Zonula occludens and nasal epithelial barrier integrity in allergic rhinitis

Che Othman Siti Sarah¹, Norasnieda Md. Shukri², Noor Suryani Mohd Ashari¹, Kah Keng Wong1 ¹Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150

Kubang Kerian, Kelantan, Malaysia.

²Department of Otorhinolaryngology, School of Medical Sciences, Universiti Sains Malaysia,

16150 Kubang Kerian, Kelantan, Malaysia.

Corresponding author:

- Assoc. Prof. Dr. Kah Keng Wong (BSc, Mal; DPhil, Oxon)
- Department of Immunology,
- School of Medical Sciences,
- Universiti Sains Malaysia,
- 16150 Kubang Kerian, Kelantan, Malaysia
- Tel: +609 7676229; Fax: +609 7653370
- E-mail: kahkeng@usm.my

ABSTRACT 35 Allergic rhinitis (AR) is a common disease affecting 400 million of the population worldwide. 36 Nasal epithelial cells form a barrier against the invasion of environmental pathogens. These nasal 37 epithelial cells are connected together by tight junction (TJ) proteins including zonula occludens-38 1 (ZO-1), ZO-2 and ZO-3. Impairment of ZO proteins are observed in AR patients whereby 39 40 dysfunction of ZOs allows allergens to pass the nasal passage into the subepithelial causing AR Commented [HA1]: Do you mean the subepithelium? development. In this review, we discuss on ZO proteins and their impairment leading to AR, 41 42 regulation of their expression by Th1 cytokines (i.e. IL-2, TNF-α and IFN-γ), Th2 cytokines (i.e. 43 IL-4 and IL-13) and histone deacetylases (i.e. HDAC1 and HDAC2). These findings are pivotal for future developments of targeted therapies by restoring ZO protein expression and improving Deleted: s 44 nasal epithelial barrier integrity in AR patients. 45 46 47 Subjects Allergy and Clinical Immunology, Immunology, Otorhinolaryngology 48 INTRODUCTION 49 Tight junction (TJ) proteins are required to form the nasal epithelial barrier and maintain its 50 51 integrity. Breakdown of TJ function or expression deregulation is associated with derailed nasal epithelial barrier, leading to infiltration by allergens and subsequent development of allergic 52 53 rhinitis (AR) (Fukuoka & Yoshimoto, 2018; Steelant et al., 2016). Moreover, growing evidence 54 has implicated regulation of the nasal epithelial barrier integrity by histone deacetylases (HDACs) and by Th1 and Th2 cytokines in AR. Thus, an overall assessment and compilation of Deleted: 55 this accumulating evidence is desirable. In this review, we present and discuss the mechanisms 56 leading to breakdown of TJs specifically on zonula occludens (ZOs), a group of important TJ 57 58 proteins, as well as regulation of their expression by HDACs and by, Th1 and Th2 cytokines that Deleted: would be informative for clinicians and researchers alike in this field. 59 60 SURVEY METHODOLOGY 61 This review focuses on ZOs and their regulators i.e. HDACs, Th1 and Th2 cytokines in AR 62 research. All articles were searched and screened by two investigators (COSS, KKW) using the 63 electronic databases PubMed and Google Scholar. References described in this review were 64 obtained from the databases up to year 2019. The following keywords were used: "allergic 65 rhinitis", "AR", "nasal epithelial barrier integrity", "zonula occludens", "ZO", "histone 66 deacetylases", "HDACs", "Th1" and "Th2". 67 68 **ALLERGIC RHINITIS (AR)** 69 70 Allergy is a hypersensitivity reaction that occurs when an individual is sensitized by allergens such as grass, tree pollen, house dust mites (HDMs), foods, insect venoms or medicines (Azid et 71 al., 2019; Sani et al., 2019; Tanno et al., 2016). AR is a global health issue affecting 72

approximately 10-25% of the population worldwide (*Elango, 2005*). AR can be characterized by events of sneezing, rhinorrhea, nasal obstruction, nasal itching and postnasal drip. It is also associated with itching of the eyes, ears and throat (*Elango, 2005; Pang et al., 2017*).

Onset of AR consists of two phases of reaction where the first phase involves allergen infiltration that induces the production of immunoglobulin E (IgE) and triggers the humoral immune response mediated by mast cells. The second phase is a clinical phase where the patients present with symptoms of AR as a response to subsequent antigen exposure. This involves the release of mediators such as multiple cytokines and chemokines. Nasal symptoms can be observed within minutes due to the release of neuroactive and vasoactive agents including histamine, cysteinyl leukotrienes and prostaglandin D₂ (Wheatley & Togias, 2015). The mucosa is rendered more reactive to allergens and nasal symptoms can persist for days after exposure to allergens (Sarin et al., 2006; Wheatley & Togias, 2015).

AR is also defined immunologically as an IgE-mediated inflammation reaction in the nasal airways. This is primarily due to exposure to environmental pathogens, allergens or any foreign agents that induce an inflammation reaction (*Bayrak Degirmenci et al.*, 2018). These allergens contain proteases that contribute to the disruption of the airway epithelial barrier (*Runswick et al.*, 2007; Schleimer & Berdnikovs, 2017; Wan et al., 1999). The interaction between IgE and dendritic cells (DCs) increases allergen uptake and its subsequent processing and presentation to naive T cells (Sin & Togias, 2011). Hence, higher allergen infiltration into the nasal airway increases the production of IgE in the blood. Perennial AR patients present with higher total IgE levels (Lee et al., 2016; Shirasaki et al., 2011).

NASAL EPITHELIAL BARRIER INTEGRITY IN AR

The nasal epithelial barrier plays an important role in sealing the nasal passage and underlying tissues from foreign pathogens by connecting the epithelial cells to each other (*London & Ramanathan, 2017; Steelant et al., 2016*). Any intrusion from foreign particles can stimulate the production of antimicrobial host defence molecules, pro-inflammatory cytokines and chemokines by nasal epithelial cells through the activation of recognition receptors. In addition, T cells are also recruited to epithelial cells to enhance adaptive immunity.

Dysfunction of these TJ barriers can increase exposure of nasal tissues to environmental antigens. It can lead to the infusion of inflammatory cells into the lumen which contributes to tissue damage or inflammation (*Soyka et al., 2012*). The disruption of the mucosal epithelial barrier has also been observed in AR animal models (*Zhang et al., 2016*).

The nasal epithelial barrier is primarily formed by cell-to-cell TJs which consist of integral membrane proteins such as claudins, occludin, junctional adhesion molecules (JAMs), as well as

Deleted: release

Deleted: the

Deleted: of

Deleted: Nasal

Deleted: Nasal

scaffold adaptor proteins consisting of ZO-1, ZO-2 and ZO-3 (Beutel et al., 2019; London & 120 121 Ramanathan, 2017). These proteins form the intercellular connection between the cells that Deleted: intracellular 122 regulates the passage of foreign pathogens (Steelant et al., 2016). These proteins connect together 123 to form a complex structure that protects the epithelial barrier from inhaled pathogens (Figure 1). 124 **ZONULA OCCLUDENS (ZO) PROTEINS** 125 ZO proteins are a group of key proteins associated with TJ molecules that connect 126 127 transmembrane proteins to the actin cytoskeleton (Steelant et al., 2016). ZO proteins form an anchor directly to the underlying cytoskeleton with other TJ proteins including occludin, claudin, 128 129 JAMs and tricellulin (Bauer et al., 2010; Furuse et al., 1994). ZO proteins belong to the family of membrane-associated guanvlate kinase (MAGUK)-like proteins. MAGUKs are scaffolding 130 proteins that form and maintain multimolecular complexes at distinct subcellular sites such as the 131 132 cytoplasmic surface of the plasma membrane (Bauer et al., 2010). 133 134 ZO-1, ZO-2 and ZO-3 form a belt-like region at the outer end of intercellular space between the 135 epithelial cells that separates the apical from the lateral plasma membrane. The proteins also play 136 vital roles in regulating the passage of ions and molecules through the membrane (Gonzalez-137 Mariscal et al., 2000). ZO proteins consist of a multidomain structure including SRC homology 3 (SH3), guanylate kinase-like (GUK) and multiple PDZ domains (Anderson, 1996). 138 139 140 ZO-1 and ZO-2 have been detected in human nasal mucosa where ZO-1 is found in the 141 uppermost layer of epithelium (Kojima et al., 2013). ZO-1 is expressed by DCs to form an Formatted: Highlight 142 epithelial barrier (Rescigno et al., 2001; Sung et al., 2006). ZO-1 protein contains an N-terminal PDZ domain that can recognize specific C-terminal or other peptide motifs to assemble with 143 other TJ molecules such as claudins to form a TJ barrier at gaps between epithelial cells 144 (Heinemann & Schuetz, 2019; Herve et al., 2014; Umeda et al., 2006). The TJ barrier controls 145 146 the diffusion of molecules by acting as semipermeable diffusion barriers through the paracellular 147 pathway. It has been reported that transmembrane proteins such as claudin and occludin are essential for the regulation of paracellular permeability (Balda & Matter, 2000; Lee, 2015; 148 149 Roehlen et al., 2020). ZO-1 is also responsible for the regulation of paracellular permeability (i.e. Deleted: in 150 permeability for the passage of molecules between adjacent epithelial cells) via TJ complexes as 151 it binds directly to transmembrane proteins (Balda & Matter, 2000; Lee, 2015; Roehlen et al., 152 2020). Loss of ZO-1 can retard the formation of the TJ complexes, and further breakdown of ZO-153 1 may result in severe disruption of the paracellular barrier in epithelial cells (Roehlen et al., 154 2020). Hence, ZO-1 plays important roles in maintaining the epithelial barrier by connecting TJ molecules to seal the epithelial cells from infiltration of environmental allergens. 155 156 Disruption of ZO proteins in AR 157

The disruption of ZO proteins affects the interaction of TJ molecules, allowing the passage of allergens into the host. Decreased expression of ZO-1 in AR patients has been reported by gene expression studies (*Lee et al., 2016; London & Ramanathan, 2017*). A study by Steelant and colleagues showed decreased levels of ZO-1 through immunofluorescent staining on AR biopsy specimens (*Steelant et al., 2016*). Furthermore, nasal epithelial cells isolated from inferior turbinate of HDM-induced AR patients demonstrated reduced *ZO-1* mRNA expression (*Steelant et al., 2018*). Likewise, the expression of ZO-1 in asthma and chronic rhinosinusitis patients was also decreased compared with healthy controls (*de Boer et al., 2008; Soyka et al., 2012*).

Immunofluorescence analysis of RPMI 2650, a human nasal epithelial cell line, showed a decreased of ZO-1 expression after being exposed to diesel exhaust particles (*Fukuoka et al.*, 2016). Transepithelial electric resistance (TER) measurement, a procedure that assessed the integrity of TJ in cell culture of epithelial monolayers, of the RPMI 2650 was reduced in the study, and the decreased ZO-1 expression was associated with severity of AR (*Fukuoka et al.*, 2016). Moreover, HDM cysteine proteinase antigen from *Dermatophagoids pteryonysinus* caused the mislocalization of ZO-1 from TJ (*Wan et al.*, 1999). Hence, patients with AR demonstrate lower integrity of nasal epithelial barrier that is associated with decreased expression or disruption of ZO-1 protein.

Accumulating evidence has shown that reduced expression of ZO-1 or ZO-2 occurs in patients with chronic rhinosinusitis (CRS) without nasal polyps (*Soyka et al., 2012*) or eosinophilic esophagitis (EoE) (*Katzka et al., 2014*), respectively. CRS is characterized by mucosal inflammation involving both the nasal cavity and paranasal sinuses (*Soyka et al., 2012*), while EoE represents inflammation of the oesophagus when food antigens interact with oesophageal mucosa (*Katzka et al., 2014*). Both CRS and EoE are caused by the penetration of antigens through the gap between nasal epithelial cells. The expression of ZOs in these allergic diseases in both patients and animal models are summarized in *Table 1*.

HISTONE DEACETYLASES (HDACs) IN AR

HDACs are enzymes responsible for removing acetyl group from lysine residues of target proteins. HDACs prevent gene transcription by allowing DNA to be wrapped by histones (*Jiang et al., 2015*). HDACs also promote the condensation of chromation (*Shakespear et al., 2011*). HDACs have been implicated in several inflammatory and allergic conditions including AR (*Barnes, 2013; Sweet et al., 2012; Vendetti & Rudin, 2013*). Upregulation of HDAC activity occurs in nasal epithelial cells of AR patients (*Steelant et al., 2019*).

It has been shown that expression of TJs can be increased by inhibiting the activity of HDAC1 and simultaneously decreasing the defect of epithelial barriers (*Wawrzyniak et al., 2017*). In animal models, HDAC1 protein levels in rats AR model were higher than naive rats (*Jiang et al., 2015*). Immunohistochemical results also demonstrated higher expression of HDAC1 protein in

Formatted: Highlight

Deleted: Study

Commented [HA2]: Is this statement a hypothesis proposed by the authors, or are you stating that this is known and established from the literature? If the latter is the case, you should include references to support this. If there are no references, you should state this more carefully.

nasal epithelium of patients with sinusitis and nasal polyps contributing to the disruption of TJs (*Kaneko et al., 2017*). Furthermore, HDAC1 could supress the activity of TWIK-related potassium channel-1 (Trek-1), and Trek-1 is pivotal in the maintenance of epithelial cell barrier function (*Bittner et al., 2013*). Higher mRNA expression of *HDAC1* together with lower mRNA expression of *Trek-1* was found in nasal epithelial from patients with AR compared with healthy subjects (*Wang et al., 2015*).

ZO-1 expression was previously shown to be decreased in the presence of HDAC1. Lower levels of ZO-1 mRNA expression were observed in AML-12 murine hepatocyte cells that overexpressed HDAC1 (*Lei et al., 2010*). Studies on epithelial-mesenchymal transition (EMT), an oncogenic process that induces epithelial cells to transform into anchorage-independent mesenchyme-like cells for increased metastatic capabilities of cancer cells, also showed an association with HDAC1 and ZO-1 (*Zhou et al., 2015*). ZO-1 is involved in EMT where loss of ZO-1 expression can induce invasion of cancer cells. Higher HDAC1 mRNA and protein expression levels were found in hepatocellular carcinoma (HCC) cell lines (HepG2, Hep3B, Huh7, PLC/PRF/5, SK-Hep-1) compared with normal human epithelial cell line (THLE-3) (*Zhou et al., 2015*). Inhibition of HDAC1 in these HCC cells showed an increase of ZO-1 mRNA and protein expression, leading to decreased invasion capabilities of HCC cells (*Zhou et al., 2015*). Thus, ZO-1 expression can be inhibited by HDAC1 leading to breakdown of epithelial cells'

anchorage, and it remains unknown if similar effects might also occur in nasal epithelial cells.

In contrast with HDAC1, evidence has shown that HDAC2 expression is required to prevent breakdown of nasal epithelial barrier integrity in AR. Decreased levels of HDAC2 were observed in patients with asthma and asthmatic smoking patients, as in patients with chronic obstructive pulmonary disease (*Bhavsar et al., 2008*). Higher levels of HDAC2 can restore steroid sensitivity in asthmatic patients (*Bhavsar et al., 2008*), and nasal scrape samples of patients with persistent AR showed weak expression of HDAC2 (*Sankaran et al., 2014*). Moreover, deficiency of HDAC2 in intestinal epithelial cells (IEC) of mice was associated with chronic basal inflammation (*Turgeon et al., 2013*). Deletion of HDAC2 from IEC displayed an increased permeability to fluorescein isothiocyanate-dextran 4kDa (FD4; a fluorochrome for investigation of cell permeability) by assessing the intensity of fluorescence in the mice blood (*Turgeon et al., 2013*), and increased penetration by FD4 indicated increased leakiness that may be due to disruption of epithelial barrier.

However, downregulation of HDAC2 with the treatment of Trichostation-A (TSA), an HDAC inhibitor (HDACi), increased the expression of *ZO-1* mRNA in fetal human lens epithelial cells (*Ganatra et al., 2018*). The effect of HDAC2 inhibitor CAY10683 was investigated on the expression on ZO-1 at the intestinal mucosal barrier of lipopolysaccharide (LPS)-stimulated NCM460 cells (a normal human colon mucosal epithelial cell line) (*Wang et al., 2018*). LPS was used to induce damage to the mucosal barrier of NCM460 cells. The NCM460 cells treated with

Deleted: s

Commented [HA3]: Epithelial tissue? Epithelial cells? Or do you mean "nasal epithelium"?

Commented [HA4]: How is this discrepancy explained? In the previous paragraph you discuss how HDAC2 expression prevents breakdown of the nasal epithelial barrier. Do the authors of these papers suggest any explanations? Do you have any ideas?

the HDAC2 inhibitor (CAY10683) increased mRNA and protein levels of ZO-1 (Wang et al.,

243 244

242

Inhibiting HDAC activities with HDACi (JNJ-26481585) may be able to restore the structure of 245 ZO molecules in nasal epithelial cells (Steelant et al., 2019). In the same study, 246 immunofluorescent staining showed that ZO-1 expression was significantly weaker in AR 247 248 patients compared with healthy controls, and further treatment with JNJ-26481585 increased the expression of ZO-1 protein. 249

250 251

252

253 254

255 256

The HDACi sodium butyrate (SoB) is a short chain fatty-acid produced by the microbial fermentation of dietary fibre in colonic lumen (Bordin et al., 2004). The Rat-1 fibroblasts cell line expresses ZO-1 and ZO-2 proteins (Bordin et al., 2004). When the cells lysates were cultured in the presence of SoB, densitometric analysis of immunoblots showed that ZO-1 and ZO-2 levels were upregulated (Bordin et al., 2004). Collectively, HDAC1 and HDAC2 suppress the expression of ZO proteins leading to breakdown of epithelial cells barrier integrity as demonstrated by these studies either in AR or non-AR epithelial cells.

257 258 259

260

261 262

263

264 265

266 267

TH1 CYTOKINES IN AR

Cytokines play an important role in mediating allergic inflammation. The roles of Th2 cytokines in AR have been well-documented (Steelant et al., 2016; Sun et al., 2020; Zhao et al., 2017). Imbalance of Th1 and Th2 cytokines appears to be involved in the AR inflammatory pathway (Zhao et al., 2017). However, there is a lack of review on Th1 cytokines and their roles in the breakdown of nasal epithelial barrier integrity. Moreover, dysfunctional Th1 responses have been proposed to be responsible for the exaggerated Th2 responses that occur in AR patients (Eifan & Durham, 2016). Th1 cells produce IL-2, IFN-γ and TNF-α in response to allergic inflammation (Ackaert et al., 2014). Th1 cytokines can cause disruption of TJ molecules including ZO proteins in nasal epithelial barrier, leading to allergic inflammation.

268 269 270

271 macrophages and boosts immunity against intracellular pathogens and virus infection (Marshall 272 et al., 2018). IFN-y plays a key role in bridging the innate and adaptive immune systems (Bayrak Degirmenci et al., 2018). It is also essential in the regulation of local leukocyte-endothelial 273 274 interaction (Akkoc et al., 2008). IFN-y increases the permeability of primary bronchial epithelial cells and T84 colonic epithelial cells by disassembling TJ structures (Bruewer et al., 2005). 275

Th1 response is characterized by IFN-γ production which stimulates bactericidal activities of

Accordingly, the level of IFN-γ in plasma sample of AR patients was significantly lower 276

277 compared with healthy controls (Bayrak Degirmenci et al., 2018). The same study showed that 278

downregulated levels of Th1 cytokines were associated with higher severity of AR symptoms.

279 Furthermore, the levels of IFN-γ were inversely correlated with higher nasal symptoms scores as Deleted: the

Commented [HA5]: These two sentences contradict what you've just stated above (and below), that Th1 cytokines like IFNy disrupt TJ molecules and lead to allergic inflammation.

measured by evaluating the severity of sneezing, nasal itching, nasal obstruction and watery nasal discharge (*Bayrak Degirmenci et al.*, 2018).

283284 In order to observe the expression of ZC

In order to observe the expression of ZO-2 in CRS patients, human epithelial cells were treated on air-liquid interface (ALI) culture with IFN- γ . The results showed that opening of TJs between the neighbouring cells occurred in patients compared with healthy controls ($Soyka\ et\ al.,\ 2012$). However, no significant decrease of ZO-1 expression in AR patients was observed when the epithelial cells were treated with IFN- γ and TNF- α cytokines ($Lee\ et\ al.,\ 2016$). Additionally, cultured primary nasal epithelial cells in ALI stimulated with TNF- α and IFN- γ showed a decrease of epithelial barrier integrity *in vitro* ($Steelant\ et\ al.,\ 2018$).

Furthermore, expression of ZO-1 protein in primary airway cells from cystic fibrosis patients was reduced in the presence of IFN- γ and TNF- α cytokines (*Coyne et al., 2002*). Prolonged exposure of IFN- γ and TNF- α to the cell culture led to a significant damage to ZO-1 molecules (*Coyne et al., 2002*). This damage caused an increase of cell permeability to external solutes and a decrease in transepithelial resistance. Further investigation of wild type BALB/c mice endonasally instilled with IFN- γ and TNF- α increased the FD4 mucosal barrier permeability associated with decreased ZO-1 expression *in vivo* (*Steelant et al., 2018*). Blocking TNF- α cytokine activity with anti-TNF- α partially restored the ZO-1 expression in HDM-induced mice (*Steelant et al., 2018*).

 IL-2, also produced by Th1 cells, plays a vital role in inflammatory reactions. Lower levels of Th1 cytokines, IL-2 and IFN- γ were detected in the serum sample from OVA-sensitized mice with AR compared with controls (*Wang et al., 2016*). When the OVA-sensitized mice were treated with SoB, IL-2 and IFN- γ levels were increased, leading to increased expression of TJ molecules (*Wang et al., 2016*).

TH2 CYTOKINES IN AR

The involvement of Th2 cytokines in AR has been widely investigated. The serum levels of Th2 cytokines including IL-4 and IL-13 are elevated in AR patients (*Jordakieva & Jensen-Jarolim*, 2018). Increased expression of IL-4 in nasal epithelial cells of HDM-induced AR patients reduced *ZO-1* mRNA expression (*Steelant et al.*, 2016). Breakdown of the epithelial barrier was observed after stimulation of nasal epithelial cells with IL-4 along with a significant increase in the permeability of FD4 (*Steelant et al.*, 2016).

 Both IL-4 and IL-13 play critical roles in promoting B cells to produce IgE (*Shirkani et al., 2019; Zhao et al., 2017*). Protein levels of IL-4 and IL-13 in nasal mucosa of guinea pig of ARsensitized pig were higher compared with controls (*Zhao et al., 2017*). This was supported by findings where higher serum levels of IL-4 and IL-13 were found in AR-sensitized pigs compared with controls (*Zhao et al., 2017*). In addition, treatment of lung cancer cells (Calu-3)

Deleted: s

Commented [HA6]: Again, these sentences contradict most of the rest of this entire section. Are you intending to show that Th1 cytokines are associated with decreased TJ molecules and increased allergic inflammation, or the opposite? It is extremely confusing to switch back and forth without any discussion about why these findings are completely contradictory.

Deleted: and significantly increased

with IL-4 and IL-13 reduced the protein expression of ZO-1 protein (Fukuoka & Yoshimoto, 322 2018). 323 324 325 Immunofluorescent staining of human bronchial epithelial cells of asthmatic patients 326 demonstrated that disruption of TJs in the ALI cultures occurred and weak expression of ZO-1 327 was observed (Wawrzyniak et al., 2017). Blocking IL-4 and IL-13 in asthma patients did not show difference in TER measurement (Srinivasan et al., 2015; Wawrzyniak et al., 2017). 328 329 However, nullifying the effects of IL-4 and IL-13 using anti-IL4 and anti-IL-13 supplemented to Deleted: nullification the ALI culture of control bronchial epithelial cells in vitro enhanced the TER measurement 330 331 (Wawrzyniak et al., 2017). Moreover, IL-4 and IL-13 mRNA expression levels were increased together with downregulated ZO-1 mRNA expression in the jejunum of OVA-sensitized rats 332 333 (Tulyeu et al., 2019). 334 Downregulation of ZO-1 mRNA expression potentially through regulation by Th2 cytokines was 335 336 also observed in vivo. Endonasal stimulation of wild-type BALB/c mice with IL-4 and IL-13 337 demonstrated increased FD4 permeability associated with reduced ZO-1 mRNA expression compared with saline-instilled mice (Steelant et al., 2018). Taken together, these studies indicate 338 339 that IL-4 and IL-13 contribute to the breakdown of nasal epithelial barrier by reducing the 340 expression of ZO-1. 341 CONCLUSION 342 343 In conclusion, HDAC1 and HDAC2 play pathogenic roles in the breakdown of nasal epithelial 344 barrier integrity via suppression of ZO proteins expression. This is potentially regulated by Th1 and Th2 cytokine signaling pathways as higher levels of Th1 and Th2 cytokines in AR patients 345 Deleted: s are accompanied with decreased epithelial barrier integrity and ZO-1 expression. Future research 346 347 should investigate and compare which specific HDACi or blocking antibodies of Th1 and Th2 348 cytokines demonstrate potent restoration of ZO proteins expression in nasal epithelial cells of AR Deleted: that 349 animal models, as well as ameliorating their symptoms. Targeting these pathogenic pathways 350 might be effective in AR therapy to maintain the expression and structure of ZOs at the nasal 351 epithelial barrier. 352 353 354 355 356 357 358 359 9

REFERENCES

- Ackaert C, Kofler S, Horejs-Hoeck J, Zulehner N, Asam C, von Grafenstein S, Fuchs JE, Briza P, Liedl KR, Bohle B, Ferreira F, Brandstetter H, Oostingh GJ, Duschl A. 2014. The impact of nitration on the structure and immunogenicity of the major birch pollen allergen Bet v 1.0101. *PLoS One* 9:e104520. 10.1371/journal.pone.0104520
- Akkoc T, de Koning PJ, Ruckert B, Barlan I, Akdis M, Akdis CA. 2008. Increased activation-induced cell
 death of high IFN-gamma-producing T(H)1 cells as a mechanism of T(H)2 predominance in atopic
 diseases. J Allergy Clin Immunol 121:652-658 e651. 10.1016/j.jaci.2007.12.1171
- 371 Anderson JM. 1996. Cell signalling: MAGUK magic. Curr Biol 6:382-384.
 - Azid NA, Md Sani M, Zamry AA, Mohd Ashari NS, Tan TH-T, Wong KK, Mohamud R. 2019. Total IgE levels and their relevance in the diagnosis of allergy among Malaysian population in the North-East Region of Peninsular Malaysia. 2019 4:7.
 - **Balda MS, Matter K. 2000.** The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. *EMBO J* **19**:2024-2033. 10.1093/emboj/19.9.2024
 - **Barnes PJ. 2013.** Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. *J Allergy Clin Immunol* **131**:636-645. 10.1016/j.jaci.2012.12.1564
 - Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC. 2010. The dual role of zonula occludens (ZO) proteins. *J Biomed Biotechnol* 2010:402593. 10.1155/2010/402593
 - Bayrak Degirmenci P, Aksun S, Altin Z, Bilgir F, Arslan IB, Colak H, Ural B, Solakoglu Kahraman D, Diniz G, Ozdemir B, Kirmaz C. 2018. Allergic Rhinitis and Its Relationship with IL-10, IL-17, TGF-beta, IFN-gamma, IL 22, and IL-35. *Dis Markers* 2018:9131432. 10.1155/2018/9131432
 - Beutel O, Maraspini R, Pombo-Garcia K, Martin-Lemaitre C, Honigmann A. 2019. Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions. *Cell* 179:923-936 e911. 10.1016/i.cell.2019.10.011
 - Bhavsar P, Ahmad T, Adcock IM. 2008. The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol 121:580-584. 10.1016/j.jaci.2007.12.1156
 - Bittner S, Ruck T, Schuhmann MK, Herrmann AM, Moha ou Maati H, Bobak N, Gobel K, Langhauser F, Stegner D, Ehling P, Borsotto M, Pape HC, Nieswandt B, Kleinschnitz C, Heurteaux C, Galla HJ, Budde T, Wiendl H, Meuth SG. 2013. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med 19:1161-1165. 10.1038/nm.3303
 - **Bordin M, D'Atri F, Guillemot L, Citi S. 2004.** Histone deacetylase inhibitors up-regulate the expression of tight junction proteins. *Mol Cancer Res* **2**:692-701.
 - **Bruewer M, Utech M, Ivanov AI, Hopkins AM, Parkos CA, Nusrat A. 2005.** Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. *FASEB J* **19**:923-933. 10.1096/fj.04-3260com
 - Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG. 2002. Regulation of airway tight junctions by proinflammatory cytokines. *Mol Biol Cell* 13:3218-3234. 10.1091/mbc.e02-03-0134
 - de Boer WI, Sharma HS, Baelemans SM, Hoogsteden HC, Lambrecht BN, Braunstahl GJ. 2008. Altered expression of epithelial junctional proteins in atopic asthma: possible role in inflammation. *Can J Physiol Pharmacol* 86:105-112. 10.1139/y08-004
 - **Eifan AO, Durham SR. 2016.** Pathogenesis of rhinitis. *Clin Exp Allergy* **46**:1139-1151. 10.1111/cea.12780
 - **Elango S. 2005.** Recent trends in the diagnosis and management of allergic rhinitis. *Med J Malaysia* **60**:672-676; quiz 677.
- Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T. 2016. Diesel exhaust particles
 exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy
 46:142-152. 10.1111/cea.12597

410 Fukuoka A, Yoshimoto T. 2018. Barrier dysfunction in the nasal allergy. Allergol Int 67:18-23.
411 10.1016/j.alit.2017.10.006

- Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S. 1994. Direct association of
 occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J
 Cell Biol 127:1617-1626.
- 415 Ganatra DA, Vasavada AR, Vidya NG, Gajjar DU, Rajkumar S. 2018. Trichostatin A Restores Expression of
 416 Adherens and Tight Junction Proteins during Transforming Growth Factor beta-Mediated
 417 Epithelial-to-Mesenchymal Transition. J Ophthalmic Vis Res 13:274-283.
 418 10.4103/jovr.jovr_110_17
 - Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. 2000. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 11:315-324. 10.1006/scdb.2000.0178
 - Heinemann U, Schuetz A. 2019. Structural Features of Tight-Junction Proteins. Int J Mol Sci 20. 10.3390/ijms20236020
 - Herve JC, Derangeon M, Sarrouilhe D, Bourmeyster N. 2014. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. *Biochim Biophys Acta* 1838:595-604. 10.1016/j.bbamem.2013.07.006
- Jiang J, Liu JQ, Li J, Li M, Chen HB, Yan H, Mo LH, Qiu SQ, Liu ZG, Yang PC. 2015. Trek1 contributes to
 maintaining nasal epithelial barrier integrity. Sci Rep 5:9191. 10.1038/srep09191
 - **Jordakieva G, Jensen-Jarolim E. 2018.** The impact of allergen exposure and specific immunotherapy on circulating blood cells in allergic rhinitis. *World Allergy Organ J* **11**:19. 10.1186/s40413-018-0197-0
 - Kaneko Y, Kohno T, Kakuki T, Takano KI, Ogasawara N, Miyata R, Kikuchi S, Konno T, Ohkuni T, Yajima R, Kakiuchi A, Yokota SI, Himi T, Kojima T. 2017. The role of transcriptional factor p63 in regulation of epithelial barrier and ciliogenesis of human nasal epithelial cells. *Sci Rep* 7:10935. 10.1038/s41598-017-11481-w
 - Katzka DA, Tadi R, Smyrk TC, Katarya E, Sharma A, Geno DM, Camilleri M, Iyer PG, Alexander JA, Buttar NS. 2014. Effects of topical steroids on tight junction proteins and spongiosis in esophageal epithelia of patients with eosinophilic esophagitis. Clin Gastroenterol Hepatol 12:1824-1829 e1821. 10.1016/j.cgh.2014.02.039
 - Kojima T, Go M, Takano K, Kurose M, Ohkuni T, Koizumi J, Kamekura R, Ogasawara N, Masaki T, Fuchimoto J, Obata K, Hirakawa S, Nomura K, Keira T, Miyata R, Fujii N, Tsutsumi H, Himi T, Sawada N. 2013. Regulation of tight junctions in upper airway epithelium. *Biomed Res Int* 2013:947072. 10.1155/2013/947072
 - Lee HJ, Kim B, Im NR, Lee DY, Kim HK, Lee SH, Lee HM, Lee SH, Baek SK, Kim TH. 2016. Decreased expression of E-cadherin and ZO-1 in the nasal mucosa of patients with allergic rhinitis: Altered regulation of E-cadherin by IL-4, IL-5, and TNF-alpha. Am J Rhinol Allergy 30:173-178. 10.2500/ajra.2016.30.4295
 - **Lee SH. 2015.** Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. *Intest Res* **13**:11-18. 10.5217/ir.2015.13.1.11
 - Lei W, Zhang K, Pan X, Hu Y, Wang D, Yuan X, Shu G, Song J. 2010. Histone deacetylase 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition. *Int J Biochem Cell Biol* 42:1489-1497. 10.1016/j.biocel.2010.05.006
- 452 London NR, Jr., Ramanathan M, Jr. 2017. The Role of the Sinonasal Epithelium in Allergic Rhinitis.
 453 Otolaryngol Clin North Am 50:1043-1050. 10.1016/j.otc.2017.08.002
- **Marshall JS, Warrington R, Watson W, Kim HL. 2018.** An introduction to immunology and immunopathology. *Allergy Asthma Clin Immunol* **14**:49. 10.1186/s13223-018-0278-1
- 456 Pang KA, Pang KP, Pang EB, Tan YN, Chan YH, Siow JK. 2017. Food allergy and allergic rhinitis in 435
 457 asian patients A descriptive review. Med J Malaysia 72:215-220.

- Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP,
 Ricciardi-Castagnoli P. 2001. Dendritic cells express tight junction proteins and penetrate gut
 epithelial monolayers to sample bacteria. *Nat Immunol* 2:361-367. 10.1038/86373
- 461 Roehlen N, Roca Suarez AA, El Saghire H, Saviano A, Schuster C, Lupberger J, Baumert TF. 2020. Tight
 462 Junction Proteins and the Biology of Hepatobiliary Disease. *Int J Mol Sci* 21.
 463 10.3390/ijms21030825
- 464 Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR. 2007. Pollen proteolytic enzymes degrade
 465 tight junctions. Respirology 12:834-842. 10.1111/j.1440-1843.2007.01175.x

- Sani MM, Ashari NSM, Abdullah B, Wong KK, Musa KI, Mohamud R, Tan HT. 2019. Reduced CD4+ terminally differentiated effector memory T cells in moderate-severe house dust mites sensitized allergic rhinitis patients. *Asian Pac J Allergy Immunol* 37:138-146. 10.12932/AP-191217-0220
- Sankaran P, Brockwell C, Clark A, Wilson A. 2014. P232 Treatment Of Allergic Rhinitis With Theophylline : A Double-blind, Randomised, Crossover Study. *Thorax* 69:A179-A179. 10.1136/thoraxjnl-2014-206260.360
- Sarin S, Undem B, Sanico A, Togias A. 2006. The role of the nervous system in rhinitis. J Allergy Clin Immunol 118:999-1016. 10.1016/j.jaci.2006.09.013
- Schleimer RP, Berdnikovs S. 2017. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. *J Allergy Clin Immunol* 139:1752-1761. 10.1016/j.jaci.2017.04.010
- Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. 2011. Histone deacetylases as regulators of inflammation and immunity. *Trends Immunol* 32:335-343. 10.1016/j.it.2011.04.001
- Shirasaki H, Kanaizumi E, Seki N, Himi T. 2011. Correlation of Local FOXP3-Expressing T Cells and Th1-Th2 Balance in Perennial Allergic Nasal Mucosa. *Int J Otolaryngol* 2011:259867. 10.1155/2011/259867
- Shirkani A, Mansouri A, Farid Hosseini R, Jabbari Azad F, Alsadat Mahmoudian R, Montazer M, Samimi A, Momtazi-Borojeni AA, Abbaszadegan MR, Gholamin M. 2019. The Role of Interleukin-4 and 13 Gene Polymorphisms in Allergic Rhinitis: A Case Control Study. *Rep Biochem Mol Biol* 8:111-118.
- Sin B, Togias A. 2011. Pathophysiology of allergic and nonallergic rhinitis. *Proc Am Thorac Soc* 8:106-114. 10.1513/pats.201008-057RN
- Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, Kast JI, Akdis CA. 2012. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. *J Allergy Clin Immunol* 130:1087-1096 e1010. 10.1016/j.jaci.2012.05.052
- Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. 2015. TEER measurement techniques for in vitro barrier model systems. *J Lab Autom* 20:107-126. 10.1177/2211068214561025
- Steelant B, Farre R, Wawrzyniak P, Belmans J, Dekimpe E, Vanheel H, Van Gerven L, Kortekaas Krohn I, Bullens DMA, Ceuppens JL, Akdis CA, Boeckxstaens G, Seys SF, Hellings PW. 2016. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. *J Allergy Clin Immunol* 137:1043-1053 e1045. 10.1016/j.jaci.2015.10.050
- Steelant B, Seys SF, Van Gerven L, Van Woensel M, Farre R, Wawrzyniak P, Kortekaas Krohn I, Bullens
 DM, Talavera K, Raap U, Boon L, Akdis CA, Boeckxstaens G, Ceuppens JL, Hellings PW. 2018.
 Histamine and T helper cytokine-driven epithelial barrier dysfunction in allergic rhinitis. J Allergy
 Clin Immunol 141:951-963 e958. 10.1016/j.jaci.2017.08.039
- Steelant B, Wawrzyniak P, Martens K, Jonckheere AC, Pugin B, Schrijvers R, Bullens DM, Vanoirbeek JA,
 Krawczyk K, Dreher A, Akdis CA, Hellings PW. 2019. Blocking histone deacetylase activity as a
 novel target for epithelial barrier defects in patients with allergic rhinitis. *J Allergy Clin Immunol* 144:1242-1253 e1247. 10.1016/j.jaci.2019.04.027

- Sun R, Yang Y, Huo Q, Gu Z, Wei P, Tang X. 2020. Increased expression of type 2 innate lymphoid cells in pediatric patients with allergic rhinitis. *Exp Ther Med* **19**:735-740. 10.3892/etm.2019.8235
 - Sung SS, Fu SM, Rose CE, Jr., Gaskin F, Ju ST, Beaty SR. 2006. A major lung CD103 (alphaE)-beta7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J Immunol 176:2161-2172.
- Sweet MJ, Shakespear MR, Kamal NA, Fairlie DP. 2012. HDAC inhibitors: modulating leukocyte
 differentiation, survival, proliferation and inflammation. *Immunol Cell Biol* 90:14-22.
 10.1038/icb.2011.88

- Tanno LK, Calderon MA, Smith HE, Sanchez-Borges M, Sheikh A, Demoly P, Joint Allergy A. 2016.

 Dissemination of definitions and concepts of allergic and hypersensitivity conditions. World Allergy Organ J 9:24. 10.1186/s40413-016-0115-2
- Tulyeu J, Kumagai H, Jimbo E, Watanabe S, Yokoyama K, Cui L, Osaka H, Mieno M, Yamagata T. 2019.
 Probiotics Prevents Sensitization to Oral Antigen and Subsequent Increases in Intestinal Tight
 Junction Permeability in Juvenile-Young Adult Rats. *Microorganisms* 7.
 10.3390/microorganisms7100463
 - Turgeon N, Blais M, Gagne JM, Tardif V, Boudreau F, Perreault N, Asselin C. 2013. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. *PLoS One* 8:e73785. 10.1371/journal.pone.0073785
 - Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. 2006. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741-754. 10.1016/j.cell.2006.06.043
 - Vendetti FP, Rudin CM. 2013. Epigenetic therapy in non-small-cell lung cancer: targeting DNA methyltransferases and histone deacetylases. Expert Opin Biol Ther 13:1273-1285. 10.1517/14712598.2013.819337
 - Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C. 1999. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. *J Clin Invest* 104:123-133. 10.1172/JCI5844
 - Wang J, Wen L, Wang Y, Chen F. 2016. Therapeutic Effect of Histone Deacetylase Inhibitor, Sodium Butyrate, on Allergic Rhinitis In Vivo. *DNA Cell Biol* 35:203-208. 10.1089/dna.2015.3037
 - Wang Y, Chen H, Chen Q, Jiao F-Z, Zhang W-B, Gong Z-J. 2018. The Protective Mechanism of CAY10683 on Intestinal Mucosal Barrier in Acute Liver Failure through LPS/TLR4/MyD88 Pathway.

 Mediators of Inflammation 2018:11. 10.1155/2018/7859601
 - Wang Y, Lv L, Zang H, Gao Z, Zhang F, Wang X, Zhou X. 2015. Regulation of Trek1 expression in nasal mucosa with allergic rhinitis by specific immunotherapy. *Cell Biochem Funct* **33**:23-28. 10.1002/cbf 3075
 - Wawrzyniak P, Wawrzyniak M, Wanke K, Sokolowska M, Bendelja K, Ruckert B, Globinska A, Jakiela B, Kast JI, Idzko M, Akdis M, Sanak M, Akdis CA. 2017. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. *J Allergy Clin Immunol* 139:93-103. 10.1016/j.jaci.2016.03.050
- Wheatley LM, Togias A. 2015. Clinical practice. Allergic rhinitis. N Engl J Med 372:456-463.
 10.1056/NEJMcp1412282
 - Zhang N, Van Crombruggen K, Gevaert E, Bachert C. 2016. Barrier function of the nasal mucosa in health and type-2 biased airway diseases. *Allergy* 71:295-307. 10.1111/all.12809
- Zhao C, Yu S, Li J, Xu W, Ge R. 2017. Changes in IL-4 and IL-13 expression in allergic-rhinitis treated with
 hydrogen-rich saline in guinea-pig model. *Allergol Immunopathol (Madr)* 45:350-355.
 10.1016/j.aller.2016.10.007

Zhou H, Wang J, Peng G, Song Y, Zhang C. 2015. A novel treatment strategy in hepatocellular carcinoma by down-regulation of histone deacetylase 1 expression using a shRNA lentiviral system. Int J Clin Exp Med 8:17721-17729.
 Figure Legends

Figure 1: Pathophysiology of allergic rhinitis (AR) involving the disruption of nasal

epithelial barrier and regulation by HDACs, Th1 and Th2 cytokines.