervals for the LA component were very close to 1 over time, indicating a very high614

accuracy between methods (Figure 8(c)). Consequently, the LCC values depend almost exclusively on the615

LPC, which indicates a possible problem related to the precision between methods over time, suggesting616

the use of blood sampled every hour, rather than every two hours, is desirable for this group of patients.617

It is worthy to note that, as the diagnostic seems broadly plausible for the second degree mixed effects618
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Figure 8. Estimate and 95% bootstrap confidence interval for (a) longitudinal concordance correlation

(LCC); (b) longitudinal Pearson correlation; and (c) longitudinal accuracy for the plasma cortisol AUC

between measurements taken every hour and taken every 2 hours. In addition, points that represent the

sample CCC, sample Pearson correlation coefficient, and sample accuracy, respectively

polynomial model (m.bw.2), under this model the LCC, LPC, and LA are fourth degree polynomials619

functions of the time variable.620

Additionally, as the lcc() function includes the interaction between time and method as default621

through the argument interaction = TRUE, we can test if the interaction effect is necessary using,622

for example, the following code:623

R> m.bw.4 <- lcc(data = bdaw_subset, subject = "SUBJ",624

+ resp = "AUC",method = "MET", time = "VNUM",625

+ qf = 2, qr = 2, REML = FALSE, interaction = FALSE)626

R> m.bw.5 <- update(m.bw.4, interaction = TRUE)627

R> anova(m.bw.4, fit.bw5)628

Model df AIC BIC logLik Test L.Ratio p-value629

m.bw.4 1 11 -2.5416 33.176 12.271630

m.bw.5 2 13 1.2332 43.445 12.383 1 vs 2 0.22520 0.8935631

As the p-value was 0.8935, we can conclude that there is no interaction effect and, consequently, the632

fitted curves for each level of method over time can be considered parallel. Thus, all of these examples633

show that our methodology is very flexible and can be applied to many different data types, but the634

user should be careful about avoiding overfitting. We have also created a Shiny app (https://prof-635

thiagooliveira.shinyapps.io/lccApp/) using simulated data in order to stimulate people to learn more about636

the LCC and verify how each parameter’s value can affect the estimation of the LCC, LPC, and LA.637

COMPARISON BETWEEN THE LCC AND CCCRM PACKAGES638

In this section we review the cccrm R package proposed by Carrasco et al. (2013) to estimate the CCC for639

repeated or non-repeated measures data and discuss how this package differs from our package lcc. We640

can use the ccclon() and ccclonw() functions to estimate the CCC for repeated measures (CCCrm)641

and these were the first ones of this type available for R. Both functions estimate the CCC based on642

variance components of a mixed-effects model for longitudinal data, however, the difference between643

them is that ccclonw() uses a non-negative definite matrix of weights between different repeated644

measurements (Carrasco et al., 2009).645

These functions have been introduced to produce a value that summarizes the interchangeability646

between methods in relation to all of their measurements, rather than by modeling the agreement as a647

function over time (Carrasco et al., 2009). On the other hand, the lcc() function in package lcc was648

developed to capture changes in the extent of the agreement profile between methods. Furthermore, the649

lcc package also provides estimates and confidence intervals for LPC and LA that are important statistics650

to make inferences on both the precision and accuracy of the measurements, respectively, and how they651
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affect the LCC at different time points, allowing the evaluation the interchangeability between methods652

over time.653

We now estimate the CCCrm, using package cccrm, between the scanner and the colorimeter654

measurements of the papaya peel hue dataset:655

R> library(cccrm)656

R> data(hue, package = "lcc")657

R> ccclon(hue,"H_mean","Fruit","Time","Method")658

CCC estimated by variance components:659

CCC LL CI 95% UL CI 95% SE CCC660

0.83767698 0.72520268 0.90660774 0.04486742661

The estimate of the CCCrm shows a moderate/poor agreement between the methods, suggesting662

that the digital image analysis of the equatorial peel region should be not used to compute the mean663

hue. However, suppose that the researcher had stipulated the following condition: “we would only take664

measurements on the equatorial region using a colorimeter if the lower band of confidence interval is665

greater than or equal to 0.90”. Thus, based on the lower band of the CCCrm (0.725), the researcher should666

not use the colorimeter to compute the mean hue. On the other hand, the lower band of the LCC (Figure667

5) indicates that the papaya’s equatorial region can be adequately sampled through four equidistant points668

using a colorimeter from the ninth day. Clearly, this conclusion is only valid under the same experimental669

conditions.670

DISCUSSION671

The package lcc provides a convenient and versatile tool for estimation and inference about the LCC,672

LPC, and LA. The estimation of these three statistics provides a complete evaluation of the agreement673

between methods over time (Oliveira et al., 2018). These statistics are also very appealing for graphical674

illustration.675

The package supports balanced or unbalanced (dropouts) experimental designs or observational676

studies, multiple methods, inclusion of covariates in the linear predictor to control systematic variation in677

the response, and the inclusion of different variance-covariance structures for random-effects and residuals.678

Residual diagnostic and goodness of fit can be evaluated easily via the generic function plot(), which679

provides up to six built-in diagnostic plots. Furthermore, the anova(), AIC(), and/or BIC() functions680

can be used to aid in model selection.681

Statistical inference for the estimators of ρ j j′ (tk), ρ
(p)
j j′ (tk), and C j j′ (tk) can be obtained using bootstrap682

confidence intervals based on approximations of their empirical distributions by the normal distribution,683

or from percentiles of their bootstrap sampling distribution. These methods are, however, computationally684

intensive.685

To the best of our knowledge, there is no package available to estimate the extent of longitudinal686

agreement between methods. The lcc package can be viewed as an extension of the R and SAS cccrm687

package developed by Carrasco et al. (2013). This package handles the time as a factor in the model, and688

computes the concordance correlation coefficient, which can be viewed as a measure that summarises the689

interchangeability between methods in relation to all their measurements.690

The importance in estimating the LPC, as a measure of precision, and the LA, as a measure of691

accuracy, was demonstrated in Section (Figure 5). In particular, both of these statistics can be used jointly692

to determine if a moderate or small agreement between methods at time tk = t is related to a precision693

or an accuracy problem, as suggested by Lin (1989); Barnhart and Williamson (2001); Lin (1992); Ma694

et al. (2010). In the papaya hue example, the moderate LCC is highly influenced by a moderate LPC,695

suggesting that if we increase the number of points observed with the colorimeter on the equatorial region696

up to day 10, the colorimeter will probably be able to reproduce the measurements taken by the scanner.697

Future studies involve the determination of the sample size over time based on the least acceptable LCC,698

assuming we can accept up to a certain amount of loss in the LPC and in the LA, as discussed by Lin699

(1992).700

Finally, all examples discussed in Section show that our methodology is flexible, and can be applied701

to many different data types. One limitation of the lcc package is that, for the time being, the covar702

argument only allows for including fixed-effect covariates in the linear predictor. We plan to update our703
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package in the near future to handle with the inclusion of fixed-effects and random-effects covariates, as704

well as interaction effects.705

CONCLUSION706

The lcc package implements methods to estimate the LCC, LPC and LA functions as well as their707

bootstrap confidence intervals. In this package, we included different structures for the variance-covariance708

matrices of random-effects and residuals, allowing estimation of the extent of longitudinal agreement709

between methods under different assumptions. Functions plot(), for diagnostics, summary() and710

lccPlot(), for numerical and graphical summaries, respectively, and anova(), AIC(), BIC(), for711

model selection, make the package flexible and easy to use. Furthermore, the mixed-effects model based712

approach to compute the LCC allows us to work with both balanced and unbalanced experimental designs713

and observational studies.714
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