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ABSTRACT
Background. Simulating vegetation distribution is an effective method for identifying
vegetation distribution patterns and trends. The primary goal of this study was to
determine the best simulationmethod for a vegetation in an area that is heavily affected
by human disturbance.
Methods. We used climate, topographic, and spectral data as the input variables for
four machine learning models (random forest (RF), decision tree (DT), support vector
machine (SVM), and maximum likelihood classification (MLC)) on three vegetation
classification units (vegetation group (I), vegetation type (II), and formation and
subformation (III)) in Jing-Jin-Ji, one of China’s most developed regions. We used a
total of 2,789 vegetation points for model training and 974 vegetation points for model
assessment.
Results. Our results showed that the RF method was the best of the four models, as it
could effectively simulate vegetation distribution in all three classification units. The
DT method could only simulate vegetation distribution in units I and II, while the
other two models could not simulate vegetation distribution in any of the units. Kappa
coefficients indicated that the DT and RF methods had more accurate predictions
for units I and II than for unit III. The three vegetation classification units were
most affected by six variables: three climate variables (annual mean temperature,
mean diurnal range, and annual precipitation), one geospatial variable (slope), and
two spectral variables (Mid-infrared ratio of winter vegetation index and brightness
index of summer vegetation index). Variables Combination 7, including annual mean
temperature, annual precipitation, mean diurnal range and precipitation of driest
month, produced the highest simulation accuracy.
Conclusions. We determined that the RF model was the most effective for simulating
vegetation distribution in all classification units present in the Jing-Jin-Ji region. The
RF model produced high accuracy vegetation distributions in classification units I and
II, but relatively low accuracy in classification unit III. Four climate variables were
sufficient for vegetation distribution simulation in such region.

Subjects Ecology, Ecosystem Science, Climate Change Biology, Natural Resource Management,
Environmental Impacts
Keywords Vegetation distribution model, Vegetation classification unit, Important predictor
variable, Jing-Jin-Ji region
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INTRODUCTION
Vegetation is an essential component of terrestrial ecosystems and landscapes (Editorial
Committee of Vegetation Map of China, 2007). Environmental research, resource
management, and conservation planning require vegetation distribution maps (Franklin,
2010) to better understand, use, and monitor vegetation. Vegetation patterns and
distributions are affected by the climate (Chen et al., 2015; Zhang et al., 2018) and other
disturbances, particularly those caused by changes in land use (Hansen et al., 2013;
Wehkamp et al., 2018). Human disturbances, such as industrialization, urbanization,
population growth, land use change for agricultural use, etc., strongly influence the
environment by greatly altering vegetation patterns, making exact mapping a significant
challenge (Xie, Sha & Yu, 2008; Zhou et al., 2016).

Field surveys, the traditional method used to map vegetation, are costly and labor-
intensive (Newell & Leathwick, 2005; Zhou et al., 2016). Mapping using remote sensing
data is also a popular method that has been used over the last 30 years (Xie, Sha &
Yu, 2008). This method makes it possible to obtain a wide range of reliable data from
remote sensing images, and it updates vegetation boundaries by visually interpreting
images and field surveys (Zhang et al., 2008). However, determining vegetation units and
their boundaries by visual interpretation can produce inaccurate results. Researchers
may get different results from the same images for the same study areas (Bie & Beckett,
1973; Pfeffer, Pebesma & Burrough, 2003). Furthermore, field survey and remote sensing
methods manually draw vegetation unit boundaries based on climate, elevation, and soil
type information, which can be inaccurate in transition areas (Zhang et al., 2008). Using
simulation models in combination with field and remote sensing data may be an effective
alternative for mapping vegetation.

Changes in the environment can affect vegetation composition, structure, function,
and spatial distribution. Environmental variables have been used to simulate the global
distribution of vegetation (Dilts et al., 2015; Mod et al., 2016). Simulation models are
usually developed to test how environmental variables control vegetation distribution
(Guisan & Zimmermann, 2000). Modern remote sensing data and software make it more
convenient than ever before to produce predictive vegetation maps (Franklin, 1995).

Predictive vegetation mapping uses environmental variables and various models based
on niche theory and gradient analysis to visualize communities in geographic space (Dilts
et al., 2015; Lany et al., 2019). Other methods based on statistics and machine learning
have also been used to simulate vegetation distribution. Predictive vegetation mapping
includes various statistical methods such as the generalized linear model, the generalized
additive model, and multivariate statistical approaches (Lany et al., 2019; Prasad, Iverson
& Liaw, 2006). Recently, machine learning modeling methods have been used to map the
distribution of both vegetation communities and individual species. Thesemethods include
the support vector machine (SVM), decision tree (DT), and artificial neural network
(Guisan & Zimmermann, 2000; Hastie, Tibshirani & Friedman, 2009; Zhou et al., 2016).
These machine learning models have fewer limitations and can produce more reliable
results than traditional vegetation modeling methods (Hastie, Tibshirani & Friedman,
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2009). Advanced machine learning techniques can integrate spectral and spatial predictors
and improve classification accuracy by retaining important information about vegetation
composition and structural differences (Sesnie et al., 2010). Machine learning models
efficiently and cost-effectively produce vegetation maps without the general inaccuracies
caused by visual interpretation (Franklin, 2010).

The Jing-Jin-Ji region, also known as the Beijing-Tianjin-Hebei urban agglomeration,
is the center of northern Chinese politics, culture, and economy. Because of its extension,
it faces significant problems such as unbalanced regional development and the struggle
between economic growth and limited resources. The region’s larger cities, includingBeijing
and Tianjin, have large populations, developed economies, and abundant educational
resources. However, these big cities face issues of limited natural resources and serious
ecological and environmental pollution. In particular, Beijing’s large population requires
limited resources such as water, land, and vegetation (Wang & Gong, 2018). Breaking up
administrative divisions may be the best method to coordinate regional development
(Wang et al., 2019). The new Xiong’an area located in Hebei province is being constructed
to relocate some of Beijing’s population. The development of areas like Xiong’an is affected
by the surrounding natural environment. To better integrate the environmental carrying
capacity and socioeconomic development of the Jing-Jin-Ji region, including the new
Xiong’an area, accurate vegetation maps with temporal resolution are necessary. The most
updated vegetation map of the Jing-Jin-Ji region is the Vegetation Map of the People’s
Republic of China (VMC), with a scale of 1:1,000,000 (Editorial Committee of Vegetation
Map of China, 2007). Most of its data come from a field survey conducted between 1980
and 1990, meaning its temporal and spatial scales are both outdated.

In this study, we integrated geospatial, climate, and spectral data to simulate vegetation
distribution through four different models across three vegetation classification units. This
research was different from the research of Zhou et al. (2016). Firstly, the research area of
this research was the Jing-Jin-Ji region located in theNorth China Plain and affected by high
social-economic disturbance, while the Qilian Mountain in the research of Zhou et al. is
characterized by complex terrain, but without high social-economic disturbance. Secondly,
the predictive variables as well as the combinations of these variables were different from the
research of Zhou et al. (2016). Thirdly, we compared four model methods for simulating
distribution of vegetation in three vegetation classification levels, while only three models
were used for simulation in two vegetation classification levels in the research of Zhou et
al. (2016). Our primary objectives were to: (1) determine the best modeling method for
vegetation affected by high socioeconomic disturbance, (2) create an improved vegetation
map of the Jing-Jin-Ji region, (3) determine the predictive abilities of different models
across different vegetation classification units, and (4) determine which variables enhanced
the classification accuracy for vegetation mapping.

MATERIALS & METHODS
Study area
The Jing-Jin-Ji region is located in the northern part of the North China Plain. Its location
ranges from 113◦04′ to 119◦53′E and 36◦01′ to 42◦37′N and is bordered by Taihang
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Figure 1 The location and DEM of the Jing-Jin-Ji region.
Full-size DOI: 10.7717/peerj.9839/fig-1

Mountain in the west, Yanshan Mountain in the north, and the Bohai Sea in the east.
The region includes the Beijing, Tianjin, and Hebei provinces (Fig. 1). Jing-Jin-Ji has a
population of approximately 110 million people and covers an area of approximately
216,000 km2 (Wang et al., 2019). The region is a temperate monsoon climate zone with an
elevation range of−14 to 2,837 m (Fig. 1). The annual precipitation ranges from 305 to 711
mm, with increased precipitation at lower altitudes. The annual mean temperature ranges
from −3 to 14 ◦C, with colder averages at higher elevations. The amount of precipitation
in the region gradually decreases moving from the southeast to the northwest, while
temperature changes show the reverse pattern.
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Vegetation and training data
The VMC, completed in 2007 based on field survey data, included eight vegetation groups
(I), 15 vegetation types (II), and 75 formations and subformations (III) from the Jing-Jin-Ji
region. However, some of the map’s vegetation unit areas are very small and difficult to
distinguish. To ensure that enough training and assessment point data can be randomly
selected in units II and III, we selected eight units I, 12 units II, and 39 units III from the
study area (Table 1). Cultivated vegetation are mainly distributed in low areas with an
altitude range of−14 to 254 m and an annual mean temperature range of 7 to 14 ◦C. Major
cultivated plants include winter wheat and coarse grains. Scrub and grass-forb communities
are mainly distributed in the north, in elevations ranging from 254 to 1,440 m.

We obtained model training and assessment data on vegetation composition from field
surveys and other publications. We collected a total of 3,763 vegetation points, with 2,789
of those used for model training and 974 used for model assessment. Each unit III had at
least 80 vegetation points, with at least 60 of those used for model training and 20 used
for model assessment. The model training and assessment data were randomly selected for
each unit III. Additionally, we increased the credibility of the model assessment by first
rasterizing the vector VMC onto the same grid as the modeled data, and then assessing
the data using the Kappa coefficient (Landis & Koch, 1977; Weng & Zhou, 2006; Zhou et
al., 2016).

Geospatial, climate, and spectral data
We derived geospatial variables, including elevation, slope, and aspect, from the 30 m
resolution Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM;
Zhao et al., 2018). We then resampled these data to a 500×500 m grid cell size using the
cubic technique in ArcGIS 10.3 (Wu et al., 2019).

We downloaded the climate data, including 19 bioclimatic variables, at∼1 km resolution
fromWorldClim (Fick & Hijmans, 2017) at http://worldclim.org/. These climate data were
also resampled to a 500×500 m grid cell size using the cubic technique in ArcGIS 10.3 (Wu
et al., 2019). Climatic variables are important for plant ecophysiology (Mod et al., 2016)
and are commonly used as bioclimatic limits in vegetation models (Sitch et al., 2003).

We acquired the MYD09A1500M product data (sinusoidal projection, path 4 and row
26, path 4 and row 27, path 5 and row 26, path 5 and row 27) from summer (July 20,
2013) and winter (January 17, 2013) as Modis images from the Geospatial Data Cloud
at http://www.gscloud.cn/. Our image pre-processing included image subset mosaicking
and clipping in ENVI 5.2 (Deng, 2010). We obtained the land surface albedo in bands
1-7 directly from the MYD09A1500M product, and calculated the indices’ effectiveness at
reflecting vegetation information (Price, Guo & Stiles, 2002; Zhou et al., 2016).

Since vegetation indices can provide information on both vegetation and environment
(Bannari, Morin & Bonn, 1995), these indices are more sensitive than single spectral
bands at detecting green vegetation (Bannari, Morin & Bonn, 1995; Cohen & Goward,
2004). Therefore, vegetation indices can be used for image interpretation, vegetation
discrimination and prediction, and land use change detection (Bannari, Morin & Bonn,
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Table 1 Classification units of the vegetation of China.

Vegetation groups (I) Vegetation types (II) Formations and sub-formations (III)

0. No vegetation 0 No vegetation 0 No vegetation
1. Needleleaf forest 1 Temperate needleleaf forest 1 Pinus tabulaeformis forest

2 Quercus mongolica forest
3 Quercus liaotungensis forest
4 Quercus variabilis forest
5 Robinia pseudoacacia forest
6 Salix matsudana forest
7 Populus davidiana forest

2. Broadleaf forest 2 Temperate broadleaf deciduous forest

8 Betula platyphylla forest
9 Corylus heterophylla scrub
10 Lespedeza bicolor scrub
11 Prunus armeniaca var. ansa scrub
12 Vitex negundo var. heterophylla, Zizyphus jujuba var.
spinosa scrub
13 Cotinus coggygria var. cinerea scrub
14 Spiraea spp. scrub

3. Scrub 3 Temperate broadleaf deciduous scrub

15 Ostryopsis davidiana scrub
16 Stipa baicalensis, forb meadow steppe4 Temperate grass-forb meadow steppe
17 Filifolium sibiricum, grass-forb meadow steppe
18 Aneurolepidium chinense, needlegrass steppe
19 Stipa krylovii steppe
20 Stipa bungiana steppe

4. Steppe
5 Temperate needlegrass arid steppe

21 Thymus mongolicus, needlegrass steppe
22 Bothriochloa ischaemum community
23 Bothriochloa ischaemum community
24 Vitex negundo var. heterophylla, Zizyphus jujuba
var. spinosus, Bothriochloa ischaemum scrub and grass
community

5. Grass-forb community 6 Temperate grass-forb community

25 Vitex negundo var. heterophylla, Zizyphus jujuba var.
spinosus, Themeda triandra var. japonica scrub and grass
community

7 Temperate grass and forb meadow 26 Arundinella hirta, Spodiopogon sibiricus, forb meadow
27 Carex spp., forb meadow
28 Achnatherum splendens holophytic meadow

6. Meadow
8 Temperate grass and forb holophytic meadow

29 Suaeda glauca holophytic meadow
7. Swamp 9 Cold-temperate and temperate swamp 30 Phragmites communis swamp

(continued on next page)
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Table 1 (continued)

Vegetation groups (I) Vegetation types (II) Formations and sub-formations (III)

10 One crop annually and cold-resistant economic crops 31 Spring wheat, naked oats, buckwheat, potatoes; flux
11 One crop annually, cold-resistant economic crops and
deciduous orchards

32 Coarse grains

33 Winter wheat, coarse grains
34 Coarse grains
35 Rice
36 Winter wheat, corn, cotton
37 Apple, pear orchard
38 Winter wheat, corn, Chinese sorghum, sweet potatoes;
cotton, tabacco, peanut, sesame; apple, pear, hauthorn,
persimmon, walnut, pomegranat, grape

8. Cultural vegetation
12 Three crops two years and two crops
annually non irrigation, deciduous orchards

39 Winter wheat, coarse grains (loamy soil)

Table 2 The vegetation indices.

Indices Abbreviation Formula

Ratio vegetation index RVI NIR/Red
Brightness index BI 0.2909Blue + 0.2493Green + 0.4806Red + 0.5568NIR +

0.4438SWIR1 + 0.1706SWIR2
Green vegetation index GI −0.2728Blue - 0.2174Green-0.5508Red + 0.7221NIR +

0.0733SWIR1 - 0.1648SWIR2
Wetness index WI 0.1446Blue + 0.1761Green + 0.3322Red + 0.3396NIR -

0.6210SWIR1 - 0.4186SWIR2
Differenced vegetation index DVI NIR - Red
Green ratio GR NIR/Green
Mid-infrared ratio MR NIR/SWIR1
Soil-adjusted vegetation index SAVI (1.5(NIR - Red))/((NIR + Red + 0.5))
Optimization of soil-adjusted vegetation index OSAVI (1.16(NIR - Red))/((NIR + Red + 0.16))
Atmospherically resistant vegetation index ARVI (NIR - (2*Red - Blue))/(NIR + (2*Red - Blue))
Normalized difference vegetation index NDVI (NIR - Red)/(NIR + Red)
Enhanced vegetation index EVI 2.5[(NIR - Red)/(NIR + 6*Red - 7.5Blue + 1)]
Normalized difference tillage index NDTI (SWIR1-SWIR2)/(SWIR1 + SWIR2)
Normalized difference senescent vegetation index NDSVI (SWIR1-Red)/(SWIR1 + Red)

1995; Cohen & Goward, 2004; Zhou et al., 2016). We tested the vegetation discrimination
of 14 vegetation indices (Table 2).

To determine the distribution predictive ability of different variables, we grouped the
variables into different combinations based on the results of the Pearson correlation. We
only used less correlated variables (R < |0.7|, Pearson correlation) (Chala et al., 2017) in
Combinations 1–9 (Table 3), then used variable combinations as input predictor variables
to simulate vegetation distribution. Combination 1 included the less correlated variables
of the summer land surface albedos from bands 1 to 7. Combination 2 included the less
correlated variables of the winter land surface albedos from bands 1 to 7. Combination 3
included the less correlated variables in Combinations 1 and 2. Combination 4 included
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Table 3 Variable combinations.Note: DT10 and RF10 represent the top 10 important variables of deci-
sion tree (DT) and random forest (RF) methods with Combination 9 in the vegetation group level, respec-
tively. The vegetation indices and their abbreviations were shown in Table 2.

Number Variables combinations

1 Summer land surface albedos of band 1 and 5.
2 Winter land surface albedos of band 1 and 6.
3 Summer land surface albedos of band 1 and 5.

Winter land surface albedos of band 1 and 6.
4 Summer vegetation indices BI, WI, MR, NDVI, EVI.
5 Winter vegetation indices MR, NDVI, EVI, NDTI.
6 Summer vegetation indices BI, WI, MR, NDVI, EVI.

Winter vegetation indices MR, NDVI, EVI, NDTI.
7 Annual mean temperature, Annual precipitation, Mean

diurnal range, Precipitation of driest month.
8 Slope, Aspect, Annual mean temperature, Annual

precipitation, Mean diurnal range, Precipitation of driest
month.

9 Summer land surface albedos of band 1.
Winter land surface albedos of band 6.
Summer vegetation indices BI, WI, MR, NDVI, EVI.
Winter vegetation indices MR, NDVI, EVI, NDTI.
Slope, Aspect, Annual mean temperature, Annual
precipitation, Mean diurnal range, Precipitation of driest
month.

10 DT10: Annual mean temperature, Annual precipitation,
Mean diurnal range, Precipitation of driest month, Slope,
Winter vegetation indices MR, Summer land surface
albedos of band 1, Summer vegetation indices BI and EVI,
Winter land surface albedos of band 6.

11 RF10: Annual precipitation, Annual mean temperature,
Mean diurnal range, Slope, Summer vegetation indices BI,
MR, NDVI and EVI, Winter vegetation indices MR and
NDVI.

the less correlated variables of the summer vegetation indices. Combination 5 included the
less correlated variables of the winter vegetation indices. Combination 6 included the less
correlated variables in Combinations 4 and 5. Combination 7 included the less correlated
variables from the 19 bioclimatic variables. Combination 8 included the less correlated
variables from the 19 bioclimatic variables and three geospatial variables. Combination
9 included the less correlated variables in Combinations 3, 6, and 8. Combinations 10
and 11 represented the top 10 most important variables of the DT and RF methods,
with Combination 9 in vegetation unit I, respectively (Table 3). The SVM and maximum
likelihood classification (MLC) methods only output the simulation results of variable
Combinations 1 to 6, likely due to the training samples’ weak separability (Deng, 2010).

Vegetation distribution models
We used DT, RF, MLC, and SVM vegetation distribution models in this study. The
DT model is a divisive, monothetic, and supervised classifier often used for species
distribution modeling and related applications (Franklin, 2010). It is computationally fast
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and easy to understand and implement. It uses classification or regression algorithms
to generate classification rules, and then visualizes those rules into simple tree graphics
(Hastie, Tibshirani & Friedman, 2009; Zhou et al., 2016). The DTmodel calculates the most
significant variables contributing to the model (Deng, 2010). We used a DT with five layers,
40 samples in the smallest parent node, and 10 samples in the smallest child node.

The RF model is an ensemble method that has been applied in risk assessment and
species distribution modeling studies (Cutler et al., 2007; Zhang & Dong, 2017). The
RF model creates and combines different DTs to produce considerably more accurate
classifications that are unaffected by noise or overtraining (Burai et al., 2015; Cutler et
al., 2007; Gislason, Benediktsson & Sveinsson, 2006). The RF model also calculates the most
significant variables that contribute to themodel (Cutler et al., 2007). Running an RFmodel
requires defined parameters, including tree number, number of randomly selected features,
and node impurity function. We generated the RF model in EnMAP-Box, a license-free
and platform-independent software interface designed to process hyperspectral remote
sensing data, which was developed by the Humboldt University of Berlin. There are
in-built applications aimed at the processing of hyperspectral data, such as SVM and RF
for classification of image data in the EnMAP-Box (Held et al., 2014). We used the default
settings in EnMAP-Box with 100 trees. The number of randomly selected features was
equal to the square root of the number of all features, and we used a Gini coefficient for
the node impurity function (Rabe et al., 2014; Ma, Gao & Gu, 2019; van der Linden et al.,
2015; Zhou et al., 2016).

The MLC model is one of the most commonly used supervised image classification
methods. MLC’s classification rules use the statistics of the Gaussian probability density
function to assign each pixel to the class with the highest probability. Although the MLC
method usually generates similar or more accurate classifications than other methods, it
is not applicable when there are fewer training samples than input predictors (Burai et al.,
2015; Zhou et al., 2016).

The SVM model is a supervised machine learning model used for classification and
regression. It is a complex and widely used method that can output more accurate
predictions (Burai et al., 2015) than othermethods. The SVMmodel searches for an optimal
plane in amultidimensional space to divide all sample elements into two categories, making
the distance between the closest points in the two classes as large as possible (Kabacoff,
2016). Running an SVM model requires a defined kernel parameter g and regularization
parameter c. In this study, we generated the SVM model in the EnMAP-Box. The default
settings in EnMAP-Box to the SVM model was applied, where the parameter g was 0.01 to
1,000, and the parameter c was 0.1 to 1,000. Parameters g and c were tested using a grid
search with internal performance estimation, and we used those with the best performance
for data training (Lin et al., 2014; van der Linden et al., 2014; van der Linden et al., 2015).

We generated the predicted vegetation maps of the three classification units using the
DT, RF, MLC, and SVM methods with a resolution of 500 m. We selected all 11 variable
combinations as the input variables for each method. The DT and RF method results
indicated which variables were most important for vegetation discrimination.
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Figure 2 The modeling vegetation map of vegetation groups with highest accuracy by four methods
and the VMC in Jing-Jin-Ji region.Decision tree model (A), random forest model (B), support vector
machine (C), maximum likelihood classification (D), the Vegetation Map of the People’s Republic of
China (VMC) (E). The legend represents vegetation groups shown in Table 1.

Full-size DOI: 10.7717/peerj.9839/fig-2

data. The Kappa coefficients in all models were less than 0.4 when assessed by the VMC
(Table 6; Fig. 4).

The abbreviations were same with Table 4.

Important variables
For the RF model, eight of the top 10 most important variables were the same across
the different vegetation units: three climate variables (annual mean temperature, mean
diurnal range, and annual precipitation), one geospatial variable (slope), and four spectral
variables (Mid-infrared ratio and NDVI of winter vegetation index, brightness index and
NDVI of summer vegetation index). For the DT model, nine of the top 10 most important
variables were the same across the different vegetation units: four climate variables (annual
mean temperature, mean diurnal range, precipitation of the driest month, and annual
precipitation), one geospatial variable (slope), and 4 spectral variables (Mid-infrared ratio
of winter vegetation index, brightness index of summer vegetation index, summer surface
albedo of band 1, winter surface albedo of band 6) (Table 7).

DISCUSSION
Vegetation classification units
Vegetation classification is an important and complex system with multiple levels. Higher
level classificationmethods not only accurately classify vegetation, but they can also describe
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Table 5 Model assessment of vegetation types by field point data and VMC.Variable combinations were shown in Table 3.

Variable
combinations

Decision tree Random forest Support vector machine Maximum likelihood classification

Point data VMC Point data VMC Point data VMC Point data VMC

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC

1 42% 0.24 63% 0.33 32% 0.22 23% 0.09 32% 0.18 40% 0.18 6% 0.02 7% 0.00
2 44% 0.27 58% 0.31 34% 0.23 30% 0.14 31% 0.18 44% 0.24 5% 0.02 14% 0.00
3 43% 0.30 58% 0.35 44% 0.34 38% 0.22 37% 0.26 43% 0.25 9% 0.05 13% 0.00
4 36% 0.20 47% 0.20 39% 0.29 31% 0.15 32% 0.19 43% 0.21 13% 0.07 6% 0.02
5 32% 0.14 59% 0.23 41% 0.31 36% 0.19 34% 0.22 43% 0.22 6% 0.03 6% 0.03
6 36% 0.23 45% 0.24 47% 0.38 44% 0.27 40% 0.29 43% 0.25 14% 0.09 21% 0.06
7 55% 0.46* 72% 0.54* 70% 0.65** 54% 0.41*

8 53% 0.44* 68% 0.52* 68% 0.63** 55% 0.43*

9 54% 0.45* 65% 0.49* 66% 0.60** 55% 0.43*

10 54% 0.45* 65% 0.49* 68% 0.63** 55% 0.43*

11 53% 0.44* 68% 0.52* 67% 0.62** 55% 0.43*

Notes.
VMC, the Vegetation Map of the Peoples Republic of China.

**the kappa coefficient lager than 0.56.
*the kappa coefficient larger than 0.4 and less than 0.56.
OA, Overall accuracy, KC, Kappa coefficient.
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Figure 3 The modeling vegetation map of vegetation types with highest accuracy by four methods and
the VMC in Jing-Jin-Ji region.Decision tree model (A), random forest model (B), support vector ma-
chine (C), maximum likelihood classification (D), the Vegetation Map of the People’s Republic of China
(VMC) (E). The legend represents vegetation groups shown in Table 1.

Full-size DOI: 10.7717/peerj.9839/fig-3

ecosystem diversity, even during global changes (Faber-Langendoen et al., 2014). Plants in
different vegetation classification units have different spectral characteristics and climatic
conditions that are the basis for vegetation distribution simulation. Thus, models using the
same variables to simulate the vegetation distribution of different classification units may
produce different classification accuracies (Dobrowski et al., 2008; Prasad, Iverson & Liaw,
2006). Map accuracy has been found to be a function of which classification system and
categories are used (Muchoney et al., 2000).

Previous studies have explored vegetation distribution simulation using different
vegetation classification systems. Plant functional types (PFTs), defined as plant sets
sharing similar perturbation response effects on dominant ecosystem processes, have been
used to simulate vegetation distribution, as seen in the Biome and Box systemmodels (Box,
1981; Box, 1996; Dormann &Woodin, 2002) with positive simulation results (Box, 1981;
Song, Zhou & Ouyang, 2005; Weng & Zhou, 2006). The Mapped Atmosphere-Plant-Soil
System (MAPSS) model was also used to simulate vegetation distribution using vegetation
life forms, leaf area index, leaf morphology, and leaf longevity (Zhao et al., 2002). Other
researchers studied potential vegetation distribution using the Holdridge life zone model,
with positive vegetation pattern results (Zheng et al., 2006). When the IGBP classification
system was applied to simulate vegetation distribution at a regional scale, the map estimate
accuracy was upwards of 80% (Muchoney et al., 2000). In this study, we used machine
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Table 6 Model assessment of formations and subformations by field point data and VMC.Variable combinations were shown in Table 3.

Variable combinations Decision tree Random forest Support vector machine Maximum likelihood classification

Point data VMC Point data VMC Point data VMC Point data VMC

OA KC OA KC OA KC OA KC OA KC OA KC OA KC OA KC

1 23% 0.14 19% 0.08 20% 0.18 5% 0.02 11% 0.09 6% 0.03 8% 0.06 8% 0.04
2 22% −0.04 49% 0.04 19% 0.17 6% 0.03 13% 0.11 7% 0.04 8% 0.06 13% 0.05
3 26% 0.14 45% 0.23 29% 0.27 9% 0.07 21% 0.19 10% 0.07 12% 0.09 13% 0.07
4 30% 0.20 30% 0.04 22% 0.20 7% 0.04 16% 0.14 6% 0.03 9% 0.07 8% 0.04
5 33% 0.01 67% 0.00 22% 0.20 7% 0.04 15% 0.13 5% 0.03 11% 0.09 10% 0.04
6 26% 0.15 22% 0.02 31% 0.30 11% 0.08 21% 0.19 8% 0.06 12% 0.09 15% 0.08
7 33% 0.20 52% 0.27 58% 0.57** 23% 0.20
8 27% 0.17 34% 0.18 55% 0.54* 23% 0.20
9 25% 0.15 22% 0.15 55% 0.53* 22% 0.20
10 30% 0.17 41% 0.22 56% 0.55* 23% 0.21
11 31% 0.20 41% 0.22 56% 0.55* 23% 0.20

Notes.
VMC, the Vegetation Map of the Peoples Republic of China.

**the kappa coefficient lager than 0.56.
*the kappa coefficient larger than 0.4 and less than 0.56.
OA, Overall accuracy, KC, Kappa coefficient.
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Figure 4 The modeling vegetation map of formations and sub-formations with highest accuracy by
four methods and the VMC in Jing-Jin-Ji region.Decision tree model (A), random forest model (B), sup-
port vector machine (C), maximum likelihood classification (D), the Vegetation Map of the People’s Re-
public of China (VMC) (E). The legend represents vegetation groups shown in Table 1.

Full-size DOI: 10.7717/peerj.9839/fig-4

learning models and a hierarchical classification system from the VMC to determine the
best modelingmethod for vegetation affected by high socioeconomic disturbance at various
classification levels. In the VMC, unit I was the highest classification level, mainly based
upon community appearance; unit II was the second highest level, mainly based upon
community and climate appearance; and unit III was the medium classification level, based
upon the dominant species. The accuracy of the vegetation distribution simulations in
units I and II was similar to each other and higher than unit III’s simulation (Tables 4–6).

Different model performances
We were interested in vegetation distribution modeling’s ability to forecast and respond
to environmental changes and vegetation pattern management at local to global scales.
Vegetation distribution predictions can help explain the relationship between plants
and their abiotic and biotic environments (Franklin, 2010). To benefit from ecosystem
service functions, people can design vegetation distributions according to distribution
and abundance patterns and trends (Hastie, Tibshirani & Friedman, 2009). Vegetation
classification has become a widely used ecological method due to a number of new statistical
and machine learning methods used alongside mapped biological and environmental data
to model vegetation distributions over large spatial scales at higher resolutions (Cutler
et al., 2007). Different image classification methods are rarely used together in the same
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Table 7 Top tenmost important variables of models in the different vegetation classification units. The abbreviations of indices were shown in Table 2.

Vegetation groups Vegetation types Formations and sub-formations

Decision tree Random forest Decision tree Random forest Decision tree Random forest

Important variables Standardized
Importance

Important
variables

Normalized
importance

Important
variables

Standardized
Importance

Important
variables

Normalized
importance

Important
variables

Standardized
Importance

Important
variables

Normalized
importance

1 Annual mean temperature 1.00 Annual mean temperature 3.68 Annual mean temperature 1.00 Annual mean temperature 3.51 Annual mean temperature 1.00 Annual mean temperature 4.16

2 Annual precipitation 0.88 Slope 2.94 Slope 0.83 Slope 3.35 Annual precipitation 0.86 Annual precipitation 3.28

3 Slope 0.80 Mean diurnal range 2.60 Annual precipitation 0.51 Mean diurnal range 3.06 Slope 0.63 Mean diurnal range 3.25

4 Winter vegetation index MR 0.36 Annual precipitation 2.38 Winter vegetation index MR 0.30 Annual precipitation 2.8 Mean diurnal range 0.52 Slope 2.24

5 Mean diurnal range 0.33 Summer vegetation index BI 1.88 Mean diurnal range 0.28 Summer vegetation index BI 1.84 Precipitation of driest month 0.52 Precipitation of driest month 2.16

6 Summer surface albedo of band 1 0.29 Winter vegetation index NDVI 1.37 Summer vegetation index EVI 0.22 Winter vegetation index NDVI 1.61 Winter vegetation index MR 0.4 Summer vegetation index BI 1.83

7 Summer vegetation index BI 0.28 Summer vegetation index EVI 1.36 Precipitation of driest month 0.21 Winter vegetation index MR 1.45 Summer surface albedo of band 1 0.32 Summer vegetation index NDVI 1.7

8 Precipitation of driest month 0.25 Winter vegetation index MR 1.30 Summer vegetation index BI 0.20 Summer vegetation index WI 1.31 Summer vegetation index BI 0.32 Winter vegetation index NDVI 1.61

9 Summer vegetation index EVI 0.23 Summer vegetation index NDVI 1.22 Summer surface albedo of band 1 0.19 Precipitation of driest month 1.24 Summer vegetation index WI 0.31 Winter vegetation index MR 1.47

10 Winter surface albedo of band 6 0.19 Summer vegetation index MR 1.12 Winter surface albedo of band 6 0.14 Summer vegetation index NDVI 1.22 Winter surface albedo of band 6 0.28 Summer vegetation indices EVI and MR 1.32
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classification research, especially when combined with environmental variables (Li et al.,
2014).

In this study, the RF model performed better than the DT, SVM, and MLC models
across the three classification levels. This finding was consistent with the results of other
studies that found that the RF method modeled vegetation distribution better than other
methods (Prasad, Iverson & Liaw, 2006). The DT model divided the data into homogenous
subgroups according to the range of predictor variable values. The DTmodel was generally
able to handle a large number of independent variables and could build a tree model faster
than the other methods. However, the DT model was somewhat unstable for vegetation
distribution modeling and had lower classification accuracy (Zhou et al., 2016). The RF
model generated a large number of independent trees through data subsets and developed
a split in every tree model using a random subset of predictor variables. Therefore, we
concluded that the RF model was generally better than the DTmodel. The SVMmodel was
developed from statistical learning methods and discriminated class samples by locating
potentially nonlinear or multiple linear boundaries between individual training points
(Burai et al., 2015). The aim of the MLC model was to maximize the overall probability
that a pixel is correctly assigned to a class. However, theMLCmodel requires a large number
of training samples that limits its application (Sesnie et al., 2010). Previous research has
shown that classification accuracieswhenusing the SVMclassifierwere higher than theMLC
model (Pal & Mather, 2005; Boyd, Sanchez-Hernandez & Foody, 2006; Sanchez-Hernandez,
Boyd & Foody, 2007; Sesnie et al., 2010). Because the model had fewer requirements, the
DT method provided significantly more accurate classifications than those of the MLC
model (Boyd, Sanchez-Hernandez & Foody, 2006). Other studies found that the RF and
SVM models were similarly accurate (65.3% and 66.6%, respectively) (Sesnie et al., 2010),
and that the RF, MLC, DT, and SVMmodels performed similarly and reasonably well when
simulating land use classification (Li et al., 2014). In addition to the methods mentioned
above, an artificial neural network implemented at a regional scale produced classification
accuracies of 60%–80% (Muchoney et al., 2000; Haslem et al., 2010). In the Arctic, this
method provided the most accurate vegetation mapping (Langford et al., 2019). The
reasons for the similarly positive results of these models may be due to the relatively
large differences between classification objects, and their use of sufficiently representative
training samples and appropriate input variables. In our study, only the SVM and MLC
models’ output simulated the results of variable Combinations 1 to 6. This may be due
to the poor separability of the training samples, as the models could not recognize the
training points or their vegetation categories (Jarnevich et al., 2015). The Jing-Jin-Ji region
has many types of vegetation with very small distribution areas, so the selected training
points may have been insufficient. Future training points for these vegetation types should
be selected using field surveys, and more suitable models for modeling global vegetation
distribution should be developed and tested (Jiang et al., 2012).

Important variables in vegetation classification models
Variable selection is directly related to the vegetation distribution model’s ability to
capture important environmental factors (Mod et al., 2016). Models predict the important
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variables that drive the distribution of vegetation (Prasad, Iverson & Liaw, 2006). Vegetation
distribution is predominantly driven by temperature, precipitation, and topographical
variables (Franklin, 1995;Mod et al., 2016; Prasad, Iverson & Liaw, 2006), specifically those
related to physiological tolerance, site energy, and moisture balance (Franklin, 1995). In
addition to environmental variables, some spectral variables are used as input variables.
However, the overuse of spectral variables can actually decrease discrimination accuracy,
meaning that only spectral variables reflecting vegetation information should be selected,
such as those related to the visible spectrum, infrared spectrum, and vegetation indices
(Price, Guo & Stiles, 2002; Zhou et al., 2016). Different variables respond to different
information. Spectral variables directly reflect land surface object information, while
geospatial and climatic variables reveal information about the vegetative environment.

Terrain, an important variable in vegetation distribution models, has long been used to
improve map accuracy, especially for regions with large elevation differences (Dobrowski
et al., 2008; Oke & Thompson, 2015). Sesnie et al. (2010) found that adding elevation as
a predictive variable dramatically improved the accuracies of the SVM and RF models
>80% for most forest types. Slopes with similar elevations but different aspects have very
different soil and vegetation temperatures (Gunton, Polce & Kunin, 2015;Mod et al., 2016).
Dobrowski et al. (2008) highlighted the importance of slope and aspect when mapping
vegetation communities in the Sierra Nevada. Slope was also an important variable in
this study (Table 7) since different types of vegetation require different precipitation and
temperature levels and have different tolerances to extreme heat and cold. The significance
of these climate variables (annual mean temperature, temperature range, and annual
precipitation) has been validated in other studies (Prasad, Iverson & Liaw, 2006; Sesnie et
al., 2008). We looked at two surface albedo indices (the summer surface albedo of band
1 and the winter surface albedo of band 6). Sesnie et al. (2010) combined elevation and
spectral band data to increase the classification accuracy to a satisfactory level for most
forest types. De Colstoun et al. (2003) obtained high accuracies (80%) when classifying
coniferous, temperate broad-leaf, and mixed forest types using Landsat ETM+ bands.
Other studies have used different vegetation index variables (Price, Guo & Stiles, 2002;
Zhou et al., 2016) specific to their study areas and data.

The input variables used in our vegetation distribution model are not exhaustive.
Ecophysiologically meaningful predictors such as soil moisture, pH, and nutrients, should
be considered. Other factors, such as actual light, disturbance, biotic interactions, land
use, and bioclimatic information could also be incorporated into vegetation distribution
models (Dobrowski et al., 2008; Mod et al., 2016; Prasad, Iverson & Liaw, 2006; Sesnie et al.,
2010). We suggest building more ecophysiologically sound vegetation distribution models
that require a collaborative effort across the ecological, geographical, and environmental
sciences (Mod et al., 2016).

Other factors affecting classification accuracy
In addition to classification units, models, and input variables, classification accuracy is
affected by other factors, including algorithm error and image data (Li et al., 2014). We
must acknowledge the existence of errors in random sample selection, modeling, and data
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preprocessing algorithms. Remote sensing data sources, as well as the date and processing
of selected images, vary, resulting in different simulated values and accuracies (Price, Guo
& Stiles, 2002). Remote sensing images with high spectral and spatial resolutions provide
rich spectral and ground information, moderately improving the predictive ability of the
vegetation distribution model (Peng et al., 2002). However, the use of high spectral and
spatial resolution images creates a greater demand for data access, larger computer storage
capacities, and faster data processors (Price, Guo & Stiles, 2002), which is why we did not
use high spectral and spatial resolution images in this study. Moreover, some cultivated
vegetation and shelter forests in the Jing-Jin-Ji region are greatly affected by human
disturbance, which affects their water-heat conditions and soil nutrition. Urbanization
reduces vegetation, transforming some areas into industrial, commercial, and residential
land. This has led to the direct or indirect pollution of the water, soil, and air, and the
reduced predictive ability of vegetation distribution models. The VMC we used for model
assessment was published in 2007, and no updated study has been published over the past
10 years. The current state of the Jing-Jin-Ji region’s vegetation no longer coincides with
the VMC’s assessment.

CONCLUSIONS
Our main objective was to determine the best simulation method for vegetation affected
by high socioeconomic disturbance in the Jing-Jin-Ji region. The RF model was the most
capable at simulating vegetation distribution across all three units. The DT model could
simulate the vegetation distribution in units I and II. The SVM andMLCmodels could not
simulate the distribution in any of the three units. Based on the Kappa coefficient, the RF
model was generally better than the DT model and the most suitable model for simulating
vegetation distribution in the Jing-Jin-Ji region. The most important variables affecting
vegetation classification accuracy were three climate variables (annual mean temperature,
mean diurnal range, and annual precipitation), one geospatial variable (slope), and two
spectral variables (Mid-infrared ratio of winter vegetation index and brightness index of
summer vegetation index). We recommend using the RF model to produce or improve
the vegetation maps in areas of high human disturbance.
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