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ABSTRACT
Background. Inertial sensors, such as accelerometers, serve as convenient devices
to predict the energy expenditures (EEs) during physical activities by a predictive
equation. Although the accuracy of estimate EEs especially matter to athletes receive
physical training, most EE predictive equations adopted in accelerometers are based
on the general population, not athletes. This study included the heart rate reserve
(HRR) as a compensatory parameter for physical intensity and derived new equations
customized for sedentary, regularly exercising, non-endurance athlete, and endurance
athlete adults.
Methods. With indirect calorimetry as the criterion measure (CM), the EEs of
participants on a treadmill were measured, and vector magnitudes (VM), as well
as HRR, were simultaneously recorded by a waist-worn accelerometer with a heart
rate monitor. Participants comprised a sedentary group (SG), an exercise-habit group
(EHG), a non-endurance group (NEG), and an endurance group (EG), with 30 adults
in each group.
Results. EE predictive equations were revised using linear regression with cross-
validation on VM, HRR, and body mass (BM). The modified model demonstrates
valid and reliable predictions across four populations (Pearson correlation coefficient,
r : 0.922 to 0.932; intraclass correlation coefficient, ICC: 0.919 to 0.930).
Conclusion. Using accelerometers with a heart rate monitor can accurately predict EEs
of athletes and non-athletes with an optimized predictive equation integrating the VM,
HRR, and BM parameters.

Subjects Kinesiology, Nursing, Metabolic Sciences
Keywords Wearable sensor, Heart rate reserve, Oxygen uptake, Athlete, Physical fitness, Energy
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INTRODUCTION
A balance between the energy expenditure (EE) and energy intake should be carefully
considered for the performance of athletes (Zabriskie et al., 2019; Kumahara et al., 2020).
Therefore, it is necessary to measure the EE of athletes during their daily life. In general,
most athletes have higher EEs, reflecting their high-level physical activities and body
composition (Ndahimana et al., 2017). Accordingly, compared with non-athletes, athletes
are in greater nutritional demand (Ranchordas et al., 2013). Because the body mass of
athletes is often precisely managed, their EE should be accurately assessed to predict the
nutritional requirement. Underestimation of EE incurs inadequate nutrient intake, which
impairs the musculoskeletal system and compromises the exercise performance, including
running, jumping, and agility (Arieli & Constantini, 2012; Burrows et al., 2016; Mujika
et al., 2018).

Grasping personal EE of an athlete helps a sports coach or trainer assess training loads
required for the periodization or season training plans involving particular exercises.
This information also provides recommendations for calorie uptake (Taylor et al., 2018).
AlthoughEEof various physical activities can be accurately predicted by indirect calorimetry
and doubly labeled water (DLW) (Gao et al., 2012; Beltrame et al., 2016; Lee et al., 2016;
Westerterp, 2017), these applications are usually limited due to high cost and requirements
of special instruments. Therefore, inertial sensors, such as accelerometers, have been
developed in recent years and been widely used in daily life, sports training, health care,
and even movie and animation industries as a more economical and convenient way
to measure EE (Dutta et al., 2018; Katapally et al., 2018; Taylor et al., 2018; Pavon et al.,
2020). Accelerometer-based wearable devices estimate EE more efficiently because of their
lower cost, uncomplex operation, and a possibility to track measure physical activity
continuously for weeks (Shih, Ho & Shiang, 2014; Menai et al., 2017; Kim & Lochbaum,
2017; Dutta et al., 2018). However, factors contribute to the accuracy of EE estimation,
including sensor designs, proprietary software with reliable equations (Price et al., 2017),
types of exercises (e.g., hills, biking or muscle machine training) (Stec & Rawson, 2012;
Herman Hansen et al., 2014; Kuo et al., 2018), and physiological properties (Brazeau et al.,
2014).

The accelerometer-based sensor quantifies acceleration using one or three vertical axes
to track continuous movements during a period. The measured values can be output into
activity counts, steps, time spent at different physical activity intensities or cadences, and
estimated EE predicted by equations (Yang, Gerhard & Barden, 2015; Larsen et al., 2017;
Sirichana et al., 2017). In the development of the EE predictive equations, treadmill exercise
tests and daily activity performance tests are usually considered to be factors of physical
activities, and the EE predictive equations are mainly based on healthy adults in the general
population. In previous studies, few EE predictive equations have been derived explicitly
from particular populations, so their predicted EE would be inaccurate. At present, EE
predictive equations have been developed for populations such as children or adolescents
(Jimmy, Seiler & Maeder, 2013; Butte et al., 2014; Crouter, Oody & Bassett Jr, 2018), the
elderly (Aguilar-Farias et al., 2018), and even wheelchair users (Hiremath & Ding, 2011;
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Hiremath et al., 2012). However, EE predictive equations have rarely been designed for
athletes so far.

Athletes have well-developed muscular systems and even larger organs (such as
the liver, heart, and kidneys) (Miyauchi et al., 2013). Since more muscles consume
more energy according to the oxygen uptake (Armstrong & McManus, 2011; Farinatti
& Castinheiras Neto, 2011), athletes have a higher resting metabolic rate (RMR) and
total energy expenditure (TEE) than non-athletes (Ribeyre et al., 2000; Kim et al., 2015;
Ndahimana et al., 2017). However, despite applications of wearable devices for measuring
activity load (Ritchie et al., 2016; Stiles et al., 2018) and estimate EE (Yang, Gerhard &
Barden, 2015; Larsen et al., 2017; Sirichana et al., 2017), variations between athletes and
non-athletes are rarely considered. Currently, the Japan Institute of Sports Sciences (JISS)
calculates estimate energy requirement (EER) by multiplying RMR by 2.0 for athletes
in ball games or by 2.5 for endurance runners indiscriminately (Koshimizu et al., 2012;
Japan Institute of Sports Sciences, 2016; Park, 2019). However, EE differs even within the
same sport, depending on the amount of training or load training of competition, and the
variations are more remarkable between sports types (Park, 2019).

If athletes adopt accelerometers with an EE predictive equation derived merely from
the general population, their EE may be underestimated. Some approaches attempt to
calibrate estimate EE simply by including heart rates (HR) as a parameter reflecting the
exercise intensity (Domene & Easton, 2014; Park et al., 2017; Lu et al., 2018; Kuo et al.,
2018). However, it, on the other hand, introduces biases to estimate EE because HR is
susceptible to physical fitness and psychological factors, such as excitement and nervousness
(Patrik Johansson et al., 2006). Previously, we demonstrated the heart rate reserve (HRR) to
be a preferable parameter that considers exercise intensity while standardizing individual
variations (Chang et al., 2019). In light of this, this study included HRR to be an important
indicator for calibrating the physical activity levels among different groups to improve the
accuracy of EE estimation. In this study, we modified the model for the general population
by including HRR parameters and developed new EE predictive equations for athletes and
non-athletes.

MATERIALS & METHODS
Study Design
In this research, we used indirect calorimetry and an accelerometer with an HR monitor
to measure and predict the EE of athletes and non-athletes. In the EE predictive equations,
various physical activity level must be satisfied to make it more applicable. The physical
activity level can be directly reflected through HRR (Karvonen, Kentala & Mustala, 1957;
Djaoui et al., 2017). Therefore, this study used the HRR parameters as a correction factor
to increase the accuracy of the estimate EE. We modified the EE predictive equation used
for the general adult population to develop one applicable to the athlete population. From
these measurements in this study, linear regression equations were determined for the
level each physical activity based on average accelerometer vector magnitudes (VM), body
mass (BM), and HRR parameters, and the criterial EE measured by indirect calorimetry.
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A laboratory experiment was implemented to support the development of the modified
model in this study and evaluate the existing model. This research procedure was approved
by the Institutional Review Board of Fu Jen Catholic University (New Taipei City, Taiwan)
(reference number: C106056). All participants completed informed consent forms before
starting the experimental test.

Participants
Athletes and non-athletes were recruited using an open, independent, and randommethod
by posting advertisements in public spaces and campuses. They were required to complete
an International Physical Activity Questionnaire (IPAQ group, 2018) and categorized into
one of four groups, each of which contained 30 participants. The non-athlete participants
were separated into two groups: the sedentary group (SG, male: 40.0%, female: 60.0%)
comprised participants who did not exercise regularly and spent most of their time sitting
or lying down, while the exercise-habit group (EHG, male: 46.7%, female: 53.3%) was
composed of those who regularly exercised with moderate- to vigorous-intensity physical
activity at least three days a week for 30 to 60 min according to the guidelines of the
American Heart Association (AHA, 2018). The athletes were further classified in two
groups: the non-endurance group (NEG, male: 56.7%, female: 43.3%) comprised athletes
that focused on strength/speed type sports including sprint races (the 100 m, 200 m,
and 400 m) and throwing sports (shot put and javelin), had ever participated in the
National Games within two years, and were routinely trained for 27.2 ± 2.2 h in five
days a week following a moderate- to a vigorous-intensity specific training program; the
endurance group (EG, male: 63.3%, female: 36.7%) was composed of athletes that focused
on middle-distance (800 m, 1,500 m, and 3,000 m) or long-distance races (longer than
3,000 m) in track and field, had ever participated in the National Games within two years,
and were routinely trained for 27.8 ± 1.5 h in five days a week following a moderate- to
vigorous-intensity specific training program.

Those who had any exercise contraindications, currently took medications that affect
metabolic rates, were diagnosed with any cardiovascular disorders by physicians, or had any
factors that could affect safety completion of the test procedures were excluded. Participants
were restricted from diet, caffeine, and exercise for 4 h before the test (Lyden et al., 2011)
and slept for at least 8 h before the day of the test to avoid variance in metabolic rates and
heart rates. The experiments were performed during day time, from 6:00 am to 5:00 pm.
Participants were required to complete a one-hour test wearing a monitoring system. The
room temperature was controlled at 23 ◦C to minimize the effects of temperature during
exercise.

Anthropometric Measurements and Body Composition
Anthropometric measurements and body composition were assessed through standard
procedures (Miller, Chambers & Burns, 2016; Ndahimana et al., 2017). Participants’ body
mass index (BMI) and body composition were measured with the InBody

R©
570 Body

Composition Analyzer (Biospace, Inc. Seoul, Korea), with additional inputs of their age
and height measured by the height measurement equipment H900 (NAGATA Scale Co.,
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Ltd. Tainan, Taiwan). The InBody
R©
570 serves as a reliable method to estimate body

composition, including skeletal muscle mass, percentage of body fat, and resting metabolic
rate (RMR), with a multi-frequency bioelectrical impedance analyzer (Miller, Chambers
& Burns, 2016). All participants wore lightweight sportswear, except shoes and socks, and
any external metal items were removed.

Measurement of EE by indirect calorimetry and accelerometer method
For the metabolic criterion measure (CM), we performed an indirect calorimetry method
with a cardiopulmonary exercise testing system (Vmax Encore 29 System, VIASYS
Healthcare Inc, Yorba Linda, CA). The mouth and nose of participants were covered
by a mask (Hans Rudolph Inc., Kansas City, MO, USA) attached to a sampling tube that
was connected to a digital flow sensor measuring the breath-by-breath tidal volume and
the composition of the oxygen uptake (VO2) and carbon dioxide output (VCO2).

In the accelerometer method, we used the ActiGraph GT9X-Link (Actigraph
Corporation, Pensacola, FL, USA, firmware version 1.7.1), a small (3.5×3.5× 1 cm) and
light (∼14 g) tri-axial accelerometer, to collect tri-axial activity data. Before the test, we used
the ActiLife6 software (version 6.12.1, ActiGraph, Cary, NC, USA) to initialize the GT9X-
Link and configured a compatible chest strap for the Polar H10 Heart Rate Monitor (Polar
Electro Oy, Finland). In this research, the sampling frequency of GT9X-Link was 30 Hz
with a lower frequency extension filter, and the data of activity count andHRwere collected
in 10-second epochs using ActiGraph cut-points defined by Sasaki, John & Freedson (2011)
(sedentary, 0–200; light, 201–2690; moderate, 2691–6166; vigorous, 6167–9642 counts per
minute). According to ActiGraph’s User Manual, the GT9X-Link was fastened around
the waist with the adjustable elastic band on the participant’s right hip in line with the
midaxillary line. Participants were assigned to a treadmill, including five walking or running
speeds in random order. Throughout the test, the system simultaneously and continuously
recorded the VO2 and VCO2 via indirect calorimetry, HR, and accelerometer count. The
clock times of the Vmax system and GT9X-Link were synchronized to the time of the
ActiLife6 software’s computer.

Treadmill test
At the onset of the experiments, resting heart rates (HR rest) was determined by detecting
the lowest HR recorded during the last 5 min in 20-minute sitting in the lab environment
(Lounana et al., 2007). Participants were then required to performwalk/run tests at paces of
4.8, 6.4, 8.0, 9.7, and 11.3 km/h on a treadmill. Each speed set lasted 3 min, with 2-minute
rest intervals between sets (test method adapted from Tudor-Locke, Barreira & Schuna Jr,
2015). In any activity sets, tests would be immediately terminated with data excluded from
analyses if the heart rate of the participants exceeded the safe range, 220 bpm minus the
participant’s age), or if they could not complete the exercise test safely, for example not
unable to keep up with the treadmill speed.

Data analysis
All 120 participants completed the exercise tests. The data from the indirect calorimetry
(Vmax system), HR monitor (Polar H10), and an accelerometer (ActiGraph GT9X-Link)
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were output to Microsoft Excel (Excel version in Microsoft Office 2013 for Windows).
The Vmax systems and HR monitors recorded the parameters and output records in
10-second intervals, synchronized with ActiGraph GT9X-Link accelerometer. All data
were processed, according to Lyden et al. (2011). The first 120 s in each speed setting were
trimmed to ensure that the participants achieved stability in movement under the exercise
intensity. The VO2 and VCO2 were calculated to estimate criterion measure EE (CMEE)
by the Weir equation: CMEE (kcal/min)= 3.491×VO2(L/min)+1.106×VCO2(L/min)
(Weir, 1949). The GT9X-Link data (GT9X EE) were analyzed by ActiLife6 software, and
the EE was calculated using the equation of the Freedson’s VM3 Combination (2011):
GT9X EE (kcal/min)= 0.001064×VM+ 0.087512×BW(kg)− 5.500229 (ActiGraph,
2011), where the 3D VM=

√
(axis 1)2+ (axis 2)2+ (axis 3)2 was analyzed by 10-s epoch

lengths in ActiLife6 software. All EE values were divided by the body mass to be for
gender-standardized adjustments and presented as kcal/min/kg. HRR=HRmax−HRrest ,
which indicates the difference between HRmax and HRrest at each treadmill speed, where
HRrest is the pre-test measure of resting HR, and HRmax is the highest HR measured for
each phase of the test.

Statistical analysis
All data are presented as the means± standard deviations (SD). The one-way ANOVA test
was employed to compare the differences in primary data and body composition among
the four groups. To analyze the EE differences among the four groups at each speed,
multivariate analysis of variance (MANOVA) was used, followed by the Games-Howell
post hoc test. To investigate the EE difference between the two systems of measurement,
CMEE and GT9X EE, we adopted paired t-tests and calculated Cohen’s d effect size (ES)
and mean absolute percentage error (MAPE= {[|(predicted value - actual value)|/actual
value] * 100}/n). Linear regression was used for modification of the EE prediction model
with VM, bodymass (BM), and HRR, and Train/Test Split was applied for cross-validation,
in which data were randomly split into training (70%) and test (30%) subsets. Then, the
validity and reliability of the EE estimation were further evaluated by the criterion analysis,
namely the Pearson correlation coefficient (r) and the intraclass correlation coefficient
(ICC; two-way mixed models; absolute agreement), respectively. The statistical software
IBM SPSS Statistics version 20 (IBM Corp., New York, NY, USA) was used for statistical
analysis. The significance level was set to α= 0.05.

RESULTS
Anthropometry and body composition
120 subjects completed the exercise test safely. The compositions of groups did not differ
in age (p= 0.118) or height (p= 0.078), but diverged in body mass (BM) (p= 0.057),
body mass index (BMI) (p= 0.010), skeletal muscle mass (p= 0.005), percentage of
body fat (p< 0.001), and resting metabolic rate (RMR) (p= 0.011) Table 1. Specifically,
according to post-hoc results, in the BM section, EG is significantly lower than SG
(59.8 ± 8.0 kg vs 67.2 ± 13.9 kg; p= 0.034), and NEG (59.8 ± 8.0 kg vs 68.7 ± 16.9 kg;
p= 0.011). In the BMI section, NEG is significantly higher than EG (23.3 ± 4.7 kg/m2
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Table 1 Anthropometry and body composition characteristics of participants.

SG EHG NEG EG p Range

Age (years) 21.9± 1.9 21.7± 1.6 21.1± 1.7 20.9± 1.7 0.118 18.0–26.0
Height (cm) 166.9± 8.1 167.3± 8.5 171.2± 7.7 170.0± 5.8 0.078 150.0–182.0
Sex 12 males

18 females
14 males
16 females

17 males
13 females

19 males
11 females

Body mass (kg) 67.2± 13.9b 64.6± 12.6 68.7± 16.9b 59.8± 8.0 0.057 46.0–133.6
BMI (kg/m2) 23.7± 3.5b 23.1± 3.3b 23.3± 4.7b 20.8± 2.1 0.010 17.0–38.1
Skeletal muscle mass (kg) 26.6± 5.7a 28.4± 6.0a 32.1± 7.1 29.1± 4.5 0.005 18.0–51.4
Percentage of body fat (%) 19.1± 8.5b 20.2± 6.6a b 16.3± 5.4b 8.4± 3.8 <0.001 2.7–35.8
RMR (kcal/day) 1414.1± 200.7a 1464.2± 206.9a 1591.1± 250.6 1490.0± 160.0 0.011 1102.0–2295.0

Notes.
aSignificantly different from NEG, p< 0.05.
bSignificantly different from EG, p< 0.05.
Values are reported as the mean± standard deviation.
SG, sedentary group; EHG, exercise habit group; NEG, non- endurance group; EG, endurance group; BMI, body mass index; RMR, resting metabolic rate.
p-value was calculated from one-way ANOVA test among the four groups

vs 20.8 ± 2.1 kg/m2; p= 0.008), EG is significantly lower than SG (20.8 ± 2.1 kg/m2

vs 23.7 ± 3.5 kg/m2; p= 0.002), and EHG (20.8 ± 2.1 kg/m2 vs 23.1 ± 3.3 kg/m2;
p= 0.014). In the skeletal muscle mass section, both SG (26.6 ± 5.7 kg vs 32.1 ± 7.1 kg;
p< 0.001) and EHG (28.4 ± 6.0 kg vs 32.1 ± 7.1 kg; p= 0.015) are significantly lower
than NEG. In the percentage of body fat section, NEG is significantly higher than EHG
(16.3± 5.4% vs 20.2± 6.6%; p= 0.019); and EG is significantly lower than SG (8.4± 3.8%
vs 19.1 ± 8.5%; p< 0.001), EHG (8.4 ± 3.8% vs 20.2 ± 6.6%; p< 0.001), and NEG
(8.4 ± 3.8% vs 16.3 ± 5.4%; p< 0.001). In the resting metabolic rate (RMR) section,
both SG (1414.1 ± 200.7 kcal/day vs 1591.1 ± 250.6 kcal/day; p= 0.001) and EHG
(1464.2 ± 206.9 kcal/day vs 1591.1 ± 250.6 kcal/day; p= 0.019) are significantly lower
than NEG.

CMEE and GT9X EE accelerometer data
The results of the CMEE and GT9X EE accelerometer data analyzed by the MANOVA
indicated a significant difference in CMEE measurements among the four groups
(p< 0.001) (Fig. 1). Except for the walking speed of 4.8 km/h, which showed no significant
difference in CMEE among the four groups (p= 0.116), the CMEEs were significantly
higher in the NEG and EG than in the SG and EHG (p< 0.001) at the running speeds (6.4,
8.0, 9.7, and 11.3 km/h). However, the results of the GT9X EE on each treadmill speed
test showed no differences among the four groups (p> 0.05). Table 2 lists the CMEE and
GT9X EE values of the four groups from the treadmill test, as well as the differences in the
paired t -test, ES, MAPE, and ICC. When individuals in the SG and EHG ran at a pace of
11.28 km/h, the measurement results of these two systems reached a significant difference
(SG: p= 0.013; EHG: p< .001) compared with the other speeds (p> 0.05). The results
also showed very minor differences in effect size (SG: 0.20 to 0.53; EHG: 0.12 to 0.19)
and MAPE (SG: 4.3%; EHG: 3.0%) and good to excellent reliability (ICC = 0.851 and
0.915, respectively). However, the CMEE measurements in the NEG (p< 0.012) and EG
(p< 0.019) were significantly higher than the GT9X EE results for all treadmill speed tests,
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Figure 1 (A) CMEE and (B) GT9X EE during treadmill walking/running tests at different speeds.
CMEE, criterion measure of energy expenditure measured by the indirect calorimetry (Vmax system).
GT9X EE, energy expenditure predicted by the accelerometer (ActiGraph GT9X-Link). * Significantly
different from NEG, p< 0.05. † Significantly different from EG, p< 0.05.

Full-size DOI: 10.7717/peerj.9717/fig-1

with larger ES (NEG: 0.59 to 1.90; EG: 0.46 to 2.21) and MAPE (NEG: 15.7%; EG: 11.2%),
and the lowest reliability was found in the NEG (ICC = 0.778).

Comparison between modified models and GT9X EE
Table 3 shows the results of linear regression with cross-validation of EE predictive models
composed of VM activity counts, body mass (BM), and HRR. The modified models from
the four groups all had high values of the coefficient of determination (R2

= 0.851 to
0.869) and a very small standard error of the estimate (SEE). The CMEE, GT9X EE, and
modified models EE results are shown in Fig. 2. Table 4 lists the validity analysis (r) and
the reliability analysis (ICC) for calculating the EE and CMEE among the different groups.
The r and ICC values of the modified models were both greater than those of the Freedson
VM3 Combination equation (r = 0.922 to 0.932, good correlation; ICC = 0.919 to 0.930,
high ICC). The main difference between the Freedson VM3 combination equation and
the modified models is the HRR factor. From the above results, it appears that the HRR
can be used as a fairly accurate predictor within various physical activity levels populations
to improve the reliability and validity of predictive values, as well as the accuracy of the
predictive model.

DISCUSSION
This research explored the effect of accelerometer outputs on EE estimation in populations
with different levels of physical activity and established suitable predictive equations. The
cross-validations revealed that the correlation differences of linear regressions for four
groups were between 70% and 30% were from 0.001 to 0.026, and all correlations were
0.928 to 0.936. According to criterion measurements, EEs of various populations under
several speed tests are different (p< 0.05). However, accelerometers alone were unable
to distinguish EEs between various groups (p> 0.05). Adopting the Freedson’s VM3
Combination (2011) EE predictive equation, we could make an accurate prediction in the
populations with a sedentary lifestyle and exercise habits (SG: MAPE= 4.3%, ICC= 0.851;
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Table 2 Comparison of EEmeasured by indirect calorimetry (Vmax system) and EE estimated by GT9X EE, and HR in five treadmill walk-
ing/running tests.

Group Treadmill
speed (km/h)

CMEE
(kcal kg−1 min−1)

GT9X EE
(kcal kg−1 min−1)

ES MAPE (%) ICC HRrest(BPM) HRmax (BPM)

4.80 0.069± 0.007 0.065± 0.008 0.53 108.59± 13.60
6.42 0.106± 0.012 0.103± 0.017 0.20 131.29± 14.24
8.04 0.144± 0.007 0.139± 0.033 0.21 157.06± 11.01
9.66 0.169± 0.011 0.164± 0.024 0.27 172.71± 12.17

SG

11.28 0.194± 0.012 0.182± 0.023a 0.65

4.3 0.851 81.34± 8.97

183.37± 13.64
4.80 0.068± 0.005 0.067± 0.009 0.14 101.26± 8.88
6.42 0.111± 0.010 0.109± 0.019 0.13 124.14± 11.19
8.04 0.147± 0.011 0.145± 0.020 0.12 146.11± 12.96
9.66 0.168± 0.011 0.165± 0.020 0.19 163.12± 12.06

EHG

11.28 0.201± 0.014 0.183± 0.022a 0.98

3.0 0.915 75.96± 7.02

176.39± 11.97
4.80 0.073± 0.013 0.065± 0.014a 0.59 98.53± 11.46
6.42 0.125± 0.012 0.102± 0.024a 1.21 120.08± 10.79
8.04 0.160± 0.014 0.137± 0.025a 1.14 138.99± 11.51
9.66 0.188± 0.018 0.159± 0.024a 1.37 153.81± 12.97

NEG

11.28 0.217± 0.020 0.180± 0.019a 1.90

15.7 0.778 76.81± 8.03

169.62± 12.24
4.80 0.073± 0.013 0.067± 0.013a 0.46 86.81± 12.94
6.42 0.117± 0.016 0.101± 0.027a 0.72 104.36± 14.35
8.04 0.154± 0.010 0.140± 0.023a 0.79 122.82± 15.89
9.66 0.180± 0.010 0.162± 0.026a 0.91 134.41± 17.45

EG

11.28 0.210± 0.014 0.178± 0.015a 2.21

11.2 0.837 66.93± 9.20

145.36± 18.07

Notes.
aSignificantly different from CMEE, p< 0.05.
Values are reported as the mean± standard deviation.
SG, sedentary group; EHG, exercise habit group; NEG, non-endurance group; EG, endurance group; CMEE, criterion measure energy expenditure; GT9X, ActiGraph
GT9X-Link accelerometer; ES, Effect size (Cohen’s d); Mean absolute percentage error (MAPE) = [(predicted value - actual value)/actual value] * 100/n; ICC, intraclass corre-
lation coefficient; HRrest, the pre-test measure of resting HR; HRmax, the highest HR measured for each phase of the test; BPM, beats per minutes.

EHG: MAPE = 3.0%, ICC = 0.915), but the EEs were still underestimated in the athlete
population (NEG: MAPE = 15.7%, ICC = 0.778; EG: MAPE = 11.2%, ICC = 0.837).
Therefore, if the equation is applied to predict an athlete’s EE, the underestimate of EEs
may result in insufficient nutrient intake and thereby a negative energy balance. In previous
studies, HRR was a satisfactory parameter to adjust for an individual’s physical fitness level
(Patrik Johansson et al., 2006). In this research, the reliability of the EE estimation among
the four groups was improved by including the HRR parameters in the predictive equation.
The modified models were valid and reliable (SG: r = 0.922, ICC= 0.919; EHG: r = 0.932,
ICC= 0.930; and NEG: r = 0.929, ICC= 0.927; EG: r = 0.930, ICC= 0.927, respectively).
Since most canonical EE predictive equations mainly consider accelerometer outputs,
body mass (BM), and constants, they fail to distinguish individuals with different physical
activity levels. The improvement in the EE estimation, considering the HRR, accelerometer
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Table 3 Modified models to predict EE (kcal kg−1 min−1) from VM, BW, and HRR.

Group Coefficients Unstandardized
coefficients (B)

Standardized
coefficients (β)

p VIF R2 SEE F D-W test

Constant 0.039438 <0.001
VM 0.000004 0.255 <0.001 2.995
BM −0.000117 −0.035 <0.001 1.004

SG

HRR 0.001077 0.701 0.279 2.990

0.851 0.018 278.39 1.827

Constant 0.037952 <0.001
VM 0.000007 0.396 0.072 3.309
BM −0.000219 −0.057 <0.001 1.096

EHG

HRR 0.000954 0.578 <0.001 3.292

0.869 0.018 321.95 2.046

Constant 0.066446 <0.001
VM 0.000007 0.343 <0.001 2.653
BM −0.000558 −0.167 <0.001 1.097

NEG

HRR 0.001240 0.639 <0.001 2.717

0.863 0.020 306.49 1.309

Constant 0.028271 0.026
VM 0.000012 0.603 <0.001 2.942
BM −0.000144 −0.023 0.449 1.019

EG

HRR 0.000771 0.371 <0.001 2.940

0.864 0.019 308.59 1.245

Notes.
Modified models were developed on 70% of samples for modeling and cross-validated on the remaining 30% samples.
VM, vector magnitudes; BM, body mass in kg; HRR, heart rate reserve; VIF, variance inflation factor; R2, coefficient of determination which was measured from linear re-
gression models; SEE, standard error of estimate; D-W, test, Durbin-Watson test.
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Figure 2 (A) SG, (B) EHG, (C) NEG, and (D) EGmeasured EE by Vmax system (CMEE), and estimated
EE GT9X EE (Freedson VM3 Combination) andmodified models EE by GT9X in treadmill tests.

Full-size DOI: 10.7717/peerj.9717/fig-2
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Table 4 Validity and reliability analysis of the predicted EE in models and CMEE in different groups.

Group Freedson VM3 Combination Modified models
r ICC r ICC

SG 0.858 0.851 0.922 0.919
EHG 0.925 0.915 0.932 0.930
NEG 0.875 0.778 0.929 0.927
EG 0.917 0.837 0.930 0.927

Notes.
SG, sedentary group; EHG, exercise habit group; NEG, non-endurance group; EG, endurance group; r, Pearsons correlation coefficient; ICC, intraclass correlation coeffi-
cient.

outputs, and BM, allowed us to tell apart the differences in physical activity levels among
various groups.
When the speed (or exercise intensity) stayed the same, the CMEEs of both athlete groups

were higher than those of the non-athlete groups, while the NEG had the highest value.
In response to the speed (or exercise intensity), the EEs of all the four groups showed an
analogous trend. Only in the low-intensity exercise was no difference in EE found between
athlete groups and non-athlete groups. The results of this research are consistent with
those of previous studies, suggesting that resting metabolic rate (RMR) and total energy
expenditure (TEE) are higher in athletes than in non-athletes (Ribeyre et al., 2000; Kim
et al., 2015; Ndahimana et al., 2017). The study of Petridou, Lazaridou & Mougios (2005)
compared the TEEs of 14 male endurance athletes with those of non-athletes and found
that the mean TEE of athletes was 3,895 ± 600 kcal/day, while that of non-athletes was
2,722 ± 475 kcal/day (p <0.05). Regarding resting energy expenditure (REE), the mean
value of athletes was also higher than that of non-athletes (1,407.3 ± 170.2 kcal/day vs.
1,259.1 ± 105.6 kcal/day, respectively). The study of Ndahimana et al. (2017) compared
the TEEs of college female tennis players and non-athletes (age: 19 to 24 years), and the
mean TEE of tennis players was 2,780.3 ± 429.5 kcal/day, while that of non-athletes was
2,012.3± 160.5 kcal/day (p= 0.001). It is worth noting that although themetabolism varies
between genders, the differences of EE flatten when normalized by body mass (BM) (from
kcal/min to kcal/kg/min) (Loftin et al., 2010; Jagim et al., 2019). Therefore, we performed
BM normalization for gender-standardized adjustments to rule out the gender effects.

On the other hand, an accelerometer outputs estimate EE by subsequent calculations
of VM activity counts generated during exercise. Due to sensor characteristics, the
accelerometer failed to identify the differences in physiological metabolism among various
populations with different levels of physical activity or might cause overestimation or
underestimation of EE based on different exercise types or intensities (i.e., cycling,
uphill/downhill exercise, etc.) (Terrier, Aminian & Schutz, 2001; Patrik Johansson et al.,
2006; Tarp, Andersen & Østergaard, 2015; Kuo et al., 2018; Ho et al., 2019). In other words,
under the same exercise intensity, VM activity counts did not change with different user
groups or in certain situations. The inability to precisely identify the physical activity
level of each user likely biased the results of EE estimation. In our research, it was found
that the various speed measurements of the GT9X EE in the athlete groups were greatly
underestimated (p< 0.05) and had large differences in effect size (NEG: 0.59 to 1.90; EG:
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0.46 to 2.21). Since the current EE predictive equation using accelerometers is mostly
applied to the healthy adult population (Crouter, Clowers & Bassett Jr, 2006; Lyden et al.,
2011; Sirichana et al., 2017), the EE predictive equation that is most widely used is more
suitable for the general population than for athletes. In this research, no significant
differences in the results of GT9X EE and criterion measurements (p> 0.05) were observed
in the non-athlete groups between speed tests (except for the speed of 11.28 km/h), and
very few differences were found in effect size (SG: 0.20 to 0.53; EHG: 0.12 to 0.19); the
measurements demonstrated good to excellent reliability. Because the exercise intensity at
the treadmill speed of 11.28 km/h is already in vigorous-intensity exercise for non-athletes
(i.e., depending on fitness level), oxygen uptake will increase dramatically to compensate
energy expenditure. However, such changes in the physiological reactions are not easily
measured by the accelerometer. Altogether, the applications of accelerometers are limited
to the general population within a certain range of exercise intensities. Therefore, without
considering the different conditions of body composition or physical activity levels of
various populations, this type of non-standard measurement method (i.e., physical activity
sensors) may create different levels of bias.

The majority of bodymovements involve contractions of skeletal muscles, which require
sufficient energy for proper function. Increases in muscle mass create a greater need for
energy as well as more gas exchange. The results of this research also revealed that when
the skeletal muscle mass of an athlete is greater than that of a non-athlete (p< 0.05), the
EE, as well as the RMR, of the athlete during exercise is much higher than that of the
non-athlete (p< 0.05). It was also confirmed in a study by Ndahimana et al. (2017) that in
comparison to the non-athlete group, athlete participants had significantly higher values
for skeletal muscle mass (23.4 ± 2.3 kg vs. 19.1 ± 1.4 kg), and total energy expenditure
adjusted for fat-free mass (65.3 ± 5.2 kcal/kg/day vs. 56.4 ± 2.0 kcal/kg/day, p= 0.001).
It can be seen that athletes have more considerable energy expenditure than the sedentary
participants during exercise. During movement, to meet the metabolic requirements of
skeletal muscles, the autonomic nervous system controls the heart rates and expansion
of blood vessels through a complex dynamic process (Fisher, Young & Fadel, 2015; Dong,
2016; Chen et al., 2017). In line with a large number of studies in recent years, VO2 and HR
are closely related, and there is a linear correlation between them. Therefore, changes in
HR can be used as a basis for the assessment of exercise intensity.

For this reason, research has suggested that an accelerator-based EE monitor with an
HR tracking device can increase the accuracy of EE estimation. Brage et al. (2015) indicated
that research to estimate EE accurately for energy balance and metabolic disorders was
fundamental. In that study, 23 women and 23 men (ages 22–55 years) were enrolled. The
researchers used accelerometer and HR data to estimate the EE, and they also corrected
with the EE measured by doubly labeled water (DLW). The results showed that integrating
the accelerator with an HR function and criterion measurements produced good validity,
with biases <5% and high correlations. Kuo et al. (2018) integrated HR and accelerator
parameters, demonstrating that exercise-related changes in HR (4HR) improved the
accuracy of the EE predictive equation during walking uphill of participants. Chang et al.
(2019) also corrected the accelerator-based traditional empirical EE formulas by using HR
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and HRR as compensation factors while participants were walking/running uphill and
revealed that the HRR outperformed HR in the adjustment of physical intensity. Since the
results of our research are consistent with the results of previous studies, raw HRmay likely
be unstable due to an individual’s physical fitness level or psychological factors, which
could affect the accuracy of EE estimation. By using HRR as a compensation factor, the
reliability of EE estimation in populations with different levels of physical activity can be
improved, resulting in a predictive value closer to the actual value. The error rates of EE
and CMEE calculated from the modified models were SG: 3.6%, EHG: 4.5%, NEG: 3.2%,
and EG: 5.2%. Compared with the results of GT9X EE, the error rates of EE estimation
were greatly decreased in the athlete groups (NEG: 15.7% to 3.2%, EG: 11.2% to 5.2%).

It is crucial to accurately estimate the EE of an athlete in there training and daily life.
When the training load is adjusted, maintaining the overall energy balance by ensuring a
balance between EE and energy intake plays a crucial role in improving the performance of
an athlete. Inaccurate EE estimation may lead to insufficient nutrient intake, increase the
risk of lower lean tissue mass, affect athletic performance, or even cause a variety of adverse
health effects (Arieli & Constantini, 2012; Burrows et al., 2016). Besides, HRR, representing
the difference between the maximum heart rate and the resting heart rate, can be used
to standardize the excessive gap of resting heart rate caused by individual differences in
physical activity levels and can be used as the basis for the estimation of EE and exercise
intensity. The results revealed that HRR could be considered as a factor in EE predictive
equations to improve the reliability and validity of EE prediction among the four groups
in the study. In particular, there was a significant improvement in EE prediction among
non-endurance athletes. In summary, we propose predictive equations by including HRR
parameters and adjusting the coefficients, so that athletes and non-athletes can use their
customized predictive equations to improve accuracy. The results of the study confine
our discussion to the young athlete and non-athlete adults. Note that we designed the EE
equations for healthy adults, so they are inapplicable to other populations, such as children,
the elderly, and populations with specific diseases.

CONCLUSIONS
Vector magnitude detected by accelerometers, HRR, and body mass provided a practical
method to estimate EE. Although some advanced equipment and methods can estimate EE
more accurately, the use of accelerators also provides acceptable EE estimation and more
feasible for most populations. In the current study, the Actigraph tended to underestimate
the EE during walking/running treadmill tests, especially athletes. Excitingly, the method
proposed in this study successfully improved the accuracy of athletes’ EE estimates. We
hope that it can be applied to the EE monitoring of athletes in the training process in
the future. To expand the practical applications, participants of different physical activity
levels should be included in the future to evaluate this method. It should be possible to
obtain more accurate predictions of EE by using the rational coefficients of the predictive
equations.
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