The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in (...) particular, Löwenheim and Skolem. Itinerary V surveys the work in logic connected to the Hilbert school, and itinerary V deals specifically with consistency proofs and metamathematics, including the incompleteness theorems. Itinerary VII traces the development of intuitionistic and many-valued logics. Itinerary VIII surveys the development of semantical notions from the early work on axiomatics up to Tarski's work on truth. (shrink)
I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct (...) reason to doubt that our F-beliefs are modally secure. (shrink)
Textbook for students in mathematicallogic. Part 1. Total formalization is possible! Formal theories. First order languages. Axioms of constructive and classical logic. Proving formulas in propositional and predicate logic. Glivenko's theorem and constructive embedding. Axiom independence. Interpretations, models and completeness theorems. Normal forms. Tableaux method. Resolution method. Herbrand's theorem.
The first learning game to be developed to help students to develop and hone skills in constructing proofs in both the propositional and first-order predicate calculi. It comprises an autotelic (self-motivating) learning approach to assist students in developing skills and strategies of proof in the propositional and predicate calculus. The text of VALIDITY consists of a general introduction that describes earlier studies made of autotelic learning games, paying particular attention to work done at the Law School of Yale University, called (...) the ALL Project (Accelerated Learning of Logic). Following the introduction, the game of VALIDITY is described, first with reference to the propositional calculus, and then in connection with the first-order predicate calculus with identity. Sections in the text are devoted to discussions of the various rules of derivation employed in both calculi. Three appendices follow the main text; these provide a catalogue of sequents and theorems that have been proved for the propositional calculus and for the predicate calculus, and include suggestions for the classroom use of VALIDITY in university-level courses in mathematicallogic. (shrink)
This review concludes that if the authors know what mathematicallogic is they have not shared their knowledge with the readers. This highly praised book is replete with errors and incoherency.
If Tahiti suggested to theorists comfortably at home in Europe thoughts of noble savages without clothes, those who paid for and went on voyages there were in pursuit of a quite opposite human ideal. Cook's voyage to observe the transit of Venus in 1769 symbolises the eighteenth century's commitment to numbers and accuracy, and its willingness to spend a lot of public money on acquiring them. The state supported the organisation of quantitative researches, employing surveyors and collecting statistics to..
K. Marx’s 200th jubilee coincides with the celebration of the 85 years from the first publication of his “Mathematical Manuscripts” in 1933. Its editor, Sofia Alexandrovna Yanovskaya (1896–1966), was a renowned Soviet mathematician, whose significant studies on the foundations of mathematics and mathematicallogic, as well as on the history and philosophy of mathematics are unduly neglected nowadays. Yanovskaya, as a militant Marxist, was actively engaged in the ideological confrontation with idealism and its influence on modern mathematics (...) and their interpretation. Concomitantly, she was one of the pioneers of mathematicallogic in the Soviet Union, in an era of fierce disputes on its compatibility with Marxist philosophy. Yanovskaya managed to embrace in an originally Marxist spirit the contemporary level of logico-philosophical research of her time. Due to her highly esteemed status within Soviet academia, she became one of the most significant pillars for the culmination of modern mathematics in the Soviet Union. In this paper, I attempt to trace the influence of the complex socio-cultural context of the first decades of the Soviet Union on Yanovskaya’s work. Among the several issues I discuss, her encounter with L. Wittgenstein is striking. (shrink)
Of all twentieth century philosophers, it is Gilles Deleuze whose work agitates most forcefully for a worldview privileging becoming over being, difference over sameness; the world as a complex, open set of multiplicities. Nevertheless, Deleuze remains singular in enlisting mathematical resources to underpin and inform such a position, refusing the hackneyed opposition between ‘static’ mathematicallogic versus ‘dynamic’ physical world. This is an international collection of work commissioned from foremost philosophers, mathematicians and philosophers of science, to address (...) the wide range of problematics and influences in this most important strand of Deleuze’s thinking. Contributors are Charles Alunni, Alain Badiou, Gilles Châtelet, Manuel DeLanda, Simon Duffy, Robin Durie, Aden Evens, Arkady Plotnitsky, Jean-Michel Salanskis, Daniel Smith and David Webb. (shrink)
2nd edition. Many-valued logics are those logics that have more than the two classical truth values, to wit, true and false; in fact, they can have from three to infinitely many truth values. This property, together with truth-functionality, provides a powerful formalism to reason in settings where classical logic—as well as other non-classical logics—is of no avail. Indeed, originally motivated by philosophical concerns, these logics soon proved relevant for a plethora of applications ranging from switching theory to cognitive modeling, (...) and they are today in more demand than ever, due to the realization that inconsistency and vagueness in knowledge bases and information processes are not only inevitable and acceptable, but also perhaps welcome. The main modern applications of (any) logic are to be found in the digital computer, and we thus require the practical knowledge how to computerize—which also means automate—decisions (i.e. reasoning) in many-valued logics. This, in turn, necessitates a mathematical foundation for these logics. This book provides both these mathematical foundation and practical knowledge in a rigorous, yet accessible, text, while at the same time situating these logics in the context of the satisfiability problem (SAT) and automated deduction. The main text is complemented with a large selection of exercises, a plus for the reader wishing to not only learn about, but also do something with, many-valued logics. (shrink)
If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. 'Televisions are televisions' and 'TVs are televisions' neither sound alike nor are used interchangeably. Interception synonymy gets assumed because logical sentences and (...) their synomic interceptions have identical factual content, which seems to exhaust semantic content. However, intercepting alters syntax by eliminating term recurrence, the sole strictly syntactic means of ensuring necessary term coextension, and thereby syntactically securing necessary truth. Interceptional necessity is lexical, a notational artifact. The denial of interception nonsynonymy and the disregard of term recurrence in logic link with many misconceptions about propositions, logical form, conventions, and metalanguages. Mathematics is distinct from logic: its truth is not syntactic; it is transmitted by synonym substitution; term recurrence has no essential role. The '=' of mathematics is an objectual relation between numbers; the '=' of logic marks a syntactic relation of coreferring terms. (shrink)
Much work in MKM depends on the application of formal logic to mathematics. However, much mathematical knowledge is informal. Luckily, formal logic only represents one tradition in logic, specifically the modeling of inference in terms of logical form. Many inferences cannot be captured in this manner. The study of such inferences is still within the domain of logic, and is sometimes called informal logic. This paper explores some of the benefits informal logic may (...) have for the management of informal mathematical knowledge. (shrink)
I argue that certain species of belief, such as mathematical, logical, and normative beliefs, are insulated from a form of Harman-style debunking argument whereas moral beliefs, the primary target of such arguments, are not. Harman-style arguments have been misunderstood as attempts to directly undermine our moral beliefs. They are rather best given as burden-shifting arguments, concluding that we need additional reasons to maintain our moral beliefs. If we understand them this way, then we can see why moral beliefs are (...) vulnerable to such arguments while mathematical, logical, and normative beliefs are not—the very construction of Harman-style skeptical arguments requires the truth of significant fragments of our mathematical, logical, and normative beliefs, but requires no such thing of our moral beliefs. Given this property, Harman-style skeptical arguments against logical, mathematical, and normative beliefs are self-effacing; doubting these beliefs on the basis of such arguments results in the loss of our reasons for doubt. But we can cleanly doubt the truth of morality. (shrink)
This study focuses on undergraduate students' ability to unpack informally written mathematical statements into the language of predicate calculus. Data were collected between 1989 and 1993 from 61students in six small sections of a “bridge" course designed to introduce proofs and mathematical reasoning. We discuss this data from a perspective that extends the notion of concept image to that of statement image and introduces the notion of proof framework to indicate the top-level logical structure of a proof. For (...) simplified informal calculus statements, just 8.5% of unpacking attempts were successful; for actual statements from calculus texts, this dropped to 5%. We infer that these students would be unable to reliably relate informally stated theorems with the top-level logical structure of their proofs and hence could not be expected to construct proofs or evaluate their validity. (shrink)
Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the (...) basic theory faces. The final view appeals to relevance logic and uses resources in information theory to understand the explanatory relationship between mathematical and physical facts. 1Introduction2Anchoring3The Basic Deductive-Mathematical Account4The Genuineness Problem5Irrelevance6Relevance and Information7Objections and Replies 7.1Against relevance logic7.2Too epistemic7.3Informational containment8Conclusion. (shrink)
This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference (...) from ‘If A were true then C would be true’ to ‘If A and B were true then C would be true’—which many reject. Second, the system they develop is provably equivalent to appending Deduction Theorem to a T modal logic. It is unsurprising that the combination of Deduction Theorem with T results in necessitation; indeed, it is precisely for this reason that many logicians reject Deduction Theorem in modal contexts. If Deduction Theorem is unacceptable for modal logic, it cannot be assumed to derive the necessity of mathematics. (shrink)
In this work I study the main tenets of the logicist philosophy of mathematics. I deal, basically, with two problems: (1) To what extent can one dispense with intuition in mathematics? (2) What is the appropriate logic for the purposes of logicism? By means of my considerations I try to determine the pros and cons of logicism. My standpoint favors the logicist line of thought. -/- .
View more Abstract If logical truth is necessitated by sheer syntax, mathematics is categorially unlike logic even if all mathematics derives from definitions and logical principles. This contrast gets obscured by the plausibility of the Synonym Substitution Principle implicit in conceptions of analyticity: synonym substitution cannot alter sentence sense. The Principle obviously fails with intercepting: nonuniform term substitution in logical sentences. ‘Televisions are televisions’ and ‘TVs are televisions’ neither sound alike nor are used interchangeably. Interception synonymy gets assumed because (...) logical sentences and their synomic interceptions have identical factual content, which seems to exhaust semantic content. However, intercepting alters syntax by eliminating term recurrence, the sole strictly syntactic means of ensuring necessary term coextension, and thereby syntactically securing necessary truth. Interceptional necessity is lexical, a notational artifact. The denial of interception nonsynonymy and the disregard of term recurrence in logic link with many misconceptions about propositions, logical form, conventions, and metalanguages. Mathematics is distinct from logic: its truth is not syntactic; it is transmitted by synonym substitution; term recurrence has no essential role. The ‘=’ of mathematics is an objectual relation between numbers; the ‘=’ of logic marks a syntactic relation of coreferring terms. -/- . (shrink)
We study a new formal logic LD introduced by Prof. Grzegorczyk. The logic is based on so-called descriptive equivalence, corresponding to the idea of shared meaning rather than shared truth value. We construct a semantics for LD based on a new type of algebras and prove its soundness and completeness. We further show several examples of classical laws that hold for LD as well as laws that fail. Finally, we list a number of open problems. -/- .
While many different mechanisms contribute to the generation of spatial order in biological development, the formation of morphogenetic fields which in turn direct cell responses giving rise to pattern and form are of major importance and essential for embryogenesis and regeneration. Most likely the fields represent concentration patterns of substances produced by molecular kinetics. Short range autocatalytic activation in conjunction with longer range “lateral” inhibition or depletion effects is capable of generating such patterns (Gierer and Meinhardt, 1972). Non-linear reactions are (...) required, and mathematical criteria were derived to design molecular models capable of pattern generation. The classical embryological feature of proportion regulation can be incorporated into the models. The conditions are mathematically necessary for the simplest two-factor case, and are likely to be a fair approximation in multi-component systems in which activation and inhibition are systems parameters subsuming the action of several agents. Gradients, symmetric and periodic patterns, in one or two dimensions, stable or pulsing in time, can be generated on this basis. Our basic concept of autocatalysis in conjunction with lateral inhibition accounts for self-regulatory biological features, including the reproducible formation of structures from near-uniform initial conditions as required by the logic of the generation cycle. Real tissue form, for instance that of budding Hydra, may often be traced back to local curvature arising within an initially relatively flat cell sheet, the position of evagination being determined by morphogenetic fields. Shell theory developed for architecture may also be applied to such biological processes. (shrink)
Whether mathematical truths are syntactical (as Rudolf Carnap claimed) or empirical (as Mill actually never claimed, though Carnap claimed that he did) might seem merely an academic topic. However, it becomes a practical concern as soon as we consider the role of questions. For if we inquire as to the truth of a mathematical statement, this question must be (in a certain respect) meaningless for Carnap, as its truth or falsity is certain in advance due to its purely (...) syntactical (or formal-semantical) nature. In contrast, for Mill such a question is as valid as any other. These differing views have their consequences for contemporary erotetic logic. (shrink)
Mathematicians often speak of conjectures, yet unproved, as probable or well-confirmed by evidence. The Riemann Hypothesis, for example, is widely believed to be almost certainly true. There seems no initial reason to distinguish such probability from the same notion in empirical science. Yet it is hard to see how there could be probabilistic relations between the necessary truths of pure mathematics. The existence of such logical relations, short of certainty, is defended using the theory of logical probability (or objective Bayesianism (...) or non-deductive logic), and some detailed examples of its use in mathematics surveyed. Examples of inductive reasoning in experimental mathematics are given and it is argued that the problem of induction is best appreciated in the mathematical case. (shrink)
In the present article we attempt to show that Aristotle's syllogistic is an underlying logiC which includes a natural deductive system and that it isn't an axiomatic theory as had previously been thought. We construct a mathematical model which reflects certain structural aspects of Aristotle's logic. We examine the relation of the model to the system of logic envisaged in scattered parts of Prior and Posterior Analytics. Our interpretation restores Aristotle's reputation as a logician of consummate (...) imagination and skill. Several attributions of shortcomings and logical errors to Aristotle are shown to be without merit. Aristotle's logic is found to be self-sufficient in several senses: his theory of deduction is logically sound in every detail. (His indirect deductions have been criticized, but incorrectly on our account.) Aristotle's logic presupposes no other logical concepts, not even those of propositional logic. The Aristotelian system is seen to be complete in the sense that every valid argument expressible in his system admits of a deduction within his deductive system: every semantically valid argument is deducible. (shrink)
Published in 1903, this book was the first comprehensive treatise on the logical foundations of mathematics written in English. It sets forth, as far as possible without mathematical and logical symbolism, the grounds in favour of the view that mathematics and logic are identical. It proposes simply that what is commonly called mathematics are merely later deductions from logical premises. It provided the thesis for which _Principia Mathematica_ provided the detailed proof, and introduced the work of Frege to (...) a wider audience. In addition to the new introduction by John Slater, this edition contains Russell's introduction to the 1937 edition in which he defends his position against his formalist and intuitionist critics. (shrink)
CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
This book treats ancient logic: the logic that originated in Greece by Aristotle and the Stoics, mainly in the hundred year period beginning about 350 BCE. Ancient logic was never completely ignored by modern logic from its Boolean origin in the middle 1800s: it was prominent in Boole’s writings and it was mentioned by Frege and by Hilbert. Nevertheless, the first century of mathematicallogic did not take it seriously enough to study the ancient (...)logic texts. A renaissance in ancient logic studies occurred in the early 1950s with the publication of the landmark Aristotle’s Syllogistic by Jan Łukasiewicz, Oxford UP 1951, 2nd ed. 1957. Despite its title, it treats the logic of the Stoics as well as that of Aristotle. Łukasiewicz was a distinguished mathematical logician. He had created many-valued logic and the parenthesis-free prefix notation known as Polish notation. He co-authored with Alfred Tarski’s an important paper on metatheory of propositional logic and he was one of Tarski’s the three main teachers at the University of Warsaw. Łukasiewicz’s stature was just short of that of the giants: Aristotle, Boole, Frege, Tarski and Gödel. No mathematical logician of his caliber had ever before quoted the actual teachings of ancient logicians. -/- Not only did Łukasiewicz inject fresh hypotheses, new concepts, and imaginative modern perspectives into the field, his enormous prestige and that of the Warsaw School of Logic reflected on the whole field of ancient logic studies. Suddenly, this previously somewhat dormant and obscure field became active and gained in respectability and importance in the eyes of logicians, mathematicians, linguists, analytic philosophers, and historians. Next to Aristotle himself and perhaps the Stoic logician Chrysippus, Łukasiewicz is the most prominent figure in ancient logic studies. A huge literature traces its origins to Łukasiewicz. -/- This Ancient Logic and Its Modern Interpretations, is based on the 1973 Buffalo Symposium on Modernist Interpretations of Ancient Logic, the first conference devoted entirely to critical assessment of the state of ancient logic studies. (shrink)
Einstein, like most philosophers, thought that there cannot be mathematical truths which are both necessary and about reality. The article argues against this, starting with prima facie examples such as "It is impossible to tile my bathroom floor with regular pentagonal tiles." Replies are given to objections based on the supposedly purely logical or hypothetical nature of mathematics.
Introduction to mathematicallogic, part 2.Textbook for students in mathematicallogic and foundations of mathematics. Platonism, Intuition, Formalism. Axiomatic set theory. Around the Continuum Problem. Axiom of Determinacy. Large Cardinal Axioms. Ackermann's Set Theory. First order arithmetic. Hilbert's 10th problem. Incompleteness theorems. Consequences. Connected results: double incompleteness theorem, unsolvability of reasoning, theorem on the size of proofs, diophantine incompleteness, Loeb's theorem, consistent universal statements are provable, Berry's paradox, incompleteness and Chaitin's theorem. Around Ramsey's theorem.
Mathematics textbooks teach logical reasoning by example, a practice started by Euclid; while logic textbooks treat logic as a subject in its own right without practical application to mathematics. Stuck in the middle are students seeking mathematical proficiency and educators seeking to provide it. To assist them, the article explains in practical detail how to teach logic-based skills such as: making mathematical reasoning fully explicit; moving from step to step in a mathematical proof in (...) logically correct ways; and checking to make sure inferences are logically correct. The methodology can easily be extended beyond the four examples analyzed. (shrink)
Book Review Luck, logic, and white lies: the mathematics of games, second edition by Jörg Bewersdorff, New York, Taylor & Francis, CRC Press, 2021, 568 pp., GBP 42.99 (paperback), ISBN 9780367548414, Number of chapters 51.
In this manuscript, published here for the first time, Tarski explores the concept of logical notion. He draws on Klein's Erlanger Programm to locate the logical notions of ordinary geometry as those invariant under all transformations of space. Generalizing, he explicates the concept of logical notion of an arbitrary discipline.
Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e., the hidden logical order of things and its relations determined by natural (...) laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer sciencebased formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language. (shrink)
Taking into account some basic epistemological considerations on psychoanalysis by Ignacio Matte Blanco, it is possible to deduce some first simple remarks on certain logical aspects of schizophrenic reasoning. Further remarks on mathematical thought are also made in the light of what established, taking into account the comparison with the schizophrenia pattern.
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems (...) to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more 'big picture' ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics. (shrink)
Classical logic is usually interpreted as the logic of propositions. But from Boole's original development up to modern categorical logic, there has always been the alternative interpretation of classical logic as the logic of subsets of any given (nonempty) universe set. Partitions on a universe set are dual to subsets of a universe set in the sense of the reverse-the-arrows category-theoretic duality--which is reflected in the duality between quotient objects and subobjects throughout algebra. Hence the (...) idea arises of a dual logic of partitions. That dual logic is described here. Partition logic is at the same mathematical level as subset logic since models for both are constructed from (partitions on or subsets of) arbitrary unstructured sets with no ordering relations, compatibility or accessibility relations, or topologies on the sets. Just as Boole developed logical finite probability theory as a quantitative treatment of subset logic, applying the analogous mathematical steps to partition logic yields a logical notion of entropy so that information theory can be refounded on partition logic. But the biggest application is that when partition logic and the accompanying logical information theory are "lifted" to complex vector spaces, then the mathematical framework of quantum mechanics is obtained. Partition logic models indefiniteness (i.e., numerical attributes on a set become more definite as the inverse-image partition becomes more refined) while subset logic models the definiteness of classical physics (an entity either definitely has a property or definitely does not). Hence partition logic provides the backstory so the old idea of "objective indefiniteness" in QM can be fleshed out to a full interpretation of quantum mechanics. (shrink)
Epstein and Carnielli's fine textbook on logic and computability is now in its second edition. The readers of this journal might be particularly interested in the timeline `Computability and Undecidability' added in this edition, and the included wall-poster of the same title. The text itself, however, has some aspects which are worth commenting on.
Not focusing on the history of classical logic, this book provides discussions and quotes central passages on its origins and development, namely from a philosophical perspective. Not being a book in mathematicallogic, it takes formal logic from an essentially mathematical perspective. Biased towards a computational approach, with SAT and VAL as its backbone, this is an introduction to logic that covers essential aspects of the three branches of logic, to wit, philosophical, (...) class='Hi'>mathematical, and computational. (shrink)
This article had its start with another article, concerned with measuring the speed of gravitational waves - "The Measurement of the Light Deflection from Jupiter: Experimental Results" by Ed Fomalont and Sergei Kopeikin (2003) - The Astrophysical Journal 598 (1): 704–711. This starting-point led to many other topics that required explanation or naturally seemed to follow on – Unification of gravity with electromagnetism and the 2 nuclear forces, Speed of electromagnetic waves, Energy of cosmic rays and UHECRs, Digital string theory, (...) Dark energy+gravity+binary digits, Cosmic strings and wormholes from Figure-8 Klein bottles, Massless and massive photons and gravitons, Inverse square+quantum entanglement = God+evolution, Binary digits projected to make Prof. Greene’s cosmic holographic movie, Renormalization of infinity, Colliding subuniverses, Unifying cosmic inflation, TOE (emphasizing “EVERYthing”) = Bose-Einstein renormalized. The text also addresses (in a nonmathematical way) the wavelength of electromagnetic waves, the frequency of gravitational waves, gravitational and electromagnetic waves having identical speed, the gamma-ray burst designated GRB 090510, the smoothness of space, and includes these words – “Gravity produces electromagnetism. Retrocausally (by means of humans travelling into the past of this subuniverse with their electronics); this “Cosmic EM Background” produces base-2 mathematics, which produces gravity. EM interacts with gravity to produce particles, mass – gravity/EM could be termed “the Higgs field” - and the nuclear forces associated with those particles. It makes gravity using BITS that copy the principle of magnetism attracting and repelling, before pasting it into what we call the strong force and dark energy.” . (shrink)
We are much better equipped to let the facts reveal themselves to us instead of blinding ourselves to them or stubbornly trying to force them into preconceived molds. We no longer embarrass ourselves in front of our students, for example, by insisting that “Some Xs are Y” means the same as “Some X is Y”, and lamely adding “for purposes of logic” whenever there is pushback. Logic teaching in this century can exploit the new spirit of objectivity, humility, (...) clarity, observationalism, contextualism, and pluralism. Besides the new spirit there have been quiet developments in logic and its history and philosophy that could radically improve logic teaching. One rather conspicuous example is that the process of refining logical terminology has been productive. Future logic students will no longer be burdened by obscure terminology and they will be able to read, think, talk, and write about logic in a more careful and more rewarding manner. Closely related is increased use and study of variable-enhanced natural language as in “Every proposition x that implies some proposition y that is false also implies some proposition z that is true”. Another welcome development is the culmination of the slow demise of logicism. No longer is the teacher blocked from using examples from arithmetic and algebra fearing that the students had been indoctrinated into thinking that every mathematical truth was a tautology and that every mathematical falsehood was a contradiction. A fifth welcome development is the separation of laws of logic from so-called logical truths, i.e., tautologies. Now we can teach the logical independence of the laws of excluded middle and non-contradiction without fear that students had been indoctrinated into thinking that every logical law was a tautology and that every falsehood of logic was a contradiction. This separation permits the logic teacher to apply logic in the clarification of laws of logic. This lecture expands the above points, which apply equally well in first, second, and third courses, i.e. in “critical thinking”, “deductive logic”, and “symbolic logic”. (shrink)
Since the time of Aristotle's students, interpreters have considered Prior Analytics to be a treatise about deductive reasoning, more generally, about methods of determining the validity and invalidity of premise-conclusion arguments. People studied Prior Analytics in order to learn more about deductive reasoning and to improve their own reasoning skills. These interpreters understood Aristotle to be focusing on two epistemic processes: first, the process of establishing knowledge that a conclusion follows necessarily from a set of premises (that is, on the (...) epistemic process of extracting information implicit in explicitly given information) and, second, the process of establishing knowledge that a conclusion does not follow. Despite the overwhelming tendency to interpret the syllogistic as formal epistemology, it was not until the early 1970s that it occurred to anyone to think that Aristotle may have developed a theory of deductive reasoning with a well worked-out system of deductions comparable in rigor and precision with systems such as propositional logic or equational logic familiar from mathematicallogic. When modern logicians in the 1920s and 1930s first turned their attention to the problem of understanding Aristotle's contribution to logic in modern terms, they were guided both by the Frege-Russell conception of logic as formal ontology and at the same time by a desire to protect Aristotle from possible charges of psychologism. They thought they saw Aristotle applying the informal axiomatic method to formal ontology, not as making the first steps into formal epistemology. They did not notice Aristotle's description of deductive reasoning. Ironically, the formal axiomatic method (in which one explicitly presents not merely the substantive axioms but also the deductive processes used to derive theorems from the axioms) is incipient in Aristotle's presentation. Partly in opposition to the axiomatic, ontically-oriented approach to Aristotle's logic and partly as a result of attempting to increase the degree of fit between interpretation and text, logicians in the 1970s working independently came to remarkably similar conclusions to the effect that Aristotle indeed had produced the first system of formal deductions. They concluded that Aristotle had analyzed the process of deduction and that his achievement included a semantically complete system of natural deductions including both direct and indirect deductions. Where the interpretations of the 1920s and 1930s attribute to Aristotle a system of propositions organized deductively, the interpretations of the 1970s attribute to Aristotle a system of deductions, or extended deductive discourses, organized epistemically. The logicians of the 1920s and 1930s take Aristotle to be deducing laws of logic from axiomatic origins; the logicians of the 1970s take Aristotle to be describing the process of deduction and in particular to be describing deductions themselves, both those deductions that are proofs based on axiomatic premises and those deductions that, though deductively cogent, do not establish the truth of the conclusion but only that the conclusion is implied by the premise-set. Thus, two very different and opposed interpretations had emerged, interestingly both products of modern logicians equipped with the theoretical apparatus of mathematicallogic. The issue at stake between these two interpretations is the historical question of Aristotle's place in the history of logic and of his orientation in philosophy of logic. This paper affirms Aristotle's place as the founder of logic taken as formal epistemology, including the study of deductive reasoning. A by-product of this study of Aristotle's accomplishments in logic is a clarification of a distinction implicit in discourses among logicians--that between logic as formal ontology and logic as formal epistemology. (shrink)
This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of large cardinal axioms, undecidable propositions, and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; (...) and to the types of intention, when the latter is interpreted as a modal mental state. Chapter \textbf{2} argues for a novel type of expressivism based on the duality between the categories of coalgebras and algebras, and argues that the duality permits of the reconciliation between modal cognitivism and modal expressivism. Chapter \textbf{3} provides an abstraction principle for epistemic intensions. Chapter \textbf{4} advances a two-dimensional truthmaker semantics, and provides three novel interpretations of the framework along with the epistemic and metasemantic. Chapter \textbf{5} applies the fixed points of the modal $\mu$-calculus in order to account for the iteration of epistemic states, by contrast to availing of modal axiom 4 (i.e. the KK principle). Chapter \textbf{6} advances a solution to the Julius Caesar problem based on Fine's "criterial" identity conditions which incorporate conditions on essentiality and grounding. Chapter \textbf{7} provides a ground-theoretic regimentation of the proposals in the metaphysics of consciousness and examines its bearing on the two-dimensional conceivability argument against physicalism. The epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is availed of in order for epistemic states to be a guide to metaphysical states in the hyperintensional setting. Chapter \textbf{8} examines the modal commitments of abstractionism, in particular necessitism, and epistemic modality and the epistemology of abstraction. Chapter \textbf{9} examines the modal profile of $\Omega$-logic in set theory. Chapter \textbf{10} examines the interaction between epistemic two-dimensional semantics and absolute decidability. Chapter \textbf{11} avails of modal coalgebraic automata to interpret the defining properties of indefinite extensibility, and avails of epistemic two-dimensional semantics in order to account for the interaction of the interpretational and objective modalities thereof. The hyperintensional, epistemic two-dimensional truthmaker semantics developed in chapter \textbf{4} is applied in chapters \textbf{8}, \textbf{10}, and \textbf{11}. Chapter \textbf{12} provides a modal logic for rational intuition. Chapter \textbf{13} examines modal responses to the alethic paradoxes. Chapter \textbf{14} examines, finally, the modal semantics for the different types of intention and the relation of the latter to evidential decision theory. (shrink)
In this thesis we present two logical systems, $\bf MP$ and $\MP$, for the purpose of reasoning about knowledge and effort. These logical systems will be interpreted in a spatial context and therefore, the abstract concepts of knowledge and effort will be defined by concrete mathematical concepts.
It is argued, on the basis of ideas derived from Wittgenstein's Tractatus and Husserl's Logical Investigations, that the formal comprehends more than the logical. More specifically: that there exist certain formal-ontological constants (part, whole, overlapping, etc.) which do not fall within the province of logic. A two-dimensional directly depicting language is developed for the representation of the constants of formal ontology, and means are provided for the extension of this language to enable the representation of certain materially necessary relations. (...) The paper concludes with a discussion of the relationship between formal logic, formal ontology, and mathematics. (shrink)
The paper discusses some changes in Bolzano's definition of mathematics attested in several quotations from the Beyträge, Wissenschaftslehre and Grössenlehre: is mathematics a theory of forms or a theory of quantities? Several issues that are maintained throughout Bolzano's works are distinguished from others that were accepted in the Beyträge and abandoned in the Grössenlehre. Changes are interpreted as a consequence of the new logical theory of truth introduced in the Wissenschaftslehre, but also as a consequence of the overcome of Kant's (...) terminology, and of the radicalization of Bolzano's anti‐Kantianism. Bolzano's evolution is understood as a coherent move, once the criticism expressed in the Beyträge on the notion of quantity is compared with a different and larger notion of quantity that Bolzano developed already in 1816. This discussion is enriched by the discovery that two unknown texts mentioned by Bolzano in the Beyträge can be identified with works by von Spaun and Vieth respectively. Bolzano's evolution is interpreted as a radicalization of the criticism of the Kantian definition of mathematics and as an effect of Bolzano's unaltered interest in the Leibnizian notion of mathesis universalis. As a conclusion, the author claims that Bolzano never abandoned his original idea of considering mathematics as a scientia universalis, i.e. as the science of quantities in general, and suggests that the question of ideal elements in mathematics, apart from being a main reason for the development of a new logical theory, can also be considered as a main reason for developing a different definition of quantity. (shrink)
One of the key features of modern mathematics is the adoption of the abstract method. Our goal in this paper is to propose an explication of that method that is rooted in the history of the subject.
Demonstrative logic, the study of demonstration as opposed to persuasion, is the subject of Aristotle's two-volume Analytics. Many examples are geometrical. Demonstration produces knowledge (of the truth of propositions). Persuasion merely produces opinion. Aristotle presented a general truth-and-consequence conception of demonstration meant to apply to all demonstrations. According to him, a demonstration, which normally proves a conclusion not previously known to be true, is an extended argumentation beginning with premises known to be truths and containing a chain of reasoning (...) showing by deductively evident steps that its conclusion is a consequence of its premises. In particular, a demonstration is a deduction whose premises are known to be true. Aristotle's general theory of demonstration required a prior general theory of deduction presented in the Prior Analytics. His general immediate-deduction-chaining conception of deduction was meant to apply to all deductions. According to him, any deduction that is not immediately evident is an extended argumentation that involves a chaining of intermediate immediately evident steps that shows its final conclusion to follow logically from its premises. To illustrate his general theory of deduction, he presented an ingeniously simple and mathematically precise special case traditionally known as the categorical syllogistic. (shrink)
We show how removing faith-based beliefs in current philosophies of classical and constructive mathematics admits formal, evidence-based, definitions of constructive mathematics; of a constructively well-defined logic of a formal mathematical language; and of a constructively well-defined model of such a language. -/- We argue that, from an evidence-based perspective, classical approaches which follow Hilbert's formal definitions of quantification can be labelled `theistic'; whilst constructive approaches based on Brouwer's philosophy of Intuitionism can be labelled `atheistic'. -/- We then adopt (...) what may be labelled a finitary, evidence-based, `agnostic' perspective and argue that Brouwerian atheism is merely a restricted perspective within the finitary agnostic perspective, whilst Hilbertian theism contradicts the finitary agnostic perspective. -/- We then consider the argument that Tarski's classic definitions permit an intelligence---whether human or mechanistic---to admit finitary, evidence-based, definitions of the satisfaction and truth of the atomic formulas of the first-order Peano Arithmetic PA over the domain N of the natural numbers in two, hitherto unsuspected and essentially different, ways. -/- We show that the two definitions correspond to two distinctly different---not necessarily evidence-based but complementary---assignments of satisfaction and truth to the compound formulas of PA over N. -/- We further show that the PA axioms are true over N, and that the PA rules of inference preserve truth over N, under both the complementary interpretations; and conclude some unsuspected constructive consequences of such complementarity for the foundations of mathematics, logic, philosophy, and the physical sciences. -/- . (shrink)
This paper is a contribution to graded model theory, in the context of mathematical fuzzy logic. We study characterizations of classes of graded structures in terms of the syntactic form of their first-order axiomatization. We focus on classes given by universal and universal-existential sentences. In particular, we prove two amalgamation results using the technique of diagrams in the setting of structures valued on a finite MTL-algebra, from which analogues of the Łoś–Tarski and the Chang–Łoś–Suszko preservation theorems follow.
In the last decades two different and apparently unrelated lines of research have increasingly connected mathematics and evolutionism. Indeed, on the one hand different attempts to formalize darwinism have been made, while, on the other hand, different attempts to naturalize logic and mathematics have been put forward. Those researches may appear either to be completely distinct or at least in some way convergent. They may in fact both be seen as supporting a naturalistic stance. Evolutionism is indeed crucial for (...) a naturalistic perspective, and formalizing it seems to be a way to strengthen its scientificity. The paper shows that, on the contrary, those directions of research may be seen as conflicting, since the conception of knowledge on which they rest may be undermined by the consequences of accepting an evolutionary perspective. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.