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The pandemic state of COVID-19 caused by the SARS CoV-2 put the world in quarantine,
led to hundreds of thousands of deaths and is causing an unprecedented economic crisis.
However, COVID-19 is spreading in different rates at different countries. Here, we tested
the effect of three classes of predictors, i.e., socioeconomic, climatic and transport, on the
rate of daily increase of COVID-19 on its exponential phase. We found that population size
and global connections, represented by countries’ importance in the global air
transportation network, are the main explanations for the early growth rate of COVID-19 in
different countries. Climate and socioeconomics had no significant effect in this big picture
analysis. Our results indicate that the current claims that the growth rate of COVID-19 may
be lower in warmer and humid countries should be taken very carefully, risking to disturb
well-established and effective policy of social isolation that may help to avoid higher
mortality rates due to the collapse of national health systems.
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22 Abstract

23 The pandemic state of COVID-19 caused by the SARS CoV-2 put the world in 

24 quarantine, led to hundreds of thousands of deaths and is causing an unprecedented economic 

25 crisis. However, COVID-19 is spreading in different rates at different countries. Here, we tested 

26 the effect of three classes of predictors, i.e., socioeconomic, climatic and transport, on the rate of 

27 daily increase of COVID-19 on its exponential phase. We found that population size and global 

28 connections, represented by countries’ importance in the global air transportation network, are 

29 the main explanations for the early growth rate of COVID-19 in different countries. Climate and 

30 socioeconomics had no significant effect in this big picture analysis. Our results indicate that the 

31 current claims that the growth rate of COVID-19 may be lower in warmer and humid countries 

32 should be taken very carefully, risking to disturb well-established and effective policy of social 

33 isolation that may help to avoid higher mortality rates due to the collapse of national health 

34 systems. 

35

36
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37 Introduction

38 With the worldwide spread of the novel Coronavirus Disease 2019 (COVID-19), caused 

39 by the SARS-CoV-2 virus, we are experiencing a declared pandemic. One of the largest 

40 preoccupations about this new virus is its notable ability to spread given the absence of any 

41 effective treatment, vaccine, and immunity in human populations. Epidemiologists quantify the 

42 ability of infectious agents to spread by estimating the basic reproduction number (R0) statistic 

43 (Delamater et al., 2019), which measures the average number of people each contagious person 

44 infects. The new coronavirus is transmitting at an average R0 between  2.7 and 3.2 (Billah et al. 

45 2020, Liu et al. 2020), which is greater than seasonal influenza viruses that spread every year 

46 around the planet (median R0 of 1.28, Biggerstaff et al., 2014). To anticipate the timing and 

47 magnitude of public interventions and mitigate the adverse consequences on public health and 

48 economy, understanding the factors associated with the survival and transmission of SARS-CoV-

49 2 is urgent. 

50 Because previous experimental (Lowen et al., 2007), epidemiological (Shaman et al., 

51 2010,  Barreca & Shimshack 2012), and modeling  (Zuk et al., 2009) studies show the critical 

52 role of temperature and humidity on the survival and transmission of viruses, recent studies are 

53 testing the effect of environmental variables on SARS-CoV-2 (Wang et al., 2020, Sajadi et al., 

54 2020, Harbert et al. 2020, Araújo et al. 2020) and forecasting monthly scenarios of the spread of 

55 the new virus based on climate suitability (Araújo & Naimi 2020, but see  Carlson et al. 2020). 

56 Although temperature and humidity affect the spread and survival of other coronaviruses (i.e., 

57 SARS-CoV and MERS-CoV, Tan et al., 2005, Chan et al., 2011, Doremalen et al., 2013, Gaunt 

58 et al., 2010) using the current occurrences of SARS-CoV-2 cases to build correlative climatic 

59 suitability models without considering connectivity among different locations and 
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60 socioeconomic conditions might be inadequate, especially considering that the definition of 

61 climatic niche of a respiratory virus, transmitted from person to person, is very challenging 

62 (Carlson et al. 2020). 

63 Many factors might influence the distribution of diseases at different spatial scales. 

64 Climate might affect the spread of viruses given its known effect on biological processes that 

65 influences many biogeographical patterns, including the distribution of diseases and human 

66 behavior (e.g., Murray et al., 2018). Geographic distance represents the geographical space 

67 where the disease spread following the distribution of hosts and  also explains biogeographic 

68 patterns (Pulin 2003, Nekola & White 2004, Warren 2014). Socioeconomic characteristics of 

69 countries include population size, which represent a key epidemiological parameter that 

70 determines the rate and reach of pandemics (Grassly & Fraser 2008) and other variables that 

71 represent a proxy for the ability to identify and treat infected people and for the governability 

72 necessary to make fast political decision and avoid the spread of new diseases (Adler & Newman 

73 2003, Gilbert et al. 2020, Khalatbari-Soltani et al. 2020). Finally, the global transportation 

74 network might surpass other factors as it can reduce the relative importance of geographic 

75 distance and facilitate the spread of viruses and their vectors (Brockmann & Helbing 2013, 

76 Pybus et al., 2015). According to the International Air Transport Association (2019) more than 4 

77 billion passengers made international travels in 2018. This amount of travelers reaching most of 

78 our planet’s surface represents a human niche construction (Boivin et al., 2016) that facilitates 

79 the global spread of viruses and vectors (Brockmann & Helbing 2013) in the same way it 

80 facilitated the spread of invasive species and domesticated animals over modern human history 

81 (Boiving et al., 2016). 
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82 The spread of SARS-CoV-2 from central China to other locations might be strongly 

83 associated with inter-country connections, which might largely surpass the effect of climate 

84 suitability. Thus, at this point of the pandemic, there is still a distributional disequilibrium that 

85 can generate very biased predictions based on climatic correlative modeling (De Marco et al., 

86 2008). Here we used an alternative macroecological approach (Burnside et al., 2012), based on 

87 the geographical patterns of early growth rates of the disease at country level, to investigate the 

88 drivers of the growth rates of COVID-19 in its exponential phase. We studied the effect of 

89 environment, socioeconomic, and global transportation controlling for spatial autocorrelation 

90 that could bias model significance. By analyzing these factors, we show that the exponential 

91 growth rate of COVID-19 at global scale is explained mainly by population size and country’s 

92 importance in the global transportation network. 

93

94 Material & Methods

95 We collected the number of detected cases of COVID-19 per day from the John Hopkins 

96 (Dong et al., 2020) and European Centre for Disease Prevention and Control (ECDC, 2020). For 

97 each country we only used the “exponential” portion of the time series data (i.e. number of new 

98 people infected per day) and excluded days after stabilization or decrease in total number of 

99 cases (e.g. Fig S1). Although we are aware that more complex logistic-like curves of growing 

100 cases are expected, simpler exponential growth rates are a simpler description of the expansion 

101 in early phases and in practice coefficients are indistinguishable from logistic when N << K. This 

102 procedure is also important to guarantee that only the early phase of the disease is analysed given 

103 that stabilization and decreasing in growth rates are caused both by natural population dynamics 

104 (following a logistic model) and by the interplay of different interventions made by each country, 
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105 such as political and legal reinforcements of social distancing measures, including lockdown, 

106 obligatory mask use and others (Chinazzi et al. 2020, Kraemer et al. 2020, Zhang et al. 2020). 

107 Time series data are available for 204 countries, for which 65 had more than 100 cases recorded 

108 and for which time series had at least 30 days of exponential growth after the 100th case. We also 

109 performed the analysis considering countries with more than 50 cases, but it did not qualitatively 

110 change our results. Thus, we only show the results for countries with more than 100 cases. 

111 We empirically modelled each time series using an exponential growth model for each 

112 country and calculated both the intrinsic growth rate (r) and the regression coefficient of the log 

113 growth series to be used as the response variable in our models. Because both were highly 

114 correlated (Pearson’s r = 0.97, Fig S2), we used only the regression coefficient to represent the 

115 growth rate of COVID-19 in our study.

116 To investigate potential correlates of the virus growth rate, we downloaded climatic and 

117 socioeconomic data of each country. We used climatic data represented by monthly average 

118 minimum and maximum temperature (C) and total precipitation (mm) retrieved from the 

119 WorldClim database (https://www.worldclim.org) (Fick & Hijmans 2017). We used monthly 

120 data for 2018, the most recent year available in WorldClim (Fick & Hijmans 2017, Harris et al. 

121 2014). We extracted climatic data from the months of January, February, March, and December 

122 to represent the climatic conditions of the winter season in the Northern Hemisphere and the 

123 summer season in the Southern Hemisphere. Temperature and precipitation are used here 

124 because of their critical role on virus transmissions (Lowen et al., 2007, Shaman et al., 2010,  

125 Barreca & Shimshack 2012,  Zuk et al., 2009) and because of the recent investigations about its 

126 potential effect on the spread of COVID-19 (Araújo & Naimi 2020, Harbert et al. 2020). In 

127 addition, the predefined time period, winter in the northern hemisphere and summer in the 
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128 southern hemisphere, represents the seasons in which the virus started to spread in the different 

129 hemispheres. From these data, we computed the mean value of climatic variables across each 

130 country. Finally, minimum, and maximum temperatures were combined to estimate monthly 

131 mean temperature for December, January, February, and March, which was used in the model 

132 along with total precipitation for the same months. However, using different combinations of 

133 these variables (i.e., using means of minimum or maximum temperatures, as well as minimum or 

134 maximum for each month) did not qualitatively affect our results. 

135 We extracted socioeconomic data for each country. Human Development Index (HDI) 

136 rank, mean number of school years in 2015, gross national income (GNI) per capita in 2018 

137 population size in 2015 and average annual population growth rate between 2010-2015 were 

138 used in our study and downloaded from the United Nations database 

139 (http://hdr.undp.org/en/data) and from the World Inequality Database (https://wid.world) . We 

140 also obtained a mean value of investments in health care by averaging the annual investments in 

141 health care in each country between 2005-2015 obtained from the World Health Organization 

142 database (http://apps.who.int/gho/data/node.home). Due to the strong collinearity among some of 

143 these predictors, HDI rank and mean number of school years were removed from our final 

144 model.

145 Finally, we also downloaded air transportation data from the OpenFlights (2014) database 

146 regarding the airports of the world, which informs where each airport is located including 

147 country location (7,834 airports), and whether there is a direct flight connecting the airports 

148 (67,663 connections). We checked the Openfligths database to make the airports and connections 

149 compatible by including missing or fixing airport codes and removing six unidentified airport 

150 connections resulting in a total of 7,834 airports and 67,657 connections. We used this 
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151 information to build an air transportation network that reflects the existence of a direct flight 

152 between the airports while considering the direction of the flight. Thus, the airport network is a 

153 unipartite, binary, and directed graph where airports are nodes and flights are links (Fig 1, Fig 

154 S3). In the following step, we collapsed the airports’ network into a country-level network using 

155 the country information to merge all the airports located in a country in a single node (e.g., 

156 United States had 613 airports that were merged in a single vertex representing the country). The 

157 country-level network (Fig 1, Fig S3) is a directed weighted graph where the links are the 

158 number of connections between 226 countries which is collapsed for the 65 countries that had 

159 more than 100 cases and for which time series data had at least 30 days after the 100th case . 

160 Afterward, we measured the countries centrality in the network using the Eigenvector Centrality 

161 (Bonacich, 1987), that weights the importance of a country in the network considering the 

162 number of connections with other countries and how well connected these countries are to other 

163 countries – indirect connections. All networks analyses were generated using package igraph 

164 (Csardi & Nepusz, 2006).

165 We evaluated the relationship between the predictors (climatic, socioeconomic and 

166 transport data) and our growth rate parameter (the regression coefficient of the log-transformed 

167 growth series) using a standard multiple regression (OLS) considering the distribution of the 

168 original predictors as well as the normality of  residuals. Moreover, OLS residuals were 

169 inspected to evaluate the existence of spatial autocorrelation that could upward bias the 

170 significance of predictor variables on the model using Moran’s correlograms (Legendre & 

171 Legendre 2013). Prior to the analysis, we applied logarithmic (mean precipitation, total 

172 population size, and network centrality) and square root (mean health investments) 

173 transformations to the data to approximate a normal distribution.
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174

175 Results

176 The models used to estimate COVID-19 growth rate on different countries showed an 

177 average R2 of 0.91 (SD = 0.04), varying from 0.78 to 0.99, indicating an overall excellent 

178 performance on estimating growth rates. The geographical patterns in the growth rates of 

179 COVID-19 cases do not show a clear trend, at least in terms of latitudinal variation, that would 

180 suggest a climatic effect at macroecological scale (Fig. 2).

181 We build one model including only climate, which explained only 0.03% of the variation 

182 on growth rates. When we added socioeconomic variables, the R2 increased to 53.95%. Finally, 

183 when we added country centrality (i.e. country importance in the global transportation network) 

184 as a predictor, the R2 increased to 59.56%. In this model, only population size and country 

185 centrality had positive and significant effects (Fig 3, Table 1). Thus, exponential growth rates 

186 increased strongly in response to countries population size and their importance in the 

187 transportation network (Table 1, Fig 3). Statistical coefficients were not upward biased by spatial 

188 autocorrelation.

189

190 Discussion

191 At global scale, Gross National Income, annual population growth, investment in 

192 healthcare, mean temperature and mean precipitation had no significant effect on the exponential 

193 phase of COVID-19. Population size and countries importance in the global transportation 

194 network have key roles on the growth rate of COVID-19.

195 Population size is a critical factor in epidemiological outbreaks and faster growths of 

196 COVID-19 were reported in cities with larger populations (Stier et al. 2020). Here, we observe 
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197 the same pattern at country level. Faster spread in regions with larger populations have been 

198 explained by the interaction of frequent trades and people exchanges, and the difficulty to control 

199 early outbreaks within larger populations (Jaffe et al. 2020, Harbert et al. 2020, Stier et al. 2020). 

200 Because of the multiple infection routes and faster spread in larger populations, recent 

201 discussions emphasize the need to implement more aggressive social distancing policies in 

202 regions with larger populations (Stier et al. 2020). However, not only population size explains 

203 the exponential growth of COVID-19 in different countries but also how central a country is in 

204 the global transportation network. 

205 Network centrality measures are widely used to discover distinguished nodes on 

206 networks, including epidemiological networks (e.g., Madotto & Liu 2016). Our findings 

207 reinforce the importance of propagule pressure on disease dissemination (Tian et al., 2017, 

208 Chinazzi et al., 2020). Aerial transportation is an important predictor of COVID-19 

209 dissemination in China (Kraemer et al., 2020), Brazil (Ribeiro et al., 2020), and Mexico (Dátillo 

210 et al., 2020). Countries characterized by higher centrality in the global transportation network 

211 represent distinguished nodes, in terms of how well they are directly and indirectly connected to 

212 other countries. These countries are the ones that are more prone to receive higher number of 

213 infected individuals in different regions of their territory, which can potentially contribute to the 

214 velocity of the initial spread of the disease.

215 The rapid international spread of the severe acute respiratory syndrome (SARS) from 

216 2002 to 2003 led to extensively assessing entry screening measures at international borders of 

217 some countries (Bell et al., 2003, John et al., 2017). However, it is important to note that SARS-

218 CoV-2 can spread from pre-symptomatic and asymptomatic individuals (Gandhi et al. 2020, Bai 

219 et al. 2020). Thus, entry screening measures at international borders might be only partially 

PeerJ reviewing PDF | (2020:05:49014:1:1:NEW 21 Jul 2020)

Manuscript to be reviewed



220 effective to identify symptomatic individuals, but not effective to stop de disease at international 

221 borders. Even for diseases that could be stopped by identifying symptomatic travellers, there is 

222 no consensus of the effective and accurate tools to be used in airports across the globe (Sun et al., 

223 2017). Finally, how effective airports closures were in different countries to decrease or stabilize 

224 the spread of COVID-19 still needs to be tested in different countries and is beyond the scope of 

225 this paper. However, after local transmissions are identified, we would expect that airport 

226 closures are less effective than any other measure taken by governments, such as increasing 

227 social distancing, tracking and isolating infected individuals (see Chinazzi et al. 2020). 

228 When discussing and modelling the effect of climate on SARS CoV-2 it is important to 

229 remember that modern human society is a complex system composed by strongly connected 

230 societies that are all susceptible to rare events. It is also critical to consider the negative 

231 correlations between climate and local or regional socioeconomic conditions (i.e., inadequate 

232 sanitary conditions and poor nutritional conditions) that could easily counteract any potential 

233 climatic effect at local scales, such as lower survival rates of viruses exposed to high humidity, 

234 temperatures and high UV irradiation (Wang et al., 2020, Duan et al., 2003). Our analyses call 

235 attention to the case of Brazil, a well-connected and populated tropical country that presents one 

236 of the highest increase rates of COVID-19 in its exponential phase. If decision makers consider 

237 yet unsupported claims that growth rates of COVID-19 in its exponential phase might be lower 

238 in warmer and humid countries, we might observe terrible scenarios unrolling in well-connected 

239 and populated countries independent of their climatic conditions. 

240

241 Conclusions 
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242 Here, we show that countries’ population size and importance in the global transportation 

243 network have key roles on the initial growth rate of COVID-19.We do not expect that our results 

244 using a macroecological approach at a global scale would have a definitive effect on decision-

245 making in terms of public health in any particular country, province, or city.

246  However, we call the attention for the absence of effects of climatic variables on the 

247 exponential phase of COVID-19 that is surpassed by how distinguished a country is in the air 

248 transportation network and by their population size. Thus, claims that the growth of COVID-19 

249 might be lower in warmer and humid countries based on climate suitability models should be 

250 taken very carefully, risking to disturb well-established and effective policy of social isolation 

251 that may help to avoid higher mortality rates due to the collapse in national health systems.
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Figure 1
Air transportation network among 65 countries that had more than 100 cases and for
which time series data had at least 30 days after the 100th case.

Different colours represent modules of countries that are more connected to each other.
Different sizes of each node represent the growth rate of COVID-19 estimated for each
country.
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Figure 2
Geographical pattern of the early growth rate of COVID-19 in different countries. Growth
rate is represented by the regression coefficient of the log growth series.
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Figure 3
Spatial patterns of predictors and their relationship with COVID-19 growth rates.

Countries importance in the global transportation network (A) and population size (C) are
strongly associated with early growth rates of covid-19 across the world (B and D).
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Table 1(on next page)

Model statistics for all variables used in the study.
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1 Table 1. Model statistics for all variables used in the study. 

Standardized

Estimate Estimate Std Error t value P-value

Intercept 0.074 0.023 3.232  0.002

Eigenvector Centrality 0.387 0.009 0.003 2.812 0.006

Gross National Income 0.264 0.000 0.000 1.764 0.083

Population Size 0.519 0.011 0.002 4.487 <0.001

Annual population growth 0.096 0.003 0.004 0.658 0.513

Heath investment -0.168 0.000 0.000 -1.140 0.259

Mean Temperature -0.208 -0.001 0.000 -1.695 0.095

Mean Precipitation 0.184 0.006 0.003 1.730 0.089

2

3
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