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The musculoskeletal system of marsupial mammals has numerous unusual features
beyond the pouch and epipubic bones. One example is the widespread absence or
reduction (to a fibrous “patelloid”) of the patella (“kneecap”) sesamoid bone, but prior
studies with coarse sampling indicated complex patterns of evolution of this absence or
reduction. Here, we conducted an in-depth investigation into the form of the patella of
extant marsupial species and used the assembled dataset to reconstruct the likely pattern
of evolution of the marsupial patella. Critical assessment of the available literature was
followed by examination and imaging of museum specimens, as well as CT scanning and
histological examination of dissected wet specimens. We found novel evidence of an
ossified patella in a specimen of Macropus rufogriseus (Bennett's wallaby) and in a
specimen of Thylacinus cynocephalus (the thylacine or “marsupial wolf”). It remains
uncertain whether these ossifications are ontogenetic variation, unusual individual
variation, pathological or otherwise, but future studies must continue to be conscious of
variation in metatherian patellar sesamoid morphology. Our evolutionary reconstructions
using our assembled data vary, too, depending on the reconstruction algorithm used. A
maximum likelihood algorithm favours ancestral fibrocartilaginous “patelloid” for crown
clade Marsupialia and independent origins of ossified patellae in extinct sparassodonts,
peramelids, notoryctids and caenolestids. A maximum parsimony algorithm favours
ancestral ossified patella for the clade [Marsupialia+sparassodonts] and subsequent
reductions into fibrocartilage in didelphids, dasyuromorphs and diprotodonts; but this
result changed to agree more with the maximum likelihood results if the character state
reconstructions were ordered. Thus, there is substantial homoplasy in marsupial patellae
regardless of the evolutionary algorithm adopted. Furthermore, the variability of the
patellar state we observed, even within single species, is fascinating and warrants further
investigation, especially as it hints at developmental plasticity that might have been
harnessed in marsupial evolution to drive the complex patterns inferred here.
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Abstract

The musculoskeletal system of marsupial mammals has numerous unusual features beyond the
pouch and epipubic bones. One example is the widespread absence or reduction (to a fibrous
“patelloid”) of the patella (“kneecap”) sesamoid bone, but prior studies with coarse sampling
indicated complex patterns of evolution of this absence or reduction. Here, we conducted an in-
depth investigation into the form of the patella of extant marsupial species and used the
assembled dataset to reconstruct the likely pattern of evolution of the marsupial patella. Critical
assessment of the available literature was followed by examination and imaging of museum
specimens, as well as CT scanning and histological examination of dissected wet specimens. We
found novel evidence of an ossified patella in a specimen of Macropus rufogriseus (Bennett's
wallaby) and in a specimen of Thylacinus cynocephalus (the thylacine or “marsupial wolf”). It
remains uncertain whether these ossifications are ontogenetic variation, unusual individual
variation, pathological or otherwise, but future studies must continue to be conscious of variation
in metatherian patellar sesamoid morphology. Our evolutionary reconstructions using our
assembled data vary, too, depending on the reconstruction algorithm used. A maximum
likelihood algorithm favours ancestral fibrocartilaginous “patelloid” for crown clade Marsupialia
and independent origins of ossified patellae in extinct sparassodonts, peramelids, notoryctids and
caenolestids. A maximum parsimony algorithm favours ancestral ossified patella for the clade
[Marsupialiat+sparassodonts] and subsequent reductions into fibrocartilage in didelphids,
dasyuromorphs and diprotodonts; but this result changed to agree more with the maximum
likelihood results if the character state reconstructions were ordered. Thus, there is substantial
homoplasy in marsupial patellae regardless of the evolutionary algorithm adopted. Furthermore,
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the variability of the patellar state we observed, even within single species, is fascinating and
warrants further investigation, especially as it hints at developmental plasticity that might have
been harnessed in marsupial evolution to drive the complex patterns inferred here.

Introduction

Having diverged from the common ancestor of therian mammals during the late Jurassic period,
some 160 million years ago (Bi et al., 2014; Figure 1), marsupials are a diverse and biologically
fascinating group of mammals. A hallmark of marsupials is their developmental strategy:
marsupials have relatively short gestation periods, after which the newborn crawls to the teat for
a prolonged lactation phase, typically within a pouch (Alpin & Archer, 1987). As a result, the
embryo has delayed hindlimb development, and accelerated forelimb and cranial development
(Hamrick, 1999; Garland et al., 2007; Sears, 2009). Despite the constraints imposed by such as
strategy (Garland et al., 2017), and geographical limitation to Australasia and South America
today, the nearly 350 extant species of marsupials exhibit great diversity in their size, lifestyle,
behaviour and anatomy.

One such diverse anatomical feature is the patellar sesamoid (“kneecap” or simply
patella). Sesamoids are skeletal elements found in connective tissues near joints (Vickaryous &
Olson, 2007; Abdala et al., 2019), that can modify the forces acting across it (e.g. acting as
levers; Alexander & Dimery, 1987; Fatima et al., 2019) and protect periarticular structures. In an
intriguing departure from the mammalian norm amongst monotremes and placentals, many
marsupials appear to lack a bony patella (Reese et al., 2001). Instead, many species possess a
region of fibrocartilage within the quadriceps femoris (QF) tendon at approximately the same
anatomical location as a patella, and which can be considered an unmineralised sesamoid
(Holladay et al., 1990; Reese et al., 2001; Inamassu et al., 2017; Abdala et al., 2019). This
fibrocartilage pad is commonly referred to as a ‘patelloid’. There is great diversity in the
histological structure of the patelloid, including the size, degree of differentiation and structural
orientation of the fibrocartilage (Reese et al., 2001).

A previous high-level study of mammalian patellar evolution (Samuels et al., 2017)
indicated an unusual pattern of variation across marsupial families. Results suggested a single
evolutionary origin of an ossified patella within Metatheria (the larger stem-based group of
which marsupials are the only extant remnant), with instances of loss (to patelloid) in marsupials
and later reversion in some groups. However, Samuels et al. (2017) cautioned: “inferences about
the evolutionary history of the patella in Metatheria must remain tentative until further data
become available”. Data on the form of the patella are absent for many marsupial species or rely
upon single observations or anecdotes within anatomical reports. There are also conflicting
reports as to whether certain species possess a patella, partially owing to the fibrocartilage
patelloid state not being recognised in all studies.

Knowledge of the form of the patella in marsupials remains patchy, with several gaps
waiting to be filled and incongruous statements requiring clarification. Throughout the literature,
certain species or more inclusive clades have been extensively studied, for example macropods
(kangaroos and kin), while others (e.g. thylacines and their kin) have been poorly characterised.
It is often broadly generalised that all marsupials, besides bandicoots and the bilby, possess a
fibrocartilage patelloid instead of a bony patella (Reese et al., 2001; Vogelnest & Allan, 2015;
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Inamassu et al., 2017). Earlier anatomical reports relied on direct observation to diagnose the
presence of a bony patella (Waterhouse, 1846; Osgood, 1921; Finch et al., 1989; Haxton, 1944;
Johnson & Walton, 1989), but more recent studies have enabled better characteristation of
patellar state through radiography, histology and computed tomography (CT) (Holladay et al.,
1990; Reese et al., 2001; Inamassu et al., 2017; Vogelnest & Allan, 2015).

The aims of this study are twofold. Firstly, we seek finer clarification of the form of the
patella in marsupials at (and, where feasible, within) the species level. We attempt to fill gaps or
inconsistencies within literature data through new observations of extant species, plus the
recently extinct thylacine. Secondly, we combine literature reports and new observations, and
use this finer-level dataset to perform ancestral states reconstruction of the patella to address
lingering questions over its evolutionary pattern of gain, loss and possible regain. Specifically,
we test the hypothesis of Samuels et al. (2017) that a bony patella was ancestral for marsupials.

Materials & Methods

Our extensive synthesis of the literature was followed by firsthand observations and photography
of osteological museum specimens, based on gaps in the data and availability of specimens for
study. CT scanning or x-ray radiography of a select number of specimens was then carried out,
dependent on the apparatus available, to test for the presence or absence of the patella.
Additionally, a small number of frozen stored macropod specimens were available for dissection
and histology of the QF tendon, described below. The combined literature and observational
findings were then used to reconstruct the evolutionary polarity of the patella in marsupials, with
character state codings following Samuels et al. (2017); described further below.

Survey of Osteological Museum Specimens

Marsupial osteological specimens were examined for grossly visible bone or dessicated
tendon/patelloid tissue. Specimens included those in collections held by the Natural History
Museum (NHMUK, London), the University Museum of Zoology, Cambridge (UMZC), the
Oxford University Museum of Natural History (OUMNH) and the National Museums of
Scotland (NMS, Edinburgh). Specimen details can be found in Table S4 of Supplementary Text
S1 (age and sex was generally unknown, so not included). Observations were only included for
specimens with adequate preservation of the QF tendon (so that true absence of patella/patelloid
could be discerned, versus possibility that these structures might have been cleaned off during
preparation). For some specimens, the nature of the patella was unclear by visual examination
alone. These specimens were selected for CT scanning or radiographic imaging, as described
below.

Computed Tomography (CT) Scanning and X-Ray Radiography of Osteological Specimens
Micro-CT scans of 11 skeletal specimens were obtained and subsequently semi-automatically
segmented using Mimics (Materialise Inc., Leuven, Belgium) software. Scan details are in Table
S1 of Supplementary Text S1; patellar state coding results are in Table S5 of Supplementary
Text S1. Radiographs of seven skeletal specimens from NHMUK were also obtained. Details of
these radiographs are in Table S2 of Supplementary Text S1; patellar state coding results are in
Table S6 of Supplementary Text S1. The CT and radiographic images were used to diagnose the
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presence or absence of an ossified patella within the QF tendon of the preserved specimens
imaged. In the case of CT scans, it was also possible to visualise soft tissue densities and
therefore test for the presence of a (fibrocartilage) patelloid. Raw scan data are available at
https://figshare.com/s/c3t5c083910b31ae9363 (doi: 10.6084/m9.figshare.11627190 PRIVATE
LINK UNTIL PUBLISHED).

Computed Tomography of Frozen Intact Specimens

In addition to the osteological specimens examined at museum sites, the study obtained four
recently deceased macropod specimens for medical CT scanning and histological examination.
These included one Macropus rufus and three Macropus rufogriseus specimens which had died
of natural causes at ZSL Whipsnade and London Zoos and had been stored frozen (-20°C). We
opportunistically examined these specimens in detail to test for variation within macropod
patellae. The hindlimbs of each specimen were scanned using CT prior to dissection. Details of
the scans are in Table S3 of Supplementary Text S1.

Dissection and Light microscopy of Frozen Specimens

The right and left patellar tendons were harvested from two of the intact Macropus rufogriseus
(specimens 1 & 2). The tendons dissected from the thawed cadavers were fixed in 10% neutral
buffered formalin. Samples containing bone (diagnosed via imaging, above) were decalcified in
10% formic acid solution. All specimens were sectioned in the sagittal plane along the midline
and directly lateral to the midline. The tendon sections were dehydrated and embedded in
paraffin wax blocks. Microtome sections were cut between 4 and 6 pm. Sections were stained
with Haematoxylin and Eosin, and Masson’s trichrome. In the case of tendons where ossified
patellar tissue was found to be present, sections were also stained with Safranin O/Fast Green for
the identification of cartilage, and Von Kossa to highlight the presence of calcium salts. The
histological sections were examined by light microscopy and images obtained via scanning at
high resolution using a Leica SCN400F scanner.

Evolutionary Reconstructions of Ancestral State

Standard phylogenetic character mapping methods were used to reconstruct the evolutionary
polarity of the patella in marsupials. A patellar character score was assigned to each species for
which data had been obtained on the basis of the findings gathered from the literature, direct
observations, radiographic/CT imaging and light microscopy; totalling 94 species.The patella
was coded as absent (score = 0), fibrocartilage patelloid (score = 1) or ossified (score = 2) for
each species; and one additional “crown Eutheria” outgroup was scored as state 2; all following
Samuels et al. (2017). In species where more than one state had been observed, or conflicting
reports in the literature were unresolved, both possible states were included. For example,
Macropus rufogriseus was coded as 1/2 because both patelloid and ossified patella states were
observed (see Results). A composite phylogenetic tree containing the species for which patellar
data were available, was obtained from the Timetree database, based on current literature
(http://timetree.org; Hedges et al., 2006; see also May-Collado et al., 2015), with fossil
outgroups added from Forasieppi (2009) and Bi et al. (2014). The data matrix is in
Supplementary Data S1.

The evolutionary history of the patella was reconstructed over the phylogenetic tree using
the maximum likelihood (Mk1) and parsimony models in Mesquite software (Maddison &
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Maddison, 2017), with branch length calibrations following Samuels et al. (2017). For
comparison, a second reconstruction was generated using the maximum parsimony algorithm,
with unordered character states; although we also checked this analysis by changing the
reconstruction method to ordered character states (i.e. preferring stepwise changes from state 0 to
1 to 2 or the converse; not 0 to/from 2). We also re-ran analyses switching state “0” (no patella)
coded fossil taxa to state “0/1” (patelloid possible) to check sensitivity to the vagaries of
preservation and interpretation of missing fibrocartilages.

Results

A comprehensive literature review was the starting point for this study (Supplementary Text S1:
Table S7). To summarise: those higher-level clades for which there was evidence supporting the
presence of an ossified patella (state 2) included Caenolestidae, Notoryctidae and Peramelidae,
with the possibility of an ossified patella in Tarsipedidae (Waterhouse, 1846; Osgood, 1921). In
a small number of species, including Vombatidae and Phascolarctidae, the patella was noted as
absent (state 0) in some studies and in the form of a patelloid (state 1) in others. For example, in
wombats, published descriptions ranged from absence of any sesamoid (Waterhouse, 1846; Lee
& Carrick, 1989) to an equivocal 0/1 character state (Home, 1808; Vogelnest and Allan, 2015) to
presence of a patelloid (Macalister, 1870). The remainder of species for which data existed were
scored as having a patelloid. The most critical areas where data were sparse include the many
South American opossums (excluding the genus Didelphis), Microbiotheriidae, some species of
Dasyuromorphia, and the small Australian opossums and gliders (Acrobatidae, Tarsipedidae,
Petauridae and others).

Observations and Imaging of Osteological Specimens

Firsthand observational data from preserved osteological specimens are in Table S4 of
Supplementary Text S1. The nature of the patella was recorded for each specimen observed at
the four museum collections visited. Details of specimens where CT or radiography was used for
confirmation of patella mineralisation status are in Tables S5 and S6 of Supplementary Text S1.
Examples of scans obtained are in Figure 3, with examples of radiographs in Figure 4.

Most findings from specimen-based examinations supported those from the literature
review. Although it was not possible to confirm the presence of fibrocartilage without
histological samples, the visual and imaging observations supported the presence of a
fibrocartilage patelloid within the QF tendon for the majority of both Australian and American
marsupials. Ossified patellae were evident in Caenolestidae, Notoryctidae and Peramelidae,
which also supported the literature reivew. Importantly, observations were made in several
species for which there had previously been no data recorded. Unfortunately, there was still a
large number of species for which we observed no specimens or found no clear literature
descriptions; our sampling of Marsupialia was necessarily incomplete.

The most interesting finding was the presence of bilateral apparently mineralised patellae
in a well-preserved specimen of the now-extinct Thylacinus cynocephalus specimen (Figure 3D).
This mineralisation was supported by CT scanning: the region of the patella had a density
approximately as high as nearby bone, unlike tendon around it. However, strangely it did not
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have the same structure as in the macropods and other specimens, with a trabecular core
surrounded by a thin cortical shell (as typical for a mammalian patella). The form of the patella
of this species was briefly mentioned as a patelloid by Cunningham (1882) and Wood (1924),
which Warburton et al. (2019) supported based on a more exhaustive study (also character
coding in Forasieppi (2009)).

Computed Tomography and Visual Observations of Frozen Specimens

CT scans of the wet Macropus rufogriseus and Macropus rufus specimens revealed the presence
of an ossified patella in the left hindlimb of one Macropus rufogriseus (specimen 1; Figure 5).
Upon subsequent dissection, this ossified patella was clearly evident (Figure 6). In the remaining
three specimens of Macropus, a patelloid was observed on the CT scans and subsequently
confirmed to be fibrocartilage in one specimen (specimen 2) by dissection and histological
examination.

Light Microscopy of Frozen Specimens

Histological examination confirmed the presence of an ossified patella in the left QF tendon of
specimen 1 of Macropus rufogriseus (Figures 7, 8). The majority of the patella was composed of
cancellous bone, with cortical bone comprising the superficial third (Figure 8 A); approximately
typical for an ossified mammalian patella. The Safranin O/Fast Green staining highlighted a
layer of articular hyaline cartilage covering the deep surface: the surface in articulation with the
femur. Staining with Von Kossa identified the presence of calcium salts, with a central region of
increased calcium density. In contrast, the right QF tendon of specimen 1, and both QF tendons
of specimen 2, contained a typical fibrocartilage patelloid (Figure 7). The presence of cartilage
was best highlighted by staining with Safranin O/Fast Green, while collagen fibres were most
clearly illustrated with Masson’s trichrome. As expected, the majority of the patelloid stained
poorly with Von Kossa, illustrating that the tissue was not ossified (Figure 8B). However, stain
accumulated in one small region in the centre of the tendon, suggesting a small amount of
nascent mineralisation/ossification there.

Evolutionary Reconstructions

Figure 9 illustrates the reconstructed evolution of the patella in marsupials, according to the
maximum likelihood (Mk1) and parsimony algorithms. Under the maximum likelihood model,
absence of any patellar sesamoid (mineralised or patelloid) was reconstructed as the most likely
ancestral state for Metatheria. Sparassodonts, as in Samuels et al. (2017), were united by an
apparently independently evolved ossification of the patella (e.g. Sinclair, 1905, Wood, 1924;
Argot, 2004; Forasieppi, 2009). Our reconstruction indicates that the common ancestor at the
root of the crown group marsupial tree was most likely (59%; greater at deeper nodes 3-6 in Fig.
9) to have evolved a fibrocartilage patelloid (i.e. character state 1), which has been maintained in
the majority of marsupial species. The likelihood of an ancestral patelloid state in marsupials
increased (to ~97%) if a patelloid state was considered possible in all non-marsupial
metatherians lacking ossified patellae (e.g. Herpetotherium coded 0/1 rather than 0). In our
original results, there were three separate instances of evolution of an ossified patella (i.e.
character state 2) from the ancestral patelloid within the crown group, occurring at the nodes for
Caenolestidae, Notoryctidae and Peramelidae, according to the maximum likelihood
reconstruction. Hence an ossified patella evolved at least four times in Metatheria.
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There was also one apparent instance of loss of a patelloid (i.e. reversal to character state
0), in Dromiciops (Microbiotheridae), however this is only supported by observations from a
single study (Szalay & Sargis, 2001). Similarly, for the closely-related Vombatidae and
Phascolarctidae, and for Sarcophilus harrisii and Metachirus nudicaudatus, some sources noted
complete absence of any patella or patelloid within the quadriceps tendon (full details in
Supplementary Text S1). This evidence leads to the tentative speculation that a reversal from
patelloid to absence of any sesamoid occurred more than three times in our sample of
Marsupialia, although our coding for this character state was left equivocal (state 0 or 1; Fig. 9),
as some more recent sources imply that a patelloid may indeed be present. Indeed, dissections of
two male and two female adult koalas (Phascolarctos cinereus) indicated the bilateral presence
of patelloids, not ossified patellaec (Hazel Richards, Monash University, pers. comm. 2019;
confirmed by CT scans), as shown in Figure 10. There were several instances of ossified patellae
being observed in (individuals of) a single species, despite other species within the same family-
level clade possessing a fibrocartilage patelloid. These included Didelphis virginiana, Thylacinus
cynocephalus, Tarsipes rostratus and multiple macropod species.. Likewise, here, we coded
these states as equivocal until stronger sampling can be conducted. Regardless, transformations
from an unossified patelloid to patella appeared common in our maximum likelihood analyses
for Marsupialia.

In comparison, maximum parsimony analysis with unordered character states presented a very
different evolutionary pattern. An ossified patella united most of Metatheria [ Sparassodonta +
Marsupialia] as an ancestral state. Next, there were three independent reductions to a patelloid
(i.e. no ancestral transformations from patelloid to patella for major clades) along the lineages to
Didelphidae, Dasyuridae/Dasyuromorphia and Diprotodontia. Otherwise the results were similar.
Forcing the character states to evolve in an ordered regime produced results more concordant
with the maximum likelihood analysis: ancestral fibrocartilage for [Sparassodonta +
Marsupialia], then two independent origins of ossified patellae in sparassodonts and caenolestids,
although it was ambiguous whether ossified patellae were homologous or homoplastic for
[Dasyuridae + Peramelidae + Notoryctidae] on the tree used.

Discussion

We conducted an in-depth analysis of the form of the marsupial patella across Marsupialia, using
observations from both osteological and wet specimens, combined with critical analysis of the
available literature (Table S7 of Supplementary Text S1). Our finer-level dataset did not clearly
support the hypothesis of an ancestrally-ossified patella in marsupials, proposed by a previous,
less detailed study (Samuels et al., 2017). The maximum likelihood ancestral state reconstruction
indicated evolution of an ossified patella from a fibrocartilage patelloid at three separate
instances during marsupial evolution. However, the parsimony-based analysis contradicted this
reconstruction in that an ossified patella evolved first in Metatheria, and then was independently
transformed into a patelloid at least three times. Our conclusions thus hinge on which
evolutionary algorithm is preferred. Regardless, our findings concur that there is extensive
homoplasy for the ossified patellar sesamoid in Metatheria.
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We have also discovered the presence of an ossified patella in two individuals of two
species previously stated to possess a fibrocartilage patelloid: Thylacinus cynocephalus (extinct;
patelloid noted by Cunningham, 1882; Wood, 1924; Forasieppi, 2009; Warburton et al., 2019)
and Macropus rufogriseus (as per Reese et al., 2001). Intriguingly, one individual M. rufogriseus
sampled here exhibited two different patellar states: the right knee had a fibrocartilage patelloid,
as anticipated from the literature, whilst the left had a very well-differentiated bony patella
complete with articular hyaline cartilage. The discrepancy within these species, and particularly
within an individual, may go some way towards explaining apparent contradictions in literature
data. This may, in part, be due to the vague references found in certain older studies. However, it
also raises the possibility that several marsupial species, previously thought to possess a
patelloid, are actually able to develop an ossified patella, perhaps in different environments (e.g.
mechanical, developmental) or simply due to random variation. The fact that different patellar
states exist among closely related species, or even within individuals, highlights the complexity
of marsupial patellar evolution. Perhaps developmental potential for an ossified patella may exist
in most or all marsupial species, with ossification only actually occurring in certain cases.

The results presented above challenge the frequently quoted statement that “all
marsupials, except bandicoots and the bilby” lack an ossified patella (Reese et al., 2001;
Inamassu et al., 2017; Vogelnest & Allan, 2015). The very clear presence of a bony patella in the
Caenolestidae and Notoryctidae (e.g. Thompson & Hillier, 1905) is sufficient evidence to the
contrary. Furthermore, the observations of ossified patellae in single macropod and thylacine
specimens, belonging to distinct marsupial clades, caution the use of broad cross-species
generalisations which implicitly assume 100% evolutionary fixation of character states
within/between species. Sarin et al. (1999) examined the incidence of two sesamoids (the fabella
and os peroneum) in primates, finding intra-species variation in the occurrence of these
sesamoids, and inferring a decline in their incidence along the primate stem lineage toward
Homo. Berthaume et al. (2019) then found remarkable increases in the ossification of the fabella
over the past 150 years in human populations, attributing this to improved health and nutrition
favouring larger body sizes and thus increased mechanical stimuli.

Our results indicate a complex pattern of evolution and development of this sesamoid,
with patellar states apparently not constant in all clades, and with certain individuals capable of
developing an ossified patella in species otherwise typically possessing a patelloid. Thus, there is
polymorphism in several marsupial taxa, as hinted at by Samuels et al. (2017), although the
biological mechanisms underlying this variation remain uncertain—and certainly deserving
deeper mechanistic studies. A genetic basis is hypothesised for many sesamoids (see Abdala et
al., 2019 for recent review), with further development driven by epigenetic factors. Repeated
evolutionary losses and regains of an ossified patella are thus very plausible for marsupials,
perhaps through evolutionary ‘maintenance’ of a transitional structure like the patelloid.
Marsupials are known to have apomorphically delayed hindlimb development (Hamrick, 1999;
Garland et al., 2007; Sears, 2009) compared with other mammals, so we speculate that this
heterochronic shift might have also impacted patellar development and its evolution. New data
on patellar development in marsupials are urgently needed, especially in light of novel recent
insights into the tissue origins and molecular controls of patellar development in mammals (Eyal
et al., 2015,2019; Marquez-Florez et al., 2018; Samuels & Campeau, 2019).
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The maximum likelihood reconstruction of Samuels et al. (2017) suggested a single
origin of a bony patella in Metatheria, prior to the divergence of Marsupialia and Sparassodonta,
followed by reduction to a fibrocartilage patelloid in most marsupials (e.g. ancestral
Diprotodontia) and re-ossification in some deeper lineages (e.g. Tarsipedidae). This was found to
be more likely than multiple instances of bony patellar evolution (Samuels et al., 2017). Our
present study focused on data at the species level and much more expansive sampling of
individual specimens (Supplementary Text S1; Tables S1-S7), rather than just family-level
clades as in Samuels et al. (2017); and we placed Caenolestidae and Didelphidae as sister taxa in
our phlogeny (Figs. 2, 9) rather than successive branches (as per our source of the phylogeny; see
Methods). Alternative phylogenies (e.g. Bininda-Emonds et al. 2007; Meredith et al., 2011;
O’Leary et al., 2013) would alter our results at least slightly, and resolution of this issue requires
better consensus among mammalian phylogenies in general. We found conflicting evolutionary
patterns that only concur with Samuels et al.’s (2017) if maximum parsimony (with unordered
character states) rather than likelihood (or ordered character states) is adopted. In the latter case,
maximum likelihood (and ordered-state parsimony) favoured the more conventional scenario that
Metatheria lacked an ossified patellar sesamoid ancestrally, but may have possessed a patelloid
(the origin of which is dependent on coding in extinct non-marsupial metatherians). Later, three
or more different marsupial clades independently ossified the patelloid that was ancestral for the
crown group. Resolving this discordance will depend upon what algorithm is favoured, but also
on acquiring more high-resolution data across Metatheria.

We, however, subjectively feel that coding the patellar states as ordered is more plausible
given available ontogenetic data and mechanobiological theory (e.g. Sarin & Carter, 2000;
Marquez-Florez et al., 2018; Abdala et al., 2019). Reciprocally, the general congruence between
those results and maximum likelihood offer some reassurance that an evolutionary sequence
from little/no patella to “patelloid” to 3+ parallel evolutions of bony patellae may be the most
reasonable conclusion at present. Nonetheless, this complex question of patellar evolution in
metatherians, which has long been plagued by a seeming bias toward simple answers, deserves
continued and deeper inquiry.

Unfortunately, several species were unavailable for inclusion in this study, and
occasionally only single specimens of a particular species were observed. Further data on the
form of the patella in marsupials and their metatherian cousins are still required, in order to
further clarify the pattern of patellar evolution in marsupials. Additionally, the age (or even gross
ontogenetic stage; other than near-adult) of the preserved specimens studied was largely
unknown. Previously, Szalay & Sargis (2001) had suggested that ossification may occur in older
individuals of some species, referring specifically to Didelphis virginiana. However,
examination of an ontogenetic series of specimens, perhaps of multiple species, would be
required to resolve this matter.

The (tentative) conclusion that a bony patella evolved, or was reacquired, at multiple
times in divergent marsupial species raises interesting questions regarding the function of this
sesamoid. Previous studies examining the form of the marsupial patella have varied in their
conclusions about how the presence of a patella or patelloid relates to the ecology and behaviour
of the species studied. Holladay et al. (1990) attributed the presence of a patelloid in macropods
to their pattern of locomotion. In contrast, Reese et al. (2001: p.293) challenged that “the lack of
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a bony patella is typical for marsupials”, but the different patelloid “types” they observed result
from the different mechanical stresses acting on the knee joint of different species. We did not
carry out functional analysis of the marsupial patella here; however, the observations made here
certainly warrant future functional studies. In particular, the question of why would an ossified
patella form in some individuals of a species, while others possess a fibrocartilage patelloid,
remains unresolved and would require quantitative biomechanical analyses to test. This is an
exciting foundation for future potential studies in evolutionary developmental biomechanics.

Conclusions

Our novel observations of ossified patellae in individuals of Thylacinus cynocephalus and
Macropus rufogriseus challenge the typical generalisation regarding the fibrocartilage nature of
the marsupial patelloid. However, a large number of species remain unstudied, including several
small species of possum, for which preservation of the patella is difficult to ascertain or ensure in
museum specimens. Our new, finer-scale evolutionary reconstructions suggest an unossified
patelloid was ancestral for marsupials, with repeated gains (three or more) of an ossified patella
within crown group Marsupialia.
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Figure 1

Evolutionary divergence within Mammalia (e.g. May-Collado et al., 2015).

Approximate timings in MYA (million years ago). Divergence time estimates from Timetree

database (http://www.timetree.org; Hedges et al., 2006).
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Figure 2

Summary cladogram of extant marsupial family-rank clades.

Evolutionary relationships are according Timetree database (http://www.timetree.org;

Hedges et al., 2006).
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Figure 3

Example images of specimens (Supplementary Text S1: Tables S1,55).

Red horizontal scale bars in C and E are 20mm. (A, B, C): Thylogale billiardierii (UMZC
specimen A12.50/3)-- no ossified patella as shown in photograph in A (scale bar squares =1
cm), 3D reconstruction from micro-CT scans of hindlimbs in B and longitudinal section from
micro-CT scans with grey (fibro)cartilage density corresponding to patelloid in C. (D, E):
Thylacinus cynocephalus (UMZC display specimen)-- bilateral ossified patellae present as
shown in 3D reconstruction from micro-CT scans of hindlimbs in D and longitudinal section
from micro-CT scans in E. Labels: green arrow = patelloid/patella; fem = femur; pes = pes; tf

= tibia/fibula.
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Figure 4

Example radiographs of skeletal specimens from NHMUK (Supplementary Text S1:
Tables 52,56).

Marker pin has central width of 0.52mm. (A) Didelphis marsupialis; specimen NHMUK
1959.11.10.1; cranio-caudal view; no patellar ossification. (B) Vombatus ursinus; specimen

NHMUK 1964.6.29.1; medio-lateral view; no patellar ossification.
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Figure 5

CT scan revealing presence of ossified tissue in the QF tendon of specimen 1: a recently
deceased Macropus rufogriseus (Supplementary Text S1: Table S3).

(A, B): 3D reconstructions of femur region from CT scans (bone density only), with medial
view in A and cranial view in B; (C, D): longitudinal (C) and mediolateral (D) sections from
micro-CT scans. Red vertical scale bars in C and D are 40mm. Green arrow indicates position

of ossified patella. Artifacts through femoral epiphyses were caused by ferrous wire.
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Figure 6

Photograph of the ossified patella, harvested from specimen 1 of Macropus rufogriseus,
following decalcification and cutting.

Not to scale.

3 -
g =l

P
c‘ | ’ 33

v <3
‘:-.x‘ 35

Peer] reviewing PDF | (2020:01:44905:0:1:NEW 16 Jan 2020)



PeerJ Manuscript to be reviewed

Figure 7

Stained sections from the right and left QF tendons of specimen 1, a Macropus
rufogriseus.

One section is illustrated for each stain used. Details of tissues highlighted by each stain are
indicated on the left of the figure. An ossified patella is demonstrated in the left tendon, while

a fibrocartilage patelloid is in the right tendon.

| Specimen 1: Left QF tendon | | Specimen 1: Right QF tendon
Haematoxylin and Eosin
-Collagen Pale pink
-Muscle Dark pink
-Nuclei Blue
-Cytoplasm Purple

Masson’s Trichrome

-Muscle Red
-Cytoplasm Red
-Collagen Blue
-Conn. tissue Blue

Safranin O/Fast Green
-Cartilage Red
-Background Green
Von Kossa

-Calcium salts Black
-Background Red
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Figure 8

Higher-magnification of two stained sections of QF tendons from Figure 7, Macropus
rufogriseus specimen 1.

Relevant tissues and orientations are indicated. (A): Haematoxylin & Eosin stained section of
the ossified patella from the left QF tendon. Inset: detail of tendon-bone junction (enthesis);
proximal edge of the patella. (B): Safranin O/Fast Green stained section of the fibrocartilage

patelloid from the right QF tendon, in higher-magnification view.
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Figure 9

Ancestral state reconstruction for the patella in marsupial mammals.

Branch colours indicate reconstructed states according to (unordered) maximum parsimony,
whilst circles at nodes indicate percentage values of ancestral states according to maximum
likelihood (Mk1). Likelihood values for major nodes are magnified beneath the key. Includes
only species for which observations were made or literary references found. See Results for

interpretations.
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Figure 10

Dissections of an adult male koala; right hindlimb in cranial view of knee.

Left image: skinned with superficial surface of patelloid exposed and quadriceps partially
reflected. Right image: quadriceps fully reflected below distal femur to expose deep surface
of patelloid. The specimen was obtained by Monash University from Museums Victoria
(registered as MUPC5), from the Victorian Department of Sustainability and Environment cull
program of 7 March 2014, Bimbi Park, Cape Otway, Victoria, Australia (38 50 02 S, 143 30 47
E) under Flora and Fauna Permit number 10007596. Photos and description courtesy of Hazel

Richards. Not to scale.
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