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Background. Simulating vegetation distribution is an effective method for identifying vegetation
distribution patterns and trends. The primary goal of this study was to determine the best simulation
method for a vegetation in an area that is heavily affected by human disturbance.

Methods. We used climate, topographic, and spectral data as the input variables for four machine
learning models (random forest (RF), decision tree (DT), support vector machine (SVM), and maximum
likelihood classification (MLC)) on three vegetation classification units (vegetation group (I), vegetation
type (II), and formation and subformation (III)) in Jing-Jin-Ji, one of China’s most developed regions. We
used a total of 2,789 vegetation points for model training and 974 vegetation points for model
assessment.

Results. Our results showed that the RF method was the best of the four models, as it could effectively
simulate vegetation distribution in all three classification units. The DT method could only simulate
vegetation distribution in units I and II, while the other two models could not simulate vegetation
distribution in any of the units. Kappa coefficients indicated that the DT and RF methods had more
accurate predictions for units I and II than for unit III. The three vegetation classification units were most
affected by six variables: three climate variables (annual mean temperature, mean diurnal range, and
annual precipitation), one geospatial variable (slope), and two spectral variables (Mid-infrared ratio of
winter vegetation index and brightness index of summer vegetation index). Variables Combination 7,
including annual mean temperature, annual precipitation, mean diurnal range and precipitation of driest
month, produced the highest simulation accuracy.

Conclusions. We determined that the RF model was the most effective for simulating vegetation
distribution in all classification units present in the Jing-Jin-Ji region. The RF model produced high
accuracy vegetation distributions in classification units I and II, but relatively low accuracy in
classification unit III. Four climate variables were sufficient for vegetation distribution simulation in such
region.
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16 Abstract

17 Background. Simulating vegetation distribution is an effective method for identifying 

18 vegetation distribution patterns and trends. The primary goal of this study was to determine the 

19 best simulation method for a vegetation in an area that is heavily affected by human disturbance. 

20 Methods. We used climate, topographic, and spectral data as the input variables for four 

21 machine learning models (random forest (RF), decision tree (DT), support vector machine 

22 (SVM), and maximum likelihood classification (MLC)) on three vegetation classification units 

23 (vegetation group (I), vegetation type (II), and formation and subformation (III)) in Jing-Jin-Ji, 

24 one of China’s most developed regions. We used a total of 2,789 vegetation points for model 

25 training and 974 vegetation points for model assessment.

26 Results. Our results showed that the RF method was the best of the four models, as it could 

27 effectively simulate vegetation distribution in all three classification units. The DT method could 

28 only simulate vegetation distribution in units I and II, while the other two models could not 

29 simulate vegetation distribution in any of the units. Kappa coefficients indicated that the DT and 

30 RF methods had more accurate predictions for units I and II than for unit III. The three 

31 vegetation classification units were most affected by six variables: three climate variables 

32 (annual mean temperature, mean diurnal range, and annual precipitation), one geospatial variable 

33 (slope), and two spectral variables (Mid-infrared ratio of winter vegetation index and brightness 

34 index of summer vegetation index). Variables Combination 7, including annual mean 

35 temperature, annual precipitation, mean diurnal range and precipitation of driest month, 

36 produced the highest simulation accuracy.

37 Conclusions. We determined that the RF model was the most effective for simulating vegetation 

38 distribution in all classification units present in the Jing-Jin-Ji region. The RF model produced 

39 high accuracy vegetation distributions in classification units I and II, but relatively low accuracy 
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40 in classification unit III. Four climate variables were sufficient for vegetation distribution 

41 simulation in such region.

42

43 Introduction

44 Vegetation is an essential component of terrestrial ecosystems and landscapes (Editorial 

45 Committee of Vegetation Map of China, Chinese Academy of Science, 2007). Environmental 

46 research, resource management, and conservation planning require vegetation distribution maps 

47 (Franklin, 2010) to better understand, use, and monitor vegetation. Vegetation patterns and 

48 distributions are affected by the climate (Chen et al., 2015; Zhang et al., 2018) and other 

49 disturbances, particularly those caused by changes in land use (Hansen et al., 2013; Wehkamp et 

50 al., 2018). Human disturbances, such as industrialization, urbanization, population growth, land 

51 use change for agricultural use, etc., strongly influence the environment by greatly altering 

52 vegetation patterns, making exact mapping a significant challenge (Xie, Sha, & Yu, 2008; Zhou 

53 et al., 2016).

54 Field surveys, the traditional method used to map vegetation, are costly and labor-intensive 

55 (Newell & Leathwick, 2005; Zhou et al., 2016). Mapping using remote sensing data is also a 

56 popular method that has been used over the last 30 years (Xie, Sha, & Yu, 2008). This method 

57 makes it possible to obtain a wide range of reliable data from remote sensing images, and it 

58 updates vegetation boundaries by visually interpreting images and field surveys (Zhang et al., 

59 2008). However, determining vegetation units and their boundaries by visual interpretation can 

60 produce inaccurate results. Researchers may get different results from the same images for the 

61 same study areas (Bie & Beckett, 1973; Pfeffer, Pebesma, & Burrough, 2003). Furthermore, field 

62 survey and remote sensing methods manually draw vegetation unit boundaries based on climate, 

63 elevation, and soil type information, which can be inaccurate in transition areas (Zhang et al., 

64 2008). Using simulation models in combination with field and remote sensing data may be an 

65 effective alternative for mapping vegetation.

66 Changes in the environment can affect vegetation composition, structure, function, and spatial 

67 distribution. Environmental variables have been used to simulate the global distribution of 

68 vegetation (Dilts et al., 2015; Mod et al., 2016). Simulation models are usually developed to test 

69 how environmental variables control vegetation distribution (Guisan & Zimmermann, 2000). 

70 Modern remote sensing data and software make it more convenient than ever before to produce 

71 predictive vegetation maps (Franklin, 1995).

72 Predictive vegetation mapping uses environmental variables and various models based on 

73 niche theory and gradient analysis to visualize communities in geographic space (Dilts et al., 

74 2015, Lany et al., 2019). Other methods based on statistics and machine learning have also been 

75 used to simulate vegetation distribution. Predictive vegetation mapping includes various 

76 statistical methods such as the generalized linear model, the generalized additive model, and 

77 multivariate statistical approaches (Lany et al., 2019; Prasad, Iverson, & Liaw, 2006). Recently, 

78 machine learning modeling methods have been used to map the distribution of both vegetation 

79 communities and individual species. These methods include the support vector machine (SVM), 
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80 decision tree (DT), and artificial neural network (Guisan & Zimmermann, 2000; Hastie, 

81 Tibshirani, & Friedman, 2009; Zhou et al., 2016). These machine learning models have fewer 

82 limitations and can produce more reliable results than traditional vegetation modeling methods 

83 (Hastie, Tibshirani, & Friedman, 2009). Advanced machine learning techniques can integrate 

84 spectral and spatial predictors and improve classification accuracy by retaining important 

85 information about vegetation composition and structural differences (Sesnie et al., 2010). 

86 Machine learning models efficiently and cost-effectively produce vegetation maps without the 

87 general inaccuracies caused by visual interpretation (Franklin, 2010).

88 The Jing-Jin-Ji region, also known as the Beijing-Tianjin-Hebei urban agglomeration, is the 

89 center of northern Chinese politics, culture, and economy. Because of its extension, it faces 

90 significant problems such as unbalanced regional development and the struggle between 

91 economic growth and limited resources. The region’s larger cities, including Beijing and Tianjin, 

92 have large populations, developed economies, and abundant educational resources. However, 

93 these big cities face issues of limited natural resources and serious ecological and environmental 

94 pollution. In particular, Beijing’s large population requires limited resources such as water, land, 

95 and vegetation (Wang & Gong, 2018). Breaking up administrative divisions may be the best 

96 method to coordinate regional development (Wang et al., 2019). The new Xiong’an area located 

97 in Hebei province is being constructed to relocate some of Beijing’s population. The 

98 development of areas like Xiong’an is affected by the surrounding natural environment. To better 

99 integrate the environmental carrying capacity and socioeconomic development of the Jing-Jin-Ji 

100 region, including the new Xiong’an area, accurate vegetation maps with temporal resolution are 

101 necessary. The most updated vegetation map of the Jing-Jin-Ji region is the Vegetation Map of 

102 the People’s Republic of China (VMC), with a scale of 1:1,000,000 (Editorial Committee of 

103 Vegetation Map of China, Chinese Academy of Science, 2007). Most of its data come from a 

104 field survey conducted between 1980 and 1990, meaning its temporal and spatial scales are both 

105 outdated.

106 In this study, we integrated geospatial, climate, and spectral data to simulate vegetation 

107 distribution through four different models across three vegetation classification units. This 

108 research was different from the research of Zhou et al. (2016). Firstly, the research area of this 

109 research was the Jing-Jin-Ji region located in the North China Plain and affected by high social-

110 economic disturbance, while the Qilian Mountain in the research of Zhou et al. is characterized 

111 by complex terrain, but without high social-economic disturbance. Secondly, the predictive 

112 variables as well as the combinations of these variables were different from the research of Zhou 

113 et al. (2016). Thirdly, we compared four model methods for simulating distribution of vegetation 

114 in three vegetation classification levels, while only three models were used for simulation in two 

115 vegetation classification levels in the research of Zhou et al. (2016). Our primary objectives were 

116 to: (1) determine the best modeling method for vegetation affected by high socioeconomic 

117 disturbance, (2) create an improved vegetation map of the Jing-Jin-Ji region, (3) determine the 

118 predictive abilities of different models across different vegetation classification units, and (4) 

119 determine which variables enhanced the classification accuracy for vegetation mapping.
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120

121 Materials & Methods

122 Study area

123 The Jing-Jin-Ji region is located in the northern part of the North China Plain. Its location ranges 

124 from 113°04′ to 119°53′E and 36°01′ to 42°37′N and is bordered by Taihang Mountain in the 

125 west, Yanshan Mountain in the north, and the Bohai Sea in the east. The region includes the 

126 Beijing, Tianjin, and Hebei provinces (Fig. 1). Jing-Jin-Ji has a population of approximately 110 

127 million people and covers an area of approximately 216,000 km2 (Wang et al., 2019). The region 

128 is a temperate monsoon climate zone with an elevation range of -14 to 2,837 m (Fig. 1). The 

129 annual precipitation ranges from 305 to 711 mm, with increased precipitation at lower altitudes. 

130 The annual mean temperature ranges from -3 to 14°C, with colder averages at higher elevations. 

131 The amount of precipitation in the region gradually decreases moving from the southeast to the 

132 northwest, while temperature changes show the reverse pattern.

133

134 Vegetation and training data

135 The VMC, completed in 2007 based on field survey data, included eight vegetation groups (I), 

136 15 vegetation types (II), and 75 formations and subformations (III) from the Jing-Jin-Ji region. 

137 However, some of the map’s vegetation unit areas are very small and difficult to distinguish. To 

138 ensure that enough training and assessment point data can be randomly selected in units II and 

139 III, we selected eight units I, 12 units II, and 39 units III from the study area (Table 1). 

140 Cultivated vegetation are mainly distributed in low areas with an altitude range of -14 to 254 m 

141 and an annual mean temperature range of 7 to 14℃. Major cultivated plants include winter wheat 

142 and coarse grains. Scrub and grass-forb communities are mainly distributed in the north, in 

143 elevations ranging from 254 to 1,440 m.

144 We obtained model training and assessment data on vegetation composition from field surveys 

145 and other publications. We collected a total of 3,763 vegetation points, with 2,789 of those used 

146 for model training and 974 used for model assessment. Each unit III had at least 80 vegetation 

147 points, with at least 60 of those used for model training and 20 used for model assessment. The 

148 model training and assessment data were randomly selected for each unit III. Additionally, we 

149 increased the credibility of the model assessment by first rasterizing the vector VMC onto the 

150 same grid as the modeled data, and then assessing the data using the Kappa coefficient (Landis & 

151 Koch, 1977; Weng & Zhou, 2006; Zhou et al., 2016). 

152

153 Geospatial, climate, and spectral data 

154 We derived geospatial variables, including elevation, slope, and aspect, from the 30 m resolution 

155 Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM; Zhao et al., 2018). 

156 We then resampled these data to a 500×500 m grid cell size using the cubic technique in ArcGIS 

157 10.3 (Wu et al., 2019). 

158 We downloaded the climate data, including 19 bioclimatic variables, at ~1 km resolution from 

159 WorldClim (Fick & Hijmans, 2017) at http://worldclim.org/. These climate data were also 
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160 resampled to a 500×500 m grid cell size using the cubic technique in ArcGIS 10.3 (Wu et al., 

161 2019). Climatic variables are important for plant ecophysiology (Mod et al., 2016) and are 

162 commonly used as bioclimatic limits in vegetation models (Sitch et al., 2003).

163 We acquired the MYD09A1500M product data (sinusoidal projection, path 4 and row 26, path 

164 4 and row 27, path 5 and row 26, path 5 and row 27) from summer (July 20, 2013) and winter 

165 (January 17, 2013) as Modis images from the Geospatial Data Cloud at http://www.gscloud.cn/. 

166 Our image pre-processing included image subset mosaicking and clipping in ENVI 5.2 (Deng, 

167 2010). We obtained the land surface albedo in bands 1-7 directly from the MYD09A1500M 

168 product, and calculated the indices’ effectiveness at reflecting vegetation information (Price, 

169 Guo, & Stiles, 2002; Zhou et al., 2016).

170 Since vegetation indices can provide information on both vegetation and environment 

171 (Bannari, Morin, & Bonn, 1995), these indices are more sensitive than single spectral bands at 

172 detecting green vegetation (Bannari, Morin, & Bonn, 1995; Cohen & Goward, 2004). Therefore, 

173 vegetation indices can be used for image interpretation, vegetation discrimination and prediction, 

174 and land use change detection (Bannari, Morin, & Bonn, 1995; Cohen & Goward, 2004; Zhou et 

175 al., 2016). We tested the vegetation discrimination of 14 vegetation indices (Table 2).

176 To determine the distribution predictive ability of different variables, we grouped the variables 

177 into different combinations based on the results of the Pearson correlation. We only used less 

178 correlated variables (R <|0.7|, Pearson correlation) (Chala et al., 2017) in Combinations 1-9 

179 (Table 3), then used variable combinations as input predictor variables to simulate vegetation 

180 distribution. Combination 1 included the less correlated variables of the summer land surface 

181 albedos from bands 1 to 7. Combination 2 included the less correlated variables of the winter 

182 land surface albedos from bands 1 to 7. Combination 3 included the less correlated variables in 

183 Combinations 1 and 2. Combination 4 included the less correlated variables of the summer 

184 vegetation indices. Combination 5 included the less correlated variables of the winter vegetation 

185 indices. Combination 6 included the less correlated variables in Combinations 4 and 5. 

186 Combination 7 included the less correlated variables from the 19 bioclimatic variables. 

187 Combination 8 included the less correlated variables from the 19 bioclimatic variables and three 

188 geospatial variables. Combination 9 included the less correlated variables in Combinations 3, 6, 

189 and 8. Combinations 10 and 11 represented the top 10 most important variables of the DT and 

190 RF methods, with Combination 9 in vegetation unit I, respectively (Table 3). The SVM and 

191 maximum likelihood classification (MLC) methods only output the simulation results of variable 

192 Combinations 1 to 6, likely due to the training samples’ weak separability (Deng, 2010).

193

194 Vegetation distribution models

195 We used DT, RF, MLC, and SVM vegetation distribution models in this study. The DT model is 

196 a divisive, monothetic, and supervised classifier often used for species distribution modeling and 

197 related applications (Franklin, 2010). It is computationally fast and easy to understand and 

198 implement. It uses classification or regression algorithms to generate classification rules, and 

199 then visualizes those rules into simple tree graphics (Hastie, Tibshirani, & Friedman, 2009; Zhou 
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200 et al., 2016). The DT model calculates the most significant variables contributing to the model 

201 (Deng, 2010). We used a DT with five layers, 40 samples in the smallest parent node, and 10 

202 samples in the smallest child node.

203 The RF model is an ensemble method that has been applied in risk assessment and species 

204 distribution modeling studies (Cutler et al., 2007; Zhang & Dong, 2017). The RF model creates 

205 and combines different DTs to produce considerably more accurate classifications that are 

206 unaffected by noise or overtraining (Burai et al., 2015; Cutler et al., 2007; Gislason, 

207 Benediktsson, & Sveinsson, 2006). The RF model also calculates the most significant variables 

208 that contribute to the model (Cutler et al., 2007). Running an RF model requires defined 

209 parameters, including tree number, number of randomly selected features, and node impurity 

210 function. We generated the RF model in EnMAP-Box, a license-free and platform-independent 

211 software interface designed to process hyperspectral remote sensing data, which was developed 

212 by the Humboldt University of Berlin. There are in-built applications aimed at the processing of 

213 hyperspectral data, such as SVM and RF for classification of image data in the EnMAP-Box 

214 (Held et al., 2014). We used the default settings in EnMAP-Box with 100 trees. The number of 

215 randomly selected features was equal to the square root of the number of all features, and we 

216 used a Gini coefficient for the node impurity function (Jakimow et al., 2014; Ma, Gao, & Gu, 

217 2019; van der Linden et al., 2015; Zhou et al., 2016).

218 The MLC model is one of the most commonly used supervised image classification methods. 

219 MLC’s classification rules use the statistics of the Gaussian probability density function to assign 

220 each pixel to the class with the highest probability. Although the MLC method usually generates 

221 similar or more accurate classifications than other methods, it is not applicable when there are 

222 fewer training samples than input predictors (Burai et al., 2015; Zhou et al., 2016).

223 The SVM model is a supervised machine learning model used for classification and 

224 regression. It is a complex and widely used method that can output more accurate predictions 

225 (Burai et al., 2015) than other methods. The SVM model searches for an optimal plane in a 

226 multidimensional space to divide all sample elements into two categories, making the distance 

227 between the closest points in the two classes as large as possible (Kabacoff, 2016). Running an 

228 SVM model requires a defined kernel parameter g and regularization parameter c. In this study, 

229 we generated the SVM model in the EnMAP-Box. The default settings in EnMAP-Box to the 

230 SVM model was applied, where the parameter g was 0.01 to 1,000, and the parameter c was 0.1 

231 to 1,000. Parameters g and c were tested using a grid search with internal performance 

232 estimation, and we used those with the best performance for data training (Lin et al., 2014; van 

233 der Linden et al., 2014; van der Linden et al., 2015).

234 We generated the predicted vegetation maps of the three classification units using the DT, RF, 

235 MLC, and SVM methods with a resolution of 500 m. We selected all 11 variable combinations 

236 as the input variables for each method. The DT and RF method results indicated which variables 

237 were most important for vegetation discrimination.

238

239 Model assessment
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240 We used the VMC and a total of 974 vegetation points to assess the overall accuracy and Kappa 

241 coefficient of every predicted vegetation map. Kappa coefficient values ranging from 0.4 to 0.55 

242 indicated moderate agreement, from 0.56 to 0.8 indicated substantial agreement, and from 0.81 

243 to 1 indicated almost perfect agreement (Landis & Koch, 1977; Weng & Zhou, 2006; Zhou et al., 

244 2016). When the Kappa coefficient value was greater than 0.4, the assessed predicted map was 

245 considered acceptable.

246

247 Results

248 Unit I modeling and assessment

249 The RF model’s results were better than the results of the DT, MLC, and SVM models (Table 4). 

250 The RF model had a Kappa coefficient larger than 0.4 when using variable Combinations 6 to 11 

251 assessed by field point data, with an overall accuracy of 50% to 72%. The RF model had a 

252 Kappa coefficient larger than 0.56 when using variable Combinations 7 to 11 assessed by field 

253 data, with an overall accuracy of 68% to 72%. The RF model had the highest Kappa coefficient 

254 of 0.66 and the highest overall accuracy of 72% when using variable Combination 7. The DT 

255 model had a Kappa coefficient larger than 0.4 when using variable Combinations 7 to 11 

256 assessed by field point data, with an overall accuracy of 54% to 56%. The DT model had no 

257 Kappa coefficient larger than 0.56 when using all variable combinations. After VMC assessment, 

258 we found the highest Kappa coefficient was 0.38 with an overall accuracy of 57% in the RF 

259 model using variable Combinations 9 to 11 (Table 4; Fig. 2).

260

261 Unit II modeling and assessment

262 The RF model results were better than the results of the other three models. The RF model using 

263 variable Combinations 7 to 11 had a Kappa coefficient larger than 0.4, with overall accuracies of 

264 66%-70% and 54%-55% for field point data and VMC assessments, respectively. The RF model 

265 using Combinations 7 to 11 had a Kappa coefficient larger than 0.56 and an overall accuracy of 

266 66%-70% when assessed by field point data. The RF model had the highest Kappa coefficient of 

267 0.65 and the highest overall accuracy of 70% when using variable Combination 7. The DT model 

268 using variable Combinations 7 to 11 had a Kappa coefficient larger than 0.4, with overall 

269 accuracies of 53%-55% and 65%-72% for field point data and VMC assessments, respectively. 

270 The DT model had the highest Kappa coefficient of 0.54 and overall accuracy of 72% when 

271 using variable Combination 7. The DT model had a larger Kappa coefficient and greater overall 

272 accuracy when assessed by VMC rather than the RF model (Table 5; Fig. 3).

273

274 Unit III modeling and assessment

275 Only the RF model could simulate vegetation distribution in unit III. The RF model using 

276 variable Combinations 7 to 11 had a Kappa coefficient larger than 0.4 and an overall accuracy of 

277 55%-58% assessed by field point data. The RF model using variable Combination 7 had the 

278 highest Kappa coefficient of 0.57 (the only model with a Kappa coefficient larger than 0.56) and 
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279 the highest overall accuracy of 58% assessed by field point data. The Kappa coefficients in all 

280 models were less than 0.4 when assessed by the VMC (Table 6; Fig. 4).

281

282 Important variables

283 For the RF model, eight of the top 10 most important variables were the same across the different 

284 vegetation units: three climate variables (annual mean temperature, mean diurnal range, and 

285 annual precipitation), one geospatial variable (slope), and four spectral variables (Mid-infrared 

286 ratio and NDVI of winter vegetation index, brightness index and NDVI of summer vegetation 

287 index). For the DT model, nine of the top 10 most important variables were the same across the 

288 different vegetation units: four climate variables (annual mean temperature, mean diurnal range, 

289 precipitation of the driest month, and annual precipitation), one geospatial variable (slope), and 4 

290 spectral variables (Mid-infrared ratio of winter vegetation index, brightness index of summer 

291 vegetation index, summer surface albedo of band 1, winter surface albedo of band 6) (Table 7).

292

293 Discussion

294 Vegetation classification units

295 Vegetation classification is an important and complex system with multiple levels. Higher level 

296 classification methods not only accurately classify vegetation, but they can also describe 

297 ecosystem diversity, even during global changes (Faber-Langendoen et al., 2014). Plants in 

298 different vegetation classification units have different spectral characteristics and climatic 

299 conditions that are the basis for vegetation distribution simulation. Thus, models using the same 

300 variables to simulate the vegetation distribution of different classification units may produce 

301 different classification accuracies (Dobrowski et al., 2008; Prasad, Iverson, & Liaw, 2006). Map 

302 accuracy has been found to be a function of which classification system and categories are used 

303 (Muchoney et al., 2000).

304 Previous studies have explored vegetation distribution simulation using different vegetation 

305 classification systems. Plant functional types (PFTs), defined as plant sets sharing similar 

306 perturbation response effects on dominant ecosystem processes, have been used to simulate 

307 vegetation distribution, as seen in the Biome and Box system models (Box, 1981; Box, 1996; 

308 Dormann & Woodin, 2002) with positive simulation results (Box, 1981; Song, Zhou & Ouyang, 

309 2005; Weng & Zhou, 2006). The Mapped Atmosphere-Plant-Soil System (MAPSS) model was 

310 also used to simulate vegetation distribution using vegetation life forms, leaf area index, leaf 

311 morphology, and leaf longevity (Zhao et al., 2002). Other researchers studied potential 

312 vegetation distribution using the Holdridge life zone model, with positive vegetation pattern 

313 results (Zheng et al., 2006). When the IGBP classification system was applied to simulate 

314 vegetation distribution at a regional scale, the map estimate accuracy was upwards of 80% 

315 (Muchoney et al., 2000). In this study, we used machine learning models and a hierarchical 

316 classification system from the VMC to determine the best modeling method for vegetation 

317 affected by high socioeconomic disturbance at various classification levels. In the VMC, unit I 

318 was the highest classification level, mainly based upon community appearance; unit II was the 
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319 second highest level, mainly based upon community and climate appearance; and unit III was the 

320 medium classification level, based upon the dominant species. The accuracy of the vegetation 

321 distribution simulations in units I and II was similar to each other and higher than unit III’s 

322 simulation (Tables 4-6). 

323

324 Different model performances

325 We were interested in vegetation distribution modeling’s ability to forecast and respond to 

326 environmental changes and vegetation pattern management at local to global scales. Vegetation 

327 distribution predictions can help explain the relationship between plants and their abiotic and 

328 biotic environments (Franklin, 2010). To benefit from ecosystem service functions, people can 

329 design vegetation distributions according to distribution and abundance patterns and trends 

330 (Hastie, Tibshirani, & Friedman, 2009). Vegetation classification has become a widely used 

331 ecological method due to a number of new statistical and machine learning methods used 

332 alongside mapped biological and environmental data to model vegetation distributions over large 

333 spatial scales at higher resolutions (Cutler et al., 2007). Different image classification methods 

334 are rarely used together in the same classification research, especially when combined with 

335 environmental variables (Li et al., 2014).

336 In this study, the RF model performed better than the DT, SVM, and MLC models across the 

337 three classification levels. This finding was consistent with the results of other studies that found 

338 that the RF method modeled vegetation distribution better than other methods (Prasad, Iverson, 

339 & Liaw, 2006). The DT model divided the data into homogenous subgroups according to the 

340 range of predictor variable values. The DT model was generally able to handle a large number of 

341 independent variables and could build a tree model faster than the other methods. However, the 

342 DT model was somewhat unstable for vegetation distribution modeling and had lower 

343 classification accuracy (Zhou et al., 2016). The RF model generated a large number of 

344 independent trees through data subsets and developed a split in every tree model using a random 

345 subset of predictor variables. Therefore, we concluded that the RF model was generally better 

346 than the DT model. The SVM model was developed from statistical learning methods and 

347 discriminated class samples by locating potentially nonlinear or multiple linear boundaries 

348 between individual training points (Burai et al., 2015). The aim of the MLC model was to 

349 maximize the overall probability that a pixel is correctly assigned to a class. However, the MLC 

350 model requires a large number of training samples that limits its application (Sesnie et al., 2010). 

351 Previous research has shown that classification accuracies when using the SVM classifier were 

352 higher than the MLC model (Pal & Mather, 2005; Boyd, Sanchez-Hernandez, & Foody, 2006; 

353 Sanchez-Hernandez, Boyd, & Foody, 2007; Sesnie et al., 2010). Because the model had fewer 

354 requirements, the DT method provided significantly more accurate classifications than those of 

355 the MLC model (Boyd, Sanchez-Hernandez, & Foody, 2006). Other studies found that the RF 

356 and SVM models were similarly accurate (65.3% and 66.6%, respectively) (Sesnie et al., 2010), 

357 and that the RF, MLC, DT, and SVM models performed similarly and reasonably well when 

358 simulating land use classification (Li et al., 2014). In addition to the methods mentioned above, 
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359 an artificial neural network implemented at a regional scale produced classification accuracies of 

360 60%-80% (Muchoney et al., 2000; Haslem et al., 2010). In the Arctic, this method provided the 

361 most accurate vegetation mapping (Langford et al., 2019). The reasons for the similarly positive 

362 results of these models may be due to the relatively large differences between classification 

363 objects, and their use of sufficiently representative training samples and appropriate input 

364 variables. In our study, only the SVM and MLC models’ output simulated the results of variable 

365 Combinations 1 to 6. This may be due to the poor separability of the training samples, as the 

366 models could not recognize the training points or their vegetation categories (Jarnevich et al., 

367 2015). The Jing-Jin-Ji region has many types of vegetation with very small distribution areas, so 

368 the selected training points may have been insufficient. Future training points for these 

369 vegetation types should be selected using field surveys, and more suitable models for modeling 

370 global vegetation distribution should be developed and tested (Jiang et al., 2012).

371

372 Important variables in vegetation classification models

373 Variable selection is directly related to the vegetation distribution model’s ability to capture 

374 important environmental factors (Mod et al., 2016). Models predict the important variables that 

375 drive the distribution of vegetation (Prasad, Iverson, & Liaw, 2006). Vegetation distribution is 

376 predominantly driven by temperature, precipitation, and topographical variables (Franklin, 1995; 

377 Mod et al., 2016; Prasad, Iverson, & Liaw, 2006), specifically those related to physiological 

378 tolerance, site energy, and moisture balance (Franklin, 1995). In addition to environmental 

379 variables, some spectral variables are used as input variables. However, the overuse of spectral 

380 variables can actually decrease discrimination accuracy, meaning that only spectral variables 

381 reflecting vegetation information should be selected, such as those related to the visible 

382 spectrum, infrared spectrum, and vegetation indices (Price, Guo, & Stiles, 2002, Zhou et al., 

383 2016). Different variables respond to different information. Spectral variables directly reflect 

384 land surface object information, while geospatial and climatic variables reveal information about 

385 the vegetative environment.

386 Terrain, an important variable in vegetation distribution models, has long been used to 

387 improve map accuracy, especially for regions with large elevation differences (Dobrowski et al. 

388 2008; Oke & Thompson, 2015). Sesnie et al. (2010) found that adding elevation as a predictive 

389 variable dramatically improved the accuracies of the SVM and RF models >80% for most forest 

390 types. Slopes with similar elevations but different aspects have very different soil and vegetation 

391 temperatures (Gunton, Polce, & Kunin, 2015; Mod et al., 2016). Dobrowski et al. (2008) 

392 highlighted the importance of slope and aspect when mapping vegetation communities in the 

393 Sierra Nevada. Slope was also an important variable in this study (Table 7) since different types 

394 of vegetation require different precipitation and temperature levels and have different tolerances 

395 to extreme heat and cold. The significance of these climate variables (annual mean temperature, 

396 temperature range, and annual precipitation) has been validated in other studies (Prasad, Iverson 

397 & Liaw, 2006; Sesnie et al., 2008). We looked at two surface albedo indices (the summer surface 

398 albedo of band 1 and the winter surface albedo of band 6). Sesnie et al. (2010) combined 
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399 elevation and spectral band data to increase the classification accuracy to a satisfactory level for 

400 most forest types. De Colstoun et al. (2003) obtained high accuracies (80%) when classifying 

401 coniferous, temperate broad-leaf, and mixed forest types using Landsat ETM+ bands. Other 

402 studies have used different vegetation index variables (Price, Guo & Stiles, 2002; Zhou et al., 

403 2016) specific to their study areas and data.

404 The input variables used in our vegetation distribution model are not exhaustive. 

405 Ecophysiologically meaningful predictors such as soil moisture, pH, and nutrients, should be 

406 considered. Other factors, such as actual light, disturbance, biotic interactions, land use, and 

407 bioclimatic information could also be incorporated into vegetation distribution models 

408 (Dobrowski et al., 2008; Mod et al., 2016; Prasad, Iverson, & Liaw, 2006; Sesnie et al., 2010). 

409 We suggest building more ecophysiologically sound vegetation distribution models that require a 

410 collaborative effort across the ecological, geographical, and environmental sciences (Mod et al., 

411 2016).

412

413 Other factors affecting classification accuracy

414 In addition to classification units, models, and input variables, classification accuracy is affected 

415 by other factors, including algorithm error and image data (Li et al., 2014). We must 

416 acknowledge the existence of errors in random sample selection, modeling, and data 

417 preprocessing algorithms. Remote sensing data sources, as well as the date and processing of 

418 selected images, vary, resulting in different simulated values and accuracies (Price, Guo, & 

419 Stiles, 2002). Remote sensing images with high spectral and spatial resolutions provide rich 

420 spectral and ground information, moderately improving the predictive ability of the vegetation 

421 distribution model (Peng et al., 2002). However, the use of high spectral and spatial resolution 

422 images creates a greater demand for data access, larger computer storage capacities, and faster 

423 data processors (Price, Guo, & Stiles, 2002), which is why we did not use high spectral and 

424 spatial resolution images in this study. Moreover, some cultivated vegetation and shelter forests 

425 in the Jing-Jin-Ji region are greatly affected by human disturbance, which affects their water-heat 

426 conditions and soil nutrition. Urbanization reduces vegetation, transforming some areas into 

427 industrial, commercial, and residential land. This has led to the direct or indirect pollution of the 

428 water, soil, and air, and the reduced predictive ability of vegetation distribution models. The 

429 VMC we used for model assessment was published in 2007, and no updated study has been 

430 published over the past 10 years. The current state of the Jing-Jin-Ji region’s vegetation no 

431 longer coincides with the VMC’s assessment.

432

433 Conclusions

434 Our main objective was to determine the best simulation method for vegetation affected by high 

435 socioeconomic disturbance in the Jing-Jin-Ji region. The RF model was the most capable at 

436 simulating vegetation distribution across all three units. The DT model could simulate the 

437 vegetation distribution in units I and II. The SVM and MLC models could not simulate the 

438 distribution in any of the three units. Based on the Kappa coefficient, the RF model was 
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439 generally better than the DT model and the most suitable model for simulating vegetation 

440 distribution in the Jing-Jin-Ji region. The most important variables affecting vegetation 

441 classification accuracy were three climate variables (annual mean temperature, mean diurnal 

442 range, and annual precipitation), one geospatial variable (slope), and two spectral variables (Mid-

443 infrared ratio of winter vegetation index and brightness index of summer vegetation index). We 

444 recommend using the RF model to produce or improve the vegetation maps in areas of high 

445 human disturbance.

446

447 Acknowledgements

448 We thank two anonymous reviewers and the editor for their effort to review this manuscript.

449

450 References

451 Bannari A, Morin D, Bonn F. 1995. A review of vegetation indices. Remote Sensing Reviews 

452 13(1-2):95-120 DOI:10.1080/02757259509532298.

453 Bie SW, Beckett PHT. 1973. Comparison of four independent soil surveys by air-photo 

454 interpretation, paphos area (cyprus). Photogrammetria 29(6):189-202 DOI:10.1016/0031-

455 8663(73)90001-x.

456 Burai P, Deak B, Valko O, Tomor T. 2015. Classification of Herbaceous Vegetation Using 

457 Airborne Hyperspectral Imagery. Remote Sensing 7(2):2046-2066 

458 DOI:10.3390/rs70202046.

459 Box EO. 1981. Macroclimate and plant forms: An introduction to predictive modeling in 

460 phytogeography (Tasks for vegetation science 1). London: DR. W. Junk Publishers.

461 Box EO. 1996. Plant functional types and climate at the global scale. Journal of vegetation 

462 science 7(3):309-320 DOI:10.2307/3236274.

463 Boyd DS, Sanchez-Hernandez C, Foody GM. 2006. Mapping a specific class for priority habitats 

464 monitoring from satellite sensor data. International Journal of Remote Sensing 27(13):2631-

465 2644 DOI:10.1080/01431160600554348.

466 Chala D, Zimmermann NE, Brochmann C, Bakkestuen V. 2017. Migration corridors for alpine 

467 plants among the ‘sky islands’ of eastern Africa: do they, or did they exist? Alpine Botany 

468 127:133-144 DOI:10.1007/s00035-017-0184-z.

469 Chen LY, Li H, Zhang PJ, Zhao X, Zhou LH, Liu TY, Hu HF, Bai YF, Shen HH, Fang JY. 2015. 

470 Climate and native grassland vegetation as drivers of the community structures of shrub-

471 encroached grasslands in Inner Mongolia, China. Landscape Ecology 30(9):1627-1641 

472 DOI:10.1007/s10980-014-0044-9.

473 Cohen WB, Goward SN. 2004. Landsat's role in ecological applications of remote sensing. 

474 Bioscience 54(6):535-545 DOI:10.1641/0006-3568(2004)054[0535:lrieao]2.0.co;2.

475 Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random 

476 Forests for Classification in Ecology. Ecology 88(11):2783-2792 DOI:10.1890/07-0539.1.

477 Deng SB. 2010. ENVI remote sensing image processing method. Beijing: Science press.

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



478 de Colstoun ECB, Story MH, Thompson C, Commisso K, Smith TG, Irons JR. 2003. National 

479 Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. 

480 Remote Sensing of Environment 85(3):316-327 DOI:10.1016/s0034-4257(03)00010-5.

481 Dilts TE, Weisberg PJ, Dencker CM, Chambers JC. 2015. Functionally relevant climate 

482 variables for arid lands: a climatic water deficit approach for modelling desert shrub 

483 distributions. Journal of Biogeography 42(10):1986-1997 DOI:10.1111/jbi.12561.

484 Dobrowski SZ, Safford HD, Cheng YB, Ustin SL. 2008. Mapping mountain vegetation using 

485 species distribution modeling, image-based texture analysis, and object-based classification. 

486 Applied Vegetation Science 11(4):499-508 DOI:10.3170/2008-7-18560.

487 Dormann CF, Woodin SJ. 2002. Climate change in the Arctic: using plant functional types in a 

488 meta-analysis of field experiments. Functional Ecology 16(1):4-17 DOI:10.1046/j.0269-

489 8463.2001.00596.x.

490 Editorial Committee of Vegetation Map of China, the Chinese Academy of Sciences. 2007. The 

491 Vegetation Map of the People’s Republic of China (1:1 000 000). Beijing: Geological 

492 Publishing House.

493 Faber-Langendoen D, Keeler-Wolf T, Meidinger D, Tart D, Hoagland B, Josse C, Navarro G, 

494 Ponomarenko S, Saucier J-P, Weakley A, Comer P. 2014. EcoVeg: a new approach to 

495 vegetation description and classification. Ecological Monographs 84(4):533-561 

496 DOI:10.1890/13-2334.1.

497 Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for 

498 global land areas. International Journal of Climatology 37(12):4302-4315 

499 DOI:10.1002/joc.5086.

500 Franklin J. 1995. Predictive vegetation mapping: Geographic modelling of biospatial patterns in 

501 relation to environmental gradients. Progress in Physical Geography 19(4):474-499 

502 DOI:10.1177/030913339501900403.

503 Franklin J. 2010. Mapping species distributions: spatial inference and prediction. Cambridge: 

504 Cambridge University Press.

505 Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random Forests for land cover 

506 classification. Pattern Recognition Letters 27(4):294-300 

507 DOI:10.1016/j.patrec.2005.08.011.

508 Gunton RM, Polce C, Kunin WE. 2015. Predicting ground temperatures across European 

509 landscapes. Methods in Ecology and Evolution 6(5):532-542 DOI:10.1111/2041-

510 210x.12355.

511 Guisan A, Zimmermann NE. 2000. Predictive habitat distribution models in ecology. Ecological 

512 modelling 135:147-186 DOI:10.1016/s0304-3800(00)00354-9.

513 Haslem A, Callister KE, Avitabile SC, Griffioen PA, Kelly LT, Nimmo DG, Spence-Bailey LM, 

514 Taylor RS, Watson SJ, Brown L, Bennett AF, Clarke MF. 2010. A framework for mapping 

515 vegetation over broad spatial extents: A technique to aid land management across 

516 jurisdictional boundaries. Landscape and Urban Planning 97(4):296-305 

517 DOI:10.1016/j.landurbplan.2010.07.002.

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



518 Hastie T, Tibshirani R, Friedman J. 2009. The elements of statistical learning: Data Mining, 

519 Inference, and Prediction (Second Edition). Berlin: Springer.

520 Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, 

521 Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, 

522 Townshend JRG. 2013. High-Resolution Global Maps of 21st-Century Forest Cover 

523 Change. Science 342(6160):850-853 DOI:10.1126/science.1244693.

524 Jakimow B, Oldenburg C, Rabe A, Waske B, Van der Linden S, Hostert P. 2014. ImageRF, 

525 Manual for Application: imager (1.1). Available at file:///C:/job%20software/EnMAP-

526 Box_vm/EnMAP-Box/enmapProject/applications/imageRF/help/imageRF_Manual.pdf

527 Jarnevich CS, Stohlgren TJ, Kumar S, Morisette JT, Holcombe TR. 2015. Caveats for correlative 

528 species distribution modeling. Ecological Informatics 29(6-15) 

529 DOI:10.1016/j.ecoinf.2015.06.007.

530 Jiang H, Zhao D, Cai Y, An S. 2012. A Method for Application of Classification Tree Models to 

531 Map Aquatic Vegetation Using Remotely Sensed Images from Different Sensors and Dates. 

532 Sensors 12(9):12437-12454 DOI:10.3390/s120912437.

533 Kabacoff RI. 2016. R in action: data analysis and graphics with R (Second Edition). Beijing: 

534 Posts & Telecom Press. 

535 Landis JR, Koch GG. 1977. The Measurement of observer agreement for categorical data. 

536 Biometrics 33(1):159-174 DOI:10.2307/2529310.

537 Langford ZL, Kumar J, Hoffman FM, Breen AL, Iversen CM. 2019. Arctic Vegetation Mapping 

538 Using Unsupervised Training Datasets and Convolutional Neural Networks. Remote 

539 Sensing 11(1):69 DOI:10.3390/rs11010069.

540 Lany NK, Zarnetske PL, Finley AO, McCullough DG. 2019. Complementary strengths of 

541 spatially-explicit and multi-species distribution models. Ecography 42:1-11 

542 DOI:10.1111/ecog.04728.

543 Li C, Wang J, Wang L, Hu L, Gong P. 2014. Comparison of Classification Algorithms and 

544 Training Sample Sizes in Urban Land Classification with Landsat Thematic Mapper 

545 Imagery. Remote Sensing 6(2):964-983 DOI:10.3390/rs6020964.

546 Lin H, Yue C, WU X, XU H, Zheng X. 2014. Remote sense images classification by Enmap-Box 

547 model. Journal of southwest forestry university 2(34):67-71 DOI: 10.3969/j.issn.2095-

548 1914.2014.02.013 (In Chinese with English abstract).

549 Ma HJ, Gao XH, Gu XT. 2019. Random forest classification of Landsat 8 imagery for the 

550 complex terrain area based on the combination of spectral, topographic and texture 

551 information. Journal of Geo-information Science 21(3):359-371 

552 DOI:10.12082/dpxxkx.2019.180346.

553 Muchoney D, Borak J, Chi H, Friedl M, Gopal S, Hodges J, Morrow N, Strahler A. 2000. 

554 Application of the MODIS global supervised classification model to vegetation and land 

555 cover mapping of Central America. International Journal of Remote Sensing 21(6-7):1115-

556 1138 DOI:10.1080/014311600210100.

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



557 Mod HK, Scherrer D, Luoto M, Guisan A. 2016. What we use is not what we know: 

558 environmental predictors in plant distribution models. Journal of Vegetation Science 

559 27(6):1308-1322 DOI:10.1111/jvs.12444.

560 Newell CL, Leathwick JR. 2005. Mapping Hurunui forest community distribution, using 

561 computer models (Science for Conservation. 251). Wellington: Department of 

562 Conservation.

563 Oke OA, Thompson KA. 2015. Distribution models for mountain plant species: The value of 

564 elevation. Ecological Modelling 301:72-77 DOI:10.1016/j.ecolmodel.2015.01.019.

565 Pal M, Mather PM. 2005. Support vector machines for classification in remote sensing. 

566 International Journal of Remote Sensing 26(5):1007-1011 

567 DOI:10.1080/01431160512331314083.

568 Peng WL, Bai ZP, Liu XN, Cao T. 2002. Introduction to remote sensing. Beijing: Higher 

569 education press.

570 Pfeffer K, Pebesma EJ, Burrough PA. 2003. Mapping alpine vegetation using vegetation 

571 observations and topographic attributes. Landscape Ecology 18(8):759-776 

572 DOI:10.1023/B:LAND.0000014471.78787.d0.

573 Price KP, Guo XL, Stiles JM. 2002. Optimal Landsat TM band combinations and vegetation 

574 indices for discrimination of six grassland types in eastern Kansas. International Journal of 

575 Remote Sensing 23(23):5031-5042 DOI:10.1080/01431160210121764.

576 Prasad AM, Iverson LR, Liaw A. 2006. Newer classification and regression tree techniques: 

577 Bagging and random forests for ecological prediction. Ecosystems 9(2):181-199 

578 DOI:10.1007/s10021-005-0054-1.

579 Held M, Rabe A, Jakimow B, van der Linden S, Hostert P. 2014. EnMAP-Box Manual, Version 

580 2.0, Humboldt-Universität zu Berlin, Germany.

581 Sanchez-Hernandez C, Boyd DS, Foody GM. 2007. Mapping specific habitats from remotely 

582 sensed imagery: Support vector machine and support vector data description based 

583 classification of coastal saltmarsh habitats. Ecological Informatics 2(2):83-88 

584 DOI:10.1016/j.ecoinf.2007.04.003.

585 Sesnie SE, Finegan B, Gessler PE, Thessler S, Bendana ZR, Smith AMS. 2010. The 

586 multispectral separability of Costa Rican rainforest types with support vector machines and 

587 Random Forest decision trees. International Journal of Remote Sensing 31(11):2885-2909 

588 DOI:10.1080/01431160903140803.

589 Sesnie SE, Gessler PE, Finegan B, Thessler S. 2008. Integrating Landsat TM and SRTM-DEM 

590 derived variables with decision trees for habitat classification and change detection in 

591 complex neotropical environments. Remote Sensing of Environment 112(5):2145-2159 

592 DOI:10.1016/j.rse.2007.08.025.

593 Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan JO, Levis S, Lucht W, 

594 Sykes MT, Thonicke K, Venevsky S. 2003. Evaluation of ecosystem dynamics, plant 

595 geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. 

596 Global Change Biology 9(2):161-185 DOI:10.1046/j.1365-2486.2003.00569.x.

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



597 Song MH, Zhou CP, Ouyang H. 2005. Simulated distribution of vegetation types in response to 

598 climate change on the Tibetan Plateau. Journal of Vegetation Science 16(3):341-350 

599 DOI:10.1111/j.1654-1103.2005.tb02372.x.

600 van der Linden S, Rabe A, Held M, Jakimow B, Leitao PJ, Okujeni A, Schwieder M, Suess S, 

601 Hostert P. 2015. The EnMAP-Box-A Toolbox and Application Programming Interface for 

602 EnMAP Data Processing. Remote Sensing 7(9):11249-11266 DOI:10.3390/rs70911249.

603 van der Linden S, Rabe A, Held M, Wirth F, Suess S, Okujeni A, Hostert P. 2014. ImageSVM 

604 Classification, Manual for Application: imageSVM version 3.0. Humboldt-Universität zu 

605 Berlin, Germany.

606 Wang L, Gong BL. 2018. Collaborative Governance of Ecological Space in Beijing-Tianjin-

607 Hebei Region. Journal of Tianjin administration institute 20(5):38-44 

608 DOI:10.16326/j.cnki.1008-7168.2018.05.005. (Chinese)

609 Wang X, Liu G, Coscieme L, Giannetti BF, Hao Y, Zhang Y, Brown MT. 2019. Study on the 

610 emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate 

611 statistical data with DMSP-OLS nighttime lights data. Ecological Modelling 397:1-15 

612 DOI:10.1016/j.ecolmodel.2019.01.021.

613 Wehkamp J, Pietsch SA, Fuss S, Gusti M, Reuter WH, Koch N, Kindermann G, Kraxner F. 

614 2018. Accounting for institutional quality in global forest modeling. Environmental 

615 Modelling & Software 102:250-259 DOI:10.1016/j.envsoft.2018.01.020.

616 Weng ES, Zhou GS. 2006. Modeling distribution changes of vegetation in China under future 

617 climate change. Environmental Modeling & Assessment 11(1):45-58 DOI:10.1007/s10666-

618 005-9019-1.

619 Wu YW, Wang NL, Li Z, Chen AA, Guo ZM, Qie YF. 2019. The effect of thermal radiation 

620 from surrounding terrain on glacier surface temperatures retrieved from remote sensing 

621 data: A case study from Qiyi Glacier, China. Remote Sensing of Environment 231:1-9 DOI: 

622 10.1016/j.rse.2019.111267.

623 Xie YC, Sha ZY, Yu M. 2008. Remote sensing imagery in vegetation mapping: a review. Journal 

624 of Plant Ecology 1(1):9-23 DOI:10.1093/jpe/rtm005.

625 Zhang G, Biradar CM, Xiao X, Dong J, Zhou Y, Qin Y, Zhang Y, Liu F, Ding M, Thomas RJ. 

626 2018. Exacerbated grassland degradation and desertification in Central Asia during 2000-

627 2014. Ecological Applications 28(2):442-456 DOI:10.1002/eap.1660.

628 Zhang WT, Dong W. 2017. SPSS statistical analysis advanced tutorial (Third Edition). Beijing: 

629 Higher education press.

630 Zhang Z, De Clercq E, Ou XK, De Wulf R, Verbeke L. 2008. Mapping dominant vegetation 

631 communities at Meili Snow Mountain, Yunnan Province, China using satellite imagery and 

632 plant community data. Geocarto International 23(2):135-153 

633 DOI:10.1080/10106040701337410.

634 Zhao MS, Neilson RP, Yan XD, Dong WJ. 2002. Modelling the vegetation of China under 

635 changing climate. Acta geographica sinica 57(1):28-38. DOI:CNKI:SUN:DLXB.0.2002-01-

636 003. (Chinese)

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



637 Zhao X, Su Y, Hu T, Chen L, Gao S, Wang R, Jin S, Guo Q. 2018. A global corrected SRTM 

638 DEM product for vegetated areas. Remote Sensing Letters 9(4):393-402 

639 DOI:10.1080/2150704x.2018.1425560.

640 Zheng Y, Xie Z, Jiang L, Shimizu H, Drake S. 2006. Changes in Holdridge Life Zone diversity 

641 in the Xinjiang Uygur Autonomous Region (XUAR) of China over the past 40 years. 

642 Journal of Arid Environments 66(1):113-126. DOI:10.1016/j.jaridenv.2005.09.005.

643 Zhou J, Lai L, Guan T, Cai W, Gao N, Zhang X, Yang D, Cong Z, Zheng Y. 2016. Comparison 

644 modeling for alpine vegetation distribution in an arid area. Environmental Monitoring and 

645 Assessment 188(7):408 DOI:10.1007/s10661-016-5417-x.

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



Table 1(on next page)

Classification units of the vegetation of China

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



1 Table 1: Classification units of the vegetation of China

Vegetation groups (I) Vegetation types 

(II)
Formations and sub-formations (III)

0. No vegetation 0 No vegetation 0 No vegetation

1. Needleleaf forest 1 Temperate 

needleleaf forest

1 Pinus tabulaeformis forest

2 Quercus mongolica forest

3 Quercus liaotungensis forest

4 Quercus variabilis forest

5 Robinia pseudoacacia forest

6 Salix matsudana forest 

7 Populus davidiana forest

2. Broadleaf forest 2 Temperate 

broadleaf 

deciduous forest

8 Betula platyphylla forest

9 Corylus heterophylla scrub

10 Lespedeza bicolor scrub

11 Prunus armeniaca var. ansa scrub

12 Vitex negundo var. heterophylla, Zizyphus jujuba 

var. spinosa scrub 

13 Cotinus coggygria var. cinerea scrub

14 Spiraea spp. scrub

3. Scrub 3 Temperate 

broadleaf 

deciduous scrub 

15 Ostryopsis davidiana scrub 

16 Stipa baicalensis, forb meadow steppe4 Temperate grass-

forb meadow 

steppe
17 Filifolium sibiricum, grass-forb meadow steppe

18 Aneurolepidium chinense, needlegrass steppe

19 Stipa krylovii steppe 

20 Stipa bungiana steppe 

4. Steppe

5 Temperate 

needlegrass arid 

steppe 

21 Thymus mongolicus, needlegrass steppe

22 Bothriochloa ischaemum community

23 Bothriochloa ischaemum community

24 Vitex negundo var. heterophylla，Zizyphus jujuba 

var. spinosus, Bothriochloa ischaemum scrub and 

grass community 

5. Grass-forb 

community

6 Temperate grass-

forb community

25 Vitex negundo var. heterophylla，Zizyphus jujuba 

var. spinosus, Themeda triandra var. japonica scrub 

and grass community 

7 Temperate grass 

and forb 

meadow

26 Arundinella hirta, Spodiopogon sibiricus, forb 

meadow

27 Carex spp., forb meadow

28 Achnatherum splendens holophytic meadow

6. Meadow

8 Temperate grass 

and forb 

holophytic 

meadow

29 Suaeda glauca holophytic meadow

7. Swamp 9 Cold-temperate 

and temperate 

swamp

30 Phragmites communis swamp
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10 One crop 

annually and 

cold-resistant 

economic crops

31 Spring wheat, naked oats, buckwheat, potatoes; flux 

11 One crop 

annually, cold-

resistant 

economic crops 

and deciduous 

orchards 

32 Coarse grains

33 Winter wheat, coarse grains

34 Coarse grains

35 Rice

36 Winter wheat, corn, cotton 

37 Apple, pear orchard

38 Winter wheat, corn, Chinese sorghum, sweet 

potatoes; cotton, tabacco, peanut, sesame; apple, 

pear, hauthorn, persimmon, walnut, pomegranat, 

grape

8. Cultural 

vegetation

12 Three crops two 

years and two 

crops annually 

non irrigation, 

deciduous 

orchards 

39 Winter wheat, coarse grains (loamy soil) 

2

3

4
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1 Table 2: The vegetation indices

Indices Abbreviation Formula

Ratio vegetation index RVI NIR/Red

Brightness index BI 0.2909Blue + 0.2493Green + 0.4806Red + 

0.5568NIR + 0.4438SWIR1 + 0.1706SWIR2

Green vegetation index GI -0.2728Blue - 0.2174Green-0.5508Red + 

0.7221NIR + 0.0733SWIR1 - 0.1648SWIR2

Wetness index WI 0.1446Blue + 0.1761Green + 0.3322Red + 

0.3396NIR - 0.6210SWIR1 - 0.4186SWIR2

Differenced vegetation index DVI NIR - Red

Green ratio GR NIR/Green

Mid-infrared ratio MR NIR/SWIR1

Soil-adjusted vegetation index SAVI (1.5(NIR - Red))/((NIR + Red + 0.5))

Optimization of soil-adjusted 

vegetation index

OSAVI (1.16(NIR - Red))/((NIR + Red + 0.16))

Atmospherically resistant vegetation 

index

ARVI (NIR - (2*Red - Blue))/(NIR + (2*Red - Blue))

Normalized difference vegetation index NDVI (NIR - Red)/(NIR + Red)

Enhanced vegetation index EVI 2.5[(NIR - Red)/(NIR + 6*Red - 7.5Blue + 1)]

Normalized difference tillage index NDTI (SWIR1-SWIR2)/(SWIR1 + SWIR2)

Normalized difference senescent 

vegetation index

NDSVI (SWIR1-Red)/(SWIR1 + Red)

2

3
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Table 3(on next page)

Variable combinations

Note: DT10 and RF10 represent the top 10 important variables of decision tree (DT) and
random forest (RF) methods with combination 9 in the vegetation group level, respectively.
The vegetation indices and their abbreviations were shown in Table 2.
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1 Table 3: Variable combinations.

2 DT10 and RF10 represent the top 10 important variables of decision tree (DT) and random forest 

3 (RF) methods with combination 9 in the vegetation group level, respectively. The vegetation 

4 indices and their abbreviations were shown in Table 2.

Number Variables combinations

1 Summer land surface albedos of band 1 and 5.

2 Winter land surface albedos of band 1 and 6.

3 Summer land surface albedos of band 1 and 5.

Winter land surface albedos of band 1 and 6.

4 Summer vegetation indices BI, WI, MR, NDVI, EVI.

5 Winter vegetation indices MR, NDVI, EVI, NDTI.

6 Summer vegetation indices BI, WI, MR, NDVI, EVI.

Winter vegetation indices MR, NDVI, EVI, NDTI.

7 Annual mean temperature, Annual precipitation, Mean diurnal range, Precipitation of 

driest month.

8 Slope, Aspect, Annual mean temperature, Annual precipitation, Mean diurnal range, 

Precipitation of driest month.

9 Summer land surface albedos of band 1.

Winter land surface albedos of band 6.

Summer vegetation indices BI, WI, MR, NDVI, EVI.

Winter vegetation indices MR, NDVI, EVI, NDTI.

Slope, Aspect, Annual mean temperature, Annual precipitation, Mean diurnal range, 

Precipitation of driest month.

10 DT10: Annual mean temperature, Annual precipitation, Mean diurnal range, 

Precipitation of driest month, Slope, Winter vegetation indices MR, Summer land 

surface albedos of band 1, Summer vegetation indices BI and EVI, Winter land surface 

albedos of band 6.

11 RF10: Annual precipitation, Annual mean temperature, Mean diurnal range, Slope, 

Summer vegetation indices BI, MR, NDVI and EVI, Winter vegetation indices MR and 

NDVI. 

5

6

7
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Table 4(on next page)

Model assessment of vegetation groups by field point data and VMC.

Variable combinations were shown in Table 3. VMC, the Vegetation Map of the People’s
Republic of China. **, the kappa coefficient lager than 0.56; *, the kappa coefficient larger
than 0.4 and less than 0.56. OA, Overall accuracy; KC, Kappa coefficient.
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1 Table 4: Model assessment of vegetation groups by field point data and VMC.

2 Variable combinations were shown in Table 3. VMC, the Vegetation Map of the People’s Republic of China. **, the kappa coefficient 

3 lager than 0.56; *, the kappa coefficient larger than 0.4 and less than 0.56. OA, Overall accuracy; KC, Kappa coefficient.

Decision tree Random forest Support vector machine
Maximum likelihood 

classification

Point data VMC Point data VMC Point data VMC Point data VMC
Variable 

combinations

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC

1 34% 0.18 55% 0.22 37% 0.24 32% 0.09 36% 0.21 53% 0.21 23% 0.08 11% 0.02

2 38% 0.20 52% 0.23 39% 0.27 37% 0.13 35% 0.20 55% 0.24 18% 0.07 9% 0.03

3 45% 0.31 54% 0.26 47% 0.36 45% 0.21 41% 0.27 54% 0.27 24% 0.12 15% 0.05

4 32% 0.16 46% 0.16 42% 0.30 42% 0.17 37% 0.22 57% 0.26 11% 0.04 3% 0.01

5 31% 0.11 59% 0.14 44% 0.32 44% 0.19 36% 0.22 51% 0.22 9% 0.04 4% 0.02

6 41% 0.26 44% 0.18 50% 0.40* 52% 0.27 42% 0.29 54% 0.27 13% 0.08 4% 0.03

7 54% 0.45* 57% 0.34 72% 0.66** 55% 0.35

8 55% 0.46* 56% 0.35 69% 0.63** 56% 0.37

9 55% 0.46* 53% 0.34 68% 0.61** 57% 0.38

10 55% 0.46* 53% 0.33 69% 0.63** 57% 0.38

11 56% 0.46* 56% 0.36 68% 0.62** 57% 0.38

4

5

6
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Table 5(on next page)

Model assessment of vegetation types by field point data and VMC.

The Abbreviations were same with Table 4.
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1 Table 5: Model assessment of vegetation types by field point data and VMC.

2 The Abbreviations were same with Table 4.

Decision tree Random forest Support vector machine
Maximum likelihood 

classification

Point data VMC Point data VMC Point data VMC Point data VMC

Variable 

combinations

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC

1 42% 0.24 63% 0.33 32% 0.22 23% 0.09 32% 0.18 40% 0.18 6% 0.02 7% 0.00

2 44% 0.27 58% 0.31 34% 0.23 30% 0.14 31% 0.18 44% 0.24 5% 0.02 14% 0.00

3 43% 0.30 58% 0.35 44% 0.34 38% 0.22 37% 0.26 43% 0.25 9% 0.05 13% 0.00

4 36% 0.20 47% 0.20 39% 0.29 31% 0.15 32% 0.19 43% 0.21 13% 0.07 6% 0.02

5 32% 0.14 59% 0.23 41% 0.31 36% 0.19 34% 0.22 43% 0.22 6% 0.03 6% 0.03

6 36% 0.23 45% 0.24 47% 0.38 44% 0.27 40% 0.29 43% 0.25 14% 0.09 21% 0.06

7 55% 0.46* 72% 0.54* 70% 0.65** 54% 0.41*

8 53% 0.44* 68% 0.52* 68% 0.63** 55% 0.43*

9 54% 0.45* 65% 0.49* 66% 0.60** 55% 0.43*

10 54% 0.45* 65% 0.49* 68% 0.63** 55% 0.43*

11 53% 0.44* 68% 0.52* 67% 0.62** 55% 0.43*

3

4
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Table 6(on next page)

Model assessment of formations and subformations by field point data and VMC.

The Abbreviations were same with Table 4.
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1 Table 6: Model assessment of formations and subformations by field point data and VMC.

2 The Abbreviations were same with Table 4.

Decision tree Random forest Support vector machine Maximum likelihood classification

Point data VMC Point data VMC Point data VMC Point data VMC
Variable 

combinations
OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC

1 23% 0.14 19% 0.08 20% 0.18 5% 0.02 11% 0.09 6% 0.03 8% 0.06 8% 0.04

2 22% -0.04 49% 0.04 19% 0.17 6% 0.03 13% 0.11 7% 0.04 8% 0.06 13% 0.05

3 26% 0.14 45% 0.23 29% 0.27 9% 0.07 21% 0.19 10% 0.07 12% 0.09 13% 0.07

4 30% 0.20 30% 0.04 22% 0.20 7% 0.04 16% 0.14 6% 0.03 9% 0.07 8% 0.04

5 33% 0.01 67% 0.00 22% 0.20 7% 0.04 15% 0.13 5% 0.03 11% 0.09 10% 0.04

6 26% 0.15 22% 0.02 31% 0.30 11% 0.08 21% 0.19 8% 0.06 12% 0.09 15% 0.08

7 33% 0.20 52% 0.27 58% 0.57** 23% 0.20

8 27% 0.17 34% 0.18 55% 0.54* 23% 0.20

9 25% 0.15 22% 0.15 55% 0.53* 22% 0.20

10 30% 0.17 41% 0.22 56% 0.55* 23% 0.21

11 31% 0.20 41% 0.22 56% 0.55* 23% 0.20

3

4

PeerJ reviewing PDF | (2020:01:44790:2:0:NEW 5 Aug 2020)

Manuscript to be reviewed



Table 7(on next page)

Top ten most important variables of models in the different vegetation classification
units.

The abbreviations of indices were shown in Table 2.
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1 Table 7: Top ten most important variables of models in the different vegetation classification units.

2 The abbreviations of indices were shown in Table 2.

Vegetation groups Vegetation types Formations and sub-formations

Decision tree Random forest Decision tree Random forest Decision tree Random forest

Important 

variables

Standardized 

Importance

Important 

variables

Normalized 

importance

Important 

variables

Standardized 

Importance

Important 

variables

Normalized 

importance

Important 

variables

Standardized 

Importance

Important 

variables

Normalized 

importance

1 Annual mean 

temperature

1.00 Annual mean 

temperature

3.68 Annual mean 

temperature

1.00 Annual mean 

temperature

3.51 Annual mean 

temperature

1.00 Annual mean 

temperature

4.16

2 Annual 

precipitation

0.88 Slope 2.94 Slope 0.83 Slope 3.35 Annual 

precipitation

0.86 Annual 

precipitation

3.28

3 Slope 0.80 Mean diurnal 

range

2.60 Annual 

precipitation

0.51 Mean diurnal 

range

3.06 Slope 0.63 Mean diurnal 

range

3.25

4 Winter 

vegetation 

index MR

0.36 Annual 

precipitation

2.38 Winter 

vegetation 

index MR

0.30 Annual 

precipitation

2.8 Mean diurnal 

range

0.52 Slope 2.24

5 Mean diurnal 

range

0.33 Summer 

vegetation 

index BI

1.88 Mean diurnal 

range

0.28 Summer 

vegetation 

index BI

1.84 Precipitation 

of driest 

month

0.52 Precipitation 

of driest 

month

2.16

6 Summer 

surface 

albedo of 

band 1

0.29 Winter 

vegetation 

index NDVI

1.37 Summer 

vegetation 

index EVI

0.22 Winter 

vegetation 

index NDVI

1.61 Winter 

vegetation 

index MR

0.4 Summer 

vegetation 

index BI

1.83

7 Summer 

vegetation 

index BI

0.28 Summer 

vegetation 

index EVI

1.36 Precipitation 

of driest 

month

0.21 Winter 

vegetation 

index MR

1.45 Summer 

surface albedo 

of band 1

0.32 Summer 

vegetation 

index NDVI

1.7

8 Precipitation 

of driest 

month

0.25 Winter 

vegetation 

index MR

1.30 Summer 

vegetation 

index BI

0.20 Summer 

vegetation 

index WI

1.31 Summer 

vegetation 

index BI

0.32 Winter 

vegetation 

index NDVI

1.61

9 Summer 

vegetation 

index EVI

0.23 Summer 

vegetation 

index NDVI

1.22 Summer 

surface 

albedo of 

band 1

0.19 Precipitation 

of driest 

month

1.24 Summer 

vegetation 

index WI

0.31 Winter 

vegetation 

index MR

1.47

10 Winter 

surface 

albedo of 

0.19 Summer 

vegetation 

index MR

1.12 Winter 

surface 

albedo of 

0.14 Summer 

vegetation 

index NDVI

1.22 Winter surface 

albedo of band 

6

0.28 Summer 

vegetation 

indices EVI 

1.32
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band 6 band 6 and MR
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Figure 1
The location and DEM of the Jing-Jin-Ji region.
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Figure 2
The modeling vegetation map of vegetation groups with highest accuracy by four
methods and the VMC in Jing-Jin-Ji region.

Decision tree model (a), random forest model (b), support vector machine (c), maximum
likelihood classification (d), the Vegetation Map of the People's Republic of China (VMC) (e);
The legend represents vegetation groups shown in Table 1.
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Figure 3
The modeling vegetation map of vegetation types with highest accuracy by four
methods and the VMC in Jing-Jin-Ji region.

Decision tree model (a), random forest model (b), support vector machine (c), maximum
likelihood classification (d), the Vegetation Map of the People's Republic of China (VMC) (e);
The legend represents vegetation groups shown in Table 1.
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Figure 4
The modeling vegetation map of formations and sub-formations with highest accuracy
by four methods and the VMC in Jing-Jin-Ji region.

Decision tree model (a), random forest model (b), support vector machine (c), maximum
likelihood classification (d), the Vegetation Map of the People's Republic of China (VMC) (e);
The legend represents vegetation groups shown in Table 1.
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