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ABSTRACT
Background. Hepatocellular carcinoma (HCC) is the fifth most common cancer. Since
changes in liver metabolism contribute to liver disease development, it is necessary to
build a metabolism-related prognostic model for HCC.
Methods. We constructed a metabolism-related-gene (MRG) signature comprising
nine genes, which segregated HCC patients into high- and low-risk groups.
Results. The survival rate (overall survival: OS; relapse-free survival; and progression-
free survival) of patients in the low-risk group of The Cancer Genome Atlas (TCGA)
cohort was significantly higher than that of patients in the high-risk group. The OS
prognostic signature was validated in the International Cancer Genome Consortium
independent cohort. The corresponding receiver operating characteristic curves of
the model indicated that the signature had good diagnostic efficiency, in terms of
improving OS over 1, 3, and 5 years. Hierarchical analysis demonstrated that the
MRG signature was significantly associated with better prognosis in male patients,
patients aged ≤ 65 years, and patients carrying the wild-type TP53 or CTNNB1 genes.
A nomogram was established, and good performance and clinical practicability were
confirmed. Additionally, using the GSE109211 dataset from the Gene Expression
Omnibus database, we were able to verify that the nine genes in this MRG signature
had different responses to sorafenib, suggesting that some of these MRGs may act as
therapeutic targets for HCC.
Conclusions. We believe that these findings will add value in terms of the diagnosis,
treatment, and prognosis of HCC.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology
Keywords Hepatocellular carcinoma, The Cancer Genome Atlas, Gene Expression Omnibus,
Prognostic signature, Metabolism-related genes

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the most common
type of hepatobiliary cancer, with more than 500,000 new cases diagnosed each year and an
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annual mortality rate of 250,000 (Schlachterman et al., 2015; Singal & El-Serag, 2015; Steel
et al., 2007). In North America and several European regions, the incidence and mortality
rates of HCC have been rising, and in the United States alone, the incidence of HCC has
more than doubled in the past 20 years (Singal & El-Serag, 2015). Currently, only 46%
of HCC cases are diagnosed early, with most cases being diagnosed too late to allow for
successful treatment (Njei et al., 2015). The 5-year overall survival (OS) of all stages of
HCC is 12%, increasingly making it the most important cause of cancer-related death
(Hilmi et al., 2019). In modern clinical practice, the major risk factors for HCC are chronic
hepatitis C virus (HCV) or hepatitis B virus (HBV) infection, heavy drinking, diabetes,
and nonalcoholic fatty liver (Budny et al., 2017; Hsu et al., 2015; Levrero & Zucman-Rossi,
2016). In particular, active HCV and HBV contribute the most to the burden of global
HCC. Several advances related to HCC prevention and early detection and diagnosis
have proven to be effective and have led to a reduction in the incidence of HCC and the
mortality associated with it. Nonetheless, there are several common challenges in detecting
and treating HCC, including limited awareness about high-risk patients, limited availability
of effective and validated risk-stratification measures, and high costs of monitoring at-risk
populations.

HCC is a highly angiogenic solid tumour characterised by cell cycle disorders, abnormal
angiogenesis, and escape from apoptosis (Bhagyaraj et al., 2019; Rebouissou & Nault,
2020). The molecular pathogenesis of HCC is complex and involves a variety of genetic and
epigenetic changes, chromosomal aberrations, genetic mutations, and altered molecular
pathways (Farazi & DePinho, 2006). Metabolic alteration is one of the important features
of tumours. The liver is an important hub for metabolism of the three major nutrients—
sugar, lipid, and amino acids—in the body. HCC exhibits a variety of characteristic
metabolic changes, such as increased oxygen glycolysis, de novo fat synthesis, glutamine
consumption, and oxidative metabolic imbalance, which provide energy to the rapidly
growing and proliferating tumour cells. The process of metabolic alterations in tumours
is regulated by multiple factors, such as changes in metabolic enzyme activity, abnormal
gene expression, and dysfunctional signal transduction pathways. Many clinical parameters
currently used to assess liver function reflect changes in enzyme activity and metabolites.
In fact, the difference in glucose and acetate utilisation has been used as an effective clinical
tool to stratify HCC patients. In addition, elevated serum lactate levels can distinguish
HCC patients from healthy individuals, and serum lactate dehydrogenase is used as a
prognostic indicator for patients with HCC during treatment. It is thus necessary to
build a metabolism-related prognostic model for HCC (De Matteis et al., 2018; Nakagawa
et al., 2018; Pope 3rd et al., 2019). Changes in metabolic pathways, which are driven by
oncogenes, are recognised as cancer markers, and such changes provide cancers with a
selective advantage for tumour growth, proliferation, and metastasis (Berndt et al., 2019;
De Matteis et al., 2018; Huang et al., 2014; Kim et al., 2019). TP53 and CTNNB1 are two
genes that are most prone to mutations in HCC, and have received continuous research
attention because of their involvement in events that dominate tumour development
and progression (Calderaro et al., 2017; Cancer Genome Atlas Research Network. Electronic
address & Cancer Genome Atlas Research, 2017; Zucman-Rossi et al., 2015). Treatment with
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sorafenib, the first approved systemic therapeutic agent for HCC, has shown significant
improvements in survival outcomes of HCC patients (Ogasawara et al., 2018; Pinter &
Peck-Radosavljevic, 2018). It inhibits cell growth, induces apoptosis, and downregulates the
anti-apoptotic protein Mcl-1 by targeting a variety of protein kinases (Tai et al., 2013).

In this study, we constructed a prognostic model based on a metabolism-related gene
(MRG) signature comprising nine genes. Further, we examined the associations among
this signature, sorafenib use, and common clinical characteristics such as sex, age, and the
presence or absence of mutations in TP53 and CTNNB1. The findings from this study will
supplement the existing literature on HCC by providing useful data regarding molecular
diagnosis and precision treatment and will help in screening drug targets for HCC.

MATERIALS & METHODS
Data processing and extraction of differentially expressed MRGs
For the discovery cohort (n= 374 patients), fragments per kilobase of exon per million
mapped reads (FPKM) data and the corresponding clinical information related to gene
expression were downloaded from The Cancer Genome Atlas (TCGA). For the validation
cohort (n= 243 patients), the original data and corresponding clinical data related to gene
expression were downloaded from the Liver Cancer-RIKEN, Japan (LIRI-JP) project of
the International Cancer Genome Consortium (ICGC). For analysis of OS, relapse-free
survival (RFS), and progression-free survival (PFS) in the discovery cohort, and that of
OS in the validation cohort, we used data from 343, 301, 337, and 230 HCC patients,
respectively; these patients had been followed up for 30 days or more, and patients who
were likely to die of lethal complications (heart failure and haemorrhage) other than HCC
were excluded from the study. The probes were annotated using Homo sapiens GTF files in
the Ensembl database (http://asia.ensembl.org/index.html).

We selected all the pathways related to metabolism among 186 pathways from
c2.cp.kegg.v7.0.symbols.gmt. In total, 944 MRGs were obtained, of which 918 MRGs
were common between TCGA and ICGC. TCGA and ICGC MRG expression matrices
were background-corrected using the R package ‘‘sva’’ with the ‘‘limma’’ package to
identify differentially expressed MRGs. Genes having |log2FC|> 2 and P-value < 0.05
were selected for further analysis. The genes whose expression values were more than 0.5
and thus subjected to log2 transformation are depicted in a heat map. Finally, 54 differential
MRGs were selected. The GSE109211 dataset was downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) and contained 140 cases of HCC (67 patients who
received sorafenib and 73 patients who received placebo). This dataset was used for gene
annotation based on the GPL13938 platform (Illumina HumanHT-12 WG-DASL V4.0
expression beadchip).

Identification of a prognostic signature based on differential MRG
expression
After screening for differentially expressed MRGs, we performed univariate Cox regression
analysis to identify prognostic differentially expressed MRGs. A p-value < 0.05 was
considered statistically significant. Next, the ‘‘glmnet’’ package was used to implement the
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LASSOCox regressionmodel. All regression coefficients, including the coefficients of many
unrelated features, were reduced to zero in LASSO, precisely according to the adjustment
weight λ. The best λ was selected based on the minimum cross-validation error. Finally,
we calculated the risk coefficients of the genes associated with the LASSO Cox regression
model and estimated the median risk, using the ‘‘survminer’’ package in R.

Survival analysis
The risk scores of HCC patients were calculated using the previously described formula, and
the patients were classified into high- and low-risk groups, according to the median. The
Kaplan–Meier plotter was utilised to estimate the difference in survival time between the
high-and low-risk patients. A p-value < 0.05 for the log-rank test on both sides indicated
a significant difference in survival time between the two groups.

Construction of nomogram
We used the mutual clinical traits in the discovery and validation cohorts to construct
a nomogram, using the ‘‘rms’’ R package. We assessed the prognostic accuracy of the
nomograms by evaluating the corresponding calibration plots. The predicted and observed
results of the nomogram are shown in a calibration curve; the 45◦ line indicated the best
prediction.

Statistical analysis
A time-dependent receiver operating characteristic (ROC) analysis was performed to
explore the prognostic accuracy of the classifier, based on multiple differentially expressed
MRGs, using the ‘‘survivalROC’’ package in R. The Kaplan–Meier plotter was used to
analyse the OS, RFS, and PFS of the discovery cohort, and the OS of the validation cohort.
Statistical differences between the groups were evaluated using the log-rank test. Univariate
and multivariate Cox regression analyses were performed to assess the prognostic value of
clinical characteristics and the risk score, and clinical stratified analyses were performed to
test whether the risk score was independent of other clinical features, including age, sex,
risk factors (HBV + HCV, alcohol intake), degree of fibrosis (no fibrosis or fibrosis and
cirrhosis), tumour grade (G), American Joint Committee on Cancer (AJCC) stage, and
tumour (T) stage, which were used as covariates. Hazard ratios (HRs) and their respective
95% confidence intervals (CI) were obtained. A p-value< 0.05 was considered statistically
significant. The statistical tests were bilateral and conducted using R software (version
3.5.3)

Gene set enrichment analysis (GSEA)
Based on the median risk, 343 HCC samples from TCGA group and 230 HCC samples
from the ICGC group were divided into high- and low-risk groups. To identify metabolic
and other important changes in the Kyoto Gene and Genome Encyclopaedia (KEGG)
pathways, we used GSEA version 4.0.1 to perform a GSEA between the high- and low-risk
populations. The annotated gene set (c2.cp.kegg.v7.0.symbols.gmt) was defined as the
reference gene set. False discovery rate (FDR) < 0.05 was set as the cut-off.
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Figure 1 Risk score, reflecting overall survival, based on the metabolism-related-gene signature com-
prising nine genes, in the TCGA and ICGC cohorts. (A–B) Risk-score distribution in the TCGA and
ICGC cohorts. (C–D) The survival status of patients in the high- and low-risk groups in the TCGA and
ICGC cohorts. (E–F) Heatmap of the expression of the nine MRGs in the high- and low-risk groups and
the TCGA and ICGC cohorts.

Full-size DOI: 10.7717/peerj.9774/fig-1

RESULTS
Differential MRG expression
MRG matrices, consisting of 50 normal and 374 HCC samples from TCGA and 202
normal and 243 HCC samples from the ICGC, were obtained. Nine downregulated and 45
upregulated MRGs were identified. Univariate Cox regression analysis was used to identify
prognostic MRGs.

Identification of the signature based on multiple MRGs
Using univariate Cox regression analysis, 22 MRGs closely associated with OS were
identified (Table S1). To prevent over-fitting of MRGs and to determine the best gene
combination for the signature, we performed LASSO regression analysis. Finally, nine
MRGs were identified to establish a prognostic model. We used the coefficients of the
multivariate Cox regression model, which combined the predictions of the expression of
the nine MRGs and their corresponding survival times and survival states to construct
the following risk score formula: risk score = (0.0193 × RRM2 expression) + (0.0068 ×
DTYMK expression) + (0.0003 × LPCAT1 expression) + (−0.0013 × LCAT expression)
+ (0.0087 × TXNRD1 expression) + (0.0035 × G6PD expression) + (0.0012 ×PTGES
expression) + (0.0508 ×ENTPD2 expression) + (0.0729 × UCK2 expression) (Fig. 1).
Among the nine prognostic MRGs, LCAT had a negative coefficient in Cox regression
analysis, suggesting that its higher expression level was associated with lower risk and better
OS. In contrast, RRM2, DTYMK, LPCAT1, TXNRD1, G6PD, PTGES, ENTPD2, and UCK2
showed positive coefficients; their elevated expression levels were accompanied by higher
risk scores, thus predicting poor OS. According to the median risk score of 0.60, patients
were divided into high- and low-risk groups. A risk score greater than 0.60 was considered
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Figure 2 Validation of the risk scores based on the metabolism-related gene (MRG) signature com-
prising nine genes. (A–B) Time-dependent receiver operating characteristic (ROC) curves of the MRG
signature in the TCGA and ICGC cohorts. (C–D) Univariate Cox regression analysis for TCGA and ICGC
cohorts. (E–F) Multivariate Cox regression analysis for TCGA and ICGC cohorts.

Full-size DOI: 10.7717/peerj.9774/fig-2

to indicate high risk, whereas a risk score ≤ 0.60 was considered to indicate low risk. The
accuracy of the OS predictions, based on the MRG signature, was evaluated by generating
the ROC curves over time at 1, 3, and 5 years. A higher area under curve (AUC) represents
a better prognostic capability. The AUCs based on the MRG signatures in the discovery
and validation cohorts were 0.797, 0.703, and 0.652 (in TCGA cohort), and 0.778, 0.768,
and 0.835 (in the ICGC cohort), respectively (Figs. 2A and 2B). These results suggested that
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the prognostic model had high sensitivity and specificity. The results of the univariate and
multivariate Cox analyses showed that the risk score remained an independent predictor,
after adjusting for other covariates, in both the discovery and validation cohorts, and that
gender and stage acted as independent predictors in the validation cohort (Figs. 2C–2F).

Prognostic value of the MRG signature
To investigate the association between the MRG signature and prognosis, we performed
an analysis of OS, RFS, and PFS in the high- and low-risk groups of the discovery cohort
(Table 1), and that of OS in the high- and low-risk groups of the validation cohort (Table 2,
Fig. 3). In the discovery cohort, patients in the low-risk group had longer OS (HR = 2.20,
95% CI [1.51–3.19], p< 0.001), RFS (HR= 1.62, 95% CI [1.16–2.27], p= 0.005), and PFS
(HR = 1.64, 95% CI [1.21–2.20], p= 0.001) than patients in the high-risk group. We also
used the validation cohort to verify OS (HR = 5.22, 95% CI [2.81–9.68], p< 0.001). As
predicted, patients in the high-risk group had higher mortality than patients in the low-risk
group. Thus, the MRG signature can be considered an indicator of risk for HCC.

Associations between the MRG signature and OS by sex and age
To investigate the impact of clinical characteristics on the prognostic value of the MRG
signature, we categorised HCC patients based on six clinical traits: age, sex, risk factors
(HBV + HCV, alcohol intake), tumour grade (G), AJCC stage, and tumour (T) stage.
This stratified analysis revealed that OS, RFS, and PFS were significantly affected in male
patients and those aged ≤ 65 years in the discovery cohort; it also revealed significant OS
results in the validation cohort (Figs. 4 and 5). Moreover, the OS, RFS, and PFS results
for patients in the alcohol-intake, degree of fibrosis (no fibrosis or fibrosis and cirrhosis),
G1–G2, and T1–T2 groups in the discovery cohort were also significant . However, the
corresponding clinical information was not complete for the validation cohort. The
prognostic stratified analysis showed that the survival rate of male patients in the low-risk
group was significantly higher (OS [HR = 2.85, 95% CI [1.73–4.71], p< 0.001], RFS
[HR = 1.77, 95% CI [1.18–2.66], p= 0.006], and PFS [HR = 1.76, 95% CI [1.21–2.55],
p= 0.003]) than that of patients in the high-risk (validation cohort) group (OS [HR =
4.52, 95% CI [1.66–12.25], p= 0.003]). In addition, the survival rate of patients aged ≤ 65
years in the low-risk group was significantly higher (OS [HR = 1.97, 95% CI [1.21–3.21],
p= 0.007], RFS [HR = 1.62, 95% CI [1.06–2.47], p= 0.027], and PFS [HR = 1.64, 95%
CI [1.13–2.39], p= 0.009]) than that of patients in the high-risk (ICGC) group (OS [HR
= 5.58, 95% CI [1.55–20.11], p= 0.009]).

Associations between the MRG signature and OS in patients
carrying wild-type TP53 or CTNNB1
The tumour suppressor geneTP53 and the oncogeneCTNNB1 aremost commonlymutated
in HCC and are associated with poor prognosis. Numerous studies, including epigenetic
studies, have shown that mutations are important drivers of tumour carcinogenesis.
Therefore, we performed a stratified analysis based on the mutation status of TP53 or
CTNNB1 (Fig. 6). For patients with wild-type TP53 or CTNNB1, the probability of death
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Table 1 Association between survival probability and the metabolism-related-gene signature comprising nine genes, in hepatocellular carcinoma patients in the
TCGA cohort.

Parameter OS cohort RFS cohort PFS cohort

Volume
(High/Low)

HR
(95% CI)

P-value Volume
(High/Low)

HR
(95% CI)

P-value Volume
(High/Low)

HR
(95% CI)

P-value

Total 171/172 2.20 (1.51–3.19) <0.001 150/151 1.62 (1.16–2.27) 0.005 169/168 1.64 (1.21–2.20) 0.001
Age
≤ 65 108/108 1.97 (1.21–3.21) 0.007 97/94 1.62 (1.06–2.47) 0.027 108/104 1.64 (1.13–2.39) 0.009
>65 63/64 2.60 (1.42–4.73) 0.002 53/57 1.61 (0.93–2.77) 0.088 61/64 1.62 (0.98–2.67) 0.061

Gender
Male 118/115 2.85 (1.73–4.71) <0.001 104/105 1.77 (1.18–2.66) 0.006 116/113 1.76 (1.21–2.55) 0.003
Female 53/57 1.77 (0.96–3.27) 0.069 46/46 1.34 (0.74–2.41) 0.334 53/55 1.42 (0.85–2.38) 0.181

Risk factors
HBV+HCV 67/75 2.24 (1.08–4.69) 0.031 59/65 1.08 (0.62–1.88) 0.792 69/72 1.32 (0.83–2.10) 0.242

Alcohol intake 56/55 1.93 (1.00–3.71) 0.049 53/47 2.15 (1.17–3.95) 0.014 57/53 1.84 (1.08–3.14) 0.025
Degree of fibrosis

No fibrosis 30/42 5.89(2.82–12.28) <0.001 25/36 3.67(1.56–8.66) 0.003 29/42 2.45 (1.34–4.50) 0.004
Fibrosis and
cirrhosis

60/67 3.55 (1.74–7.27) <0.001 53/58 2.50 (1.18–5.30) 0.017 61/63 2.55 (1.40–4.64) 0.002

Grade
G1–G2 83/131 2.20 (1.38–3.49) <0.001 78/113 1.78 (1.16–2.74) 0.008 81/128 1.67 (1.13–2.46) 0.010
G3–G4 86/38 2.42 (1.12–5.24) 0.025 70/35 1.54 (0.83–2.87) 0.170 86/37 1.68 (0.96–2.95) 0.071

T classification
T1–T2 120/132 2.44 (1.45–4.11) <0.001 103/116 1.81 (1.17–2.77) 0.007 120/128 1.94 (1.34–2.81) <0.001
T3–T4 51/37 1.90 (1.08–3.35) 0.025 47/32 1.21 (0.70–2.10) 0.488 49/37 1.06 (0.63–1.78) 0.823

AJCC stage
Stage I 63/98 2.24 (1.13–4.41) 0.020 52/86 1.43 (0.80–2.58) 0.230 62/96 1.53 (0.92–2.53) 0.099
Stage II 47/30 2.55 (0.94–6.95) 0.066 42/27 2.05 (0.98–4.31) 0.057 47/28 2.09 (1.07–4.09) 0.031
Stage III and IV 49/34 1.86 (1.02–3.39) 0.043 45/29 1.21 (0.68–2.14) 0.513 49/34 1.04 (0.61–1.78) 0.881

Notes.
HR, hazard ratio; CI, confidence interval; HBV, hepatitis B virus; HCV, hepatitis B virus; G, grade; T, tumor; AJCC, American Joint Committee on Cancer.
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Table 2 Association between overall survival and the metabolism-related-gene signature comprising
nine genes, in hepatocellular carcinoma patients in the ICGC cohort.

Parameter ICGC cohort

Number (High/Low) HR (95% CI) P-value

Total 130/100 5.22 (2.82–9.68) <0.001
Age
≤65 45/44 5.58 (1.55–20.11) 0.009
>65 85/56 6.47 (1.93–21.72) 0.002

Gender
Male 93/76 4.51 (1.66–12.25) 0.003
Female 37/24 12.41 (1.64–94.14) 0.015

LCSGJ stage
Stage I 22/15 1.00 (0.82–1.22) 0.999
Stage II 59/41 2.68 (0.98–7.36) 0.056
Stage III and IV 51/45 17.68 (2.31–135.11) 0.006

Notes.
HR, hazard ratio; CI, confidence interval; LCSGJ, Liver Cancer Study Group of Japan.

was significantly higher in the high-risk group than in the low-risk group. These results
were consistent between the data from the two independent databases, TCGA and ICGC.
Therefore, this MRG signature can be considered a risk indicator for patients carrying
wild-type TP53 or CTNNB1.

Independent data set drug trial validation using the GEO database
To explore the association between the MRGs and drug response, we analysed differences
in expression of the MRGs, using the GSE109211 dataset from the GEO database. This
dataset comprised 67 patients treated with sorafenib (46 non-responders, 21 responders)
and 73 patients who received placebo treatment (Fig. 7). Compared with that in the placebo
and sorafenib non-responder groups, the expression of TXNRD1, LCAT, and G6PD in the
sorafenib responder group showed significant downregulation, and that of PTGES, RRM2,
and ENTPD2 showed significant upregulation. The expression of UCK2 was statistically
significant in the sorafenib non-responder and responder groups, and was downregulated
in the sorafenib responder group, relative to the expression in the non-responder and
placebo groups. The expression levels of LPCAT1 and DTYMK were not significantly
different between patients treated with sorafenib (responders and non-responders) and
those treated with the placebo. In other words, the MRGs in the model showed a good
response to sorafenib, which suggests the effectiveness of our MRG signature in predicting
the prognosis of patients with HCC.

Nine MRGs for GSEA
GSEA was conducted to ascertain significant changes in the potential pathways between
high-risk and low-risk populations. Based on the selection criteria of an FDR < 0.05, four
significantly altered pathways in the high-risk group were observed: the p53 signalling
pathway, the cell cycle pathway, purine metabolism, and pyrimidine metabolism (Fig. 8).
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Figure 3 Survival probability based on the metabolism-related gene (MRG) signature comprising nine
genes. (A) Overall survival, OS; (B) relapse-free survival, RFS; and (C) progression-free survival, PFS, in
the TCGA cohort. (D) OS in the ICGC cohort.

Full-size DOI: 10.7717/peerj.9774/fig-3

Construction of nomograms
A quantitative method was used, and a nomogram was constructed to predict the 1-, 3-,
and 5-year OS of patients with HCC in the discovery and validation cohorts, based on their
common clinical traits (Fig. 9). The calibration curves revealed that the nomograms for the
discovery and the validation cohorts had good accuracy, as observed in the ideal model.

DISCUSSION
HCC accounts for more than 80% of liver cancer cases. It is a highly malignant, recurrent,
and drug-resistant cancer that is often diagnosed at an advanced stage. Metabolic changes
are widely reported characteristics of HCC (Grandhi et al., 2016). Although the three major
liver metabolism pathways (glucose, lipid, and protein pathways) have been identified,
these are far from enough to reveal the metabolic changes related to HCC (De Matteis
et al., 2018; Lee et al., 2016; Liang et al., 2018; Shang, Qu &Wang, 2016; Tang et al., 2018).
We constructed an MRG signature comprising nine genes, using TCGA data, and further
verified its association with OS using an independent dataset to confirm the sensitivity

Tang et al. (2020), PeerJ, DOI 10.7717/peerj.9774 10/22

https://peerj.com
https://doi.org/10.7717/peerj.9774/fig-3
http://dx.doi.org/10.7717/peerj.9774


Figure 4 Association between survival and the metabolism-related gene (MRG) signature comprising
nine genes, in male hepatocellular carcinoma patients. (A) Overall survival, OS; (B) relapse-free survival,
RFS; and (C) progression-free survival, PFS, in the TCGA cohort. (D) OS in the ICGC cohort.

Full-size DOI: 10.7717/peerj.9774/fig-4

and specificity of the model. The MRG signature had statistically significant prognostic
value for male patients, those ≤ 65 years, and those carrying wild-type TP53 or CTNNB1.
Next, we performed independent drug verification of this signature using a GEO dataset,
revealing that some of the identified genes showed good response to sorafenib. Overall,
these results demonstrate the effectiveness of the MRG signature.

Clinical findings have shown that the incidence of HCC and the associated mortality
rates are higher in men than in women (Sukocheva, 2018). This has been attributed to the
lack of a protective effect of high oestrogen levels in men who drink heavily (Baecker et al.,
2018; Montano-Loza et al., 2018; Singh et al., 2019). Although the pathogenesis of alcohol-
induced HCC is complicated and still unclear, it is certain that alcohol toxicity causes
liver cells to catabolise fatty acids, resulting in fat accumulation and fibrosis. Additionally,
alcohol inhibits natural killer cells, which play key roles in antiviral, antitumour, and
antifibrotic defence in terms of innate immunity. It also impairs the proteasome functions
of macrophages and dendritic cells in terms of adaptive immunity, thus altering the
presentation of alloantigens. Furthermore, the oxidative metabolites of alcohol can
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Figure 5 Association between survival probability and the metabolism-related gene (MRG) signature
comprising nine genes, in hepatocellular carcinoma patients aged≤ 65 years. (A) Overall survival, OS;
(B) relapse-free survival, RFS; and (C) progression-free survival, PFS, in the TCGA cohort. (D) OS in the
ICGC cohort.

Full-size DOI: 10.7717/peerj.9774/fig-5

interfere with DNA methylation, synthesis, and repair, promote HCC carcinogenesis,
and increase HCC sensitivity (Ceni, Mello & Galli, 2014; Miller et al., 2011). In our study,
we observed that in TCGA cohort, alcohol intake was significantly greater in patients aged
≤ 65 years than in patients aged > 65 years, and the drinking history was longer in the
former. Furthermore, mutant alleles for TP53 and CTNNB1 were more frequent in men
(33.5% and 34.7%, respectively) than in women (21.8% and 12.7%, respectively). The
MRG signature had a significant prognostic value for patients carrying wild-type TP53 and
CTNNB1 in both cohorts and also mutant TP53 and CTNNB1 in the ICGC cohort (Fig.
S1), thus suggesting that TP53 andCTNNB1 are risk-indicator genes for HCC, regardless of
the presence or absence of mutations. More importantly, seven genes in the model showed
good responsiveness to sorafenib. Studies by Lee et al. (2019) showed that thioredoxin
reductase 1 (TXNRD1) is significantly overexpressed in cytoplasmic subunits and is a key
enzyme of the thioredoxin system, and is related to poor clinical pathological features and
survival outcomes of HCC patients. Targeting TXNRD1 results in accumulation of reactive
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Figure 6 Kaplan–Meier curves depicting overall survival (OS) in hepatocellular carcinoma patients.
(A–B) Patients with wild-type TP53 in the TCGA and ICGC cohorts, respectively. (C–D) Patients with
wild-type CTNNB1 in the TCGA and ICGC cohorts, respectively.

Full-size DOI: 10.7717/peerj.9774/fig-6

oxygen species, causing cancer cells to experience high levels of oxidative stress. Auranofin,
a TXNRD1 inhibitor, effectively exacerbates oxidative stress. This is consistent with our
validation of sorafenib sensitivity using the GEO data set, which revealed that TXNRD1
expression was significantly downregulated in the sorafenib responder group relative to
that in the placebo and sorafenib non-responder groups. Considering the relatively small
sample size in this study, the results must be validated in larger cohorts.

We used the common clinical traits of patients in TCGA and ICGC groups to construct
a new nomogram, based on the expression of the nine MRGs, to accurately predict 1-,
3-, and 5-year survival rates. However, our sample sizes were limited, and only patients
with complete information were included in the analysis, thereby limiting the precision
of our estimates. However, we found that five (RRM2, TXNRD1, DTYMK, UCK2 and
ENTPD2 ) of the nine MRGs were enriched in the purine metabolism and pyrimidine
metabolism pathways, which was an important finding and indicated that the purine
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Figure 7 Sorafenib sensitivity validation for the nine metabolism-related genes (MRGs) in the inde-
pendent cohort from the GEO database. (A–I) Differences in the expression of these genes, between pa-
tients who received the placebo and sorafenib treatment, and between responders and non-responders.
Wilcoxon test: ***P < 0.001, **P < 0.01, *P < 0.05, ns, not significant.

Full-size DOI: 10.7717/peerj.9774/fig-7

and pyrimidine metabolism pathways had a significant impact on the prognosis of HCC.
Human ribonucleotide reductase (RR) comprised of RRM1 and RRM2 can maintain
the steady state of the nucleotide library by converting ribonucleoside diphosphate to
2′-deoxyribonucleoside diphosphate, and increased expression and activity of RR are
related to malignant transformation and growth; therefore, the key role of RR in DNA
synthesis and repair makes it an important anticancer target. For example, the anti-
RRM2 siRNA duplex shows anti-proliferative activity in cancer cells. In addition, in vitro
experiments verified that sorafenib inhibited the expression of RRM2 in HCC cells, which
was positively correlated with the anticancer activity of sorafenib, proving that RRM2 is
a new molecular target of sorafenib in HCC cells (Yang, Lin & Liu, 2020). Ectonucleoside
triphosphate diphosphohydrolase 2 (ENTPD2) can be induced by hypoxia by stabilising
hypoxia-inducible factor 1 (HIF-1) and its overexpression in clinical specimens of HCC.
Myeloid-derived suppressor cells (MDSC) have immunosuppressive activity, which can
enable cancer to evade immune surveillance and become unresponsive to immune
checkpoint blockade. Hypoxia is the cause of MDSC accumulation. ENTPD2 converts
extracellular ATP to 5′-AMP, which prevents the differentiation of MDSC and promotes
their maintenance. In this way, MDSC can promote tumour immune escape (Chiu et
al., 2017). Uridine-cytidine kinase 2 (UCK2) is a pyrimidine ribonucleoside kinase that
catalyses the phosphorylation of uridine and cytidine to UMP and CMP. The enzyme also
catalyses the phosphorylation of several cytotoxic ribonucleoside analogues, and it has
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Figure 8 Gene set enrichment analysis (GSEA). (A–B) Metabolism-related gene (MRG) signature com-
prising the nine genes that had a falsediscovery rate< 0.05. (C) Circle diagram showing the gene compo-
nents of four pathways.The large genes are those used in the MRG signature.

Full-size DOI: 10.7717/peerj.9774/fig-8

been studied as a possible chemotherapeutic agent for the treatment of cancer (Malami &
Abdul, 2019; Murata et al., 2004). In vitro experiments show that UCK2 knockdown can
inhibit cell migration, invasion, and proliferation, whereas overexpression of UCK2 has the
opposite effect. Animal model experiments confirmed that knocking out UCK2 can inhibit
tumour growth in vivo (Huang et al., 2019). However, the specific underlying mechanism
needs to be further verified. As an important gene that controls dTTP biosynthesis and
DNA replication, deoxythymidylate kinase (DTYMK ) is necessary for all dividing cells.
Studies have shown that DTYMK knockdown and LKB1 loss DTYMK are synthetically
lethal, that is, excessive consumption of DTYMK below a critical threshold is lethal to
all dividing cells, especially those carrying low levels of deoxynucleotide pools, such as
tumour cells that maintain a rapid growth rate (Liu et al., 2013). LKB1/STK11 is the main
regulator of cell metabolism and energy stress response. The best characterised target is
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Figure 9 Nomograms to predict overall survival (OS) in hepatocellular carcinoma patients. (A–B)
Nomograms using clinical traits shared between the TCGA and ICGC cohorts. Nomogram calibration
curves for 1-, 3-, and 5-year OS, in the TCGA (C–E) and ICGC (F–H) cohorts. AJCC, American Joint
Committee on Cancer; LCSGJ, Liver Cancer Study Group of Japan.

Full-size DOI: 10.7717/peerj.9774/fig-9

AMP-activated protein kinase (AMPK). In the case of low cellular ATP levels, AMPK
is activated and directly phosphorylated by LKB1. AMPK in turn regulates the use of
nutrients through the phosphorylation of various substrates, thereby restoring energy
homeostasis and controlling the absorption and metabolism of nutrients (Mihaylova &
Shaw, 2011). LKB1/STK11 deficiency can lead to extensive defects in metabolic control.
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Primary cells and cancer cell lines lacking LKB1 are sensitive to nutritional deprivation
and other types of metabolic stress as evidenced by this (Wingo et al., 2009). This is a
direct evidence that DTYMK affects the occurrence and development of cancer through
LKB1. Notably, the enrichment results of RRM2, DTYMK, UCK2, and ENTPD2 in GSEA
were highly consistent with their corresponding KEGG pathways. TXNRD1 was enriched
in the pyrimidine metabolism pathway in GSEA, but has not yet been included in the
pyrimidine metabolism pathway in the KEGG database (Fig. 8C and Fig. S2). There may be
potential mechanisms that have not yet been discovered, and this important observation
may have been ignored by previous researchers. The risk score of our model was proved
to be an independent prognostic factor of HCC and it allows accurate evaluation of HCC
prognosis.

CONCLUSIONS
In summary, we have systematically demonstrated the prognostic value of our MRG
signature for male patients, patients aged ≤ 65 years, and patients carrying the wild-type
TP53 and CTNNB1 genes. We have revealed the association between this gene signature
and sorafenib responsiveness and explained the causes of the different responses among the
groups. These findings provide new information regarding HCC prevention, diagnosis, and
prognosis, and can be used in developing precision medicine approaches for individualised
treatment.
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