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ABSTRACT
The coefficient of variation is often used to illustrate the variability of precipitation.
Moreover, the difference of two independent coefficients of variation can describe
the dissimilarity of rainfall from two areas or times. Several researches reported that
the rainfall data has a delta-lognormal distribution. To estimate the dynamics of
precipitation, confidence interval construction is another method of effectively
statistical inference for the rainfall data. In this study, we propose confidence
intervals for the difference of two independent coefficients of variation for two
delta-lognormal distributions using the concept that include the fiducial generalized
confidence interval, the Bayesian methods, and the standard bootstrap.
The performance of the proposed methods was gauged in terms of the coverage
probabilities and the expected lengths via Monte Carlo simulations. Simulation
studies shown that the highest posterior density Bayesian using the Jeffreys’ Rule
prior outperformed other methods in virtually cases except for the cases of large
variance, for which the standard bootstrap was the best. The rainfall series from
Songkhla, Thailand are used to illustrate the proposed confidence intervals.

Subjects Statistics, Computational Science, Natural Resource Management, Ecohydrology,
Environmental Contamination and Remediation
Keywords Coefficient of variation, Fiducial generalized confidence interval, The left-invariant
Jeffreys prior, Jeffreys’ Rule prior, Bootstrap method, Uniform prior

INTRODUCTION
Recently, the Earth’s climate has been changing significantly due to the greenhouse effect,
which is causing both rising temperatures and variability in precipitation (Attavanich,
2013). In particular, Thailand, which is an agricultural country, is greatly affected by such
phenomena since agriculture mainly relies on rainfall. The amount of rainfall in Thailand
fluctuates quite widely due to the influence of the southwest and northeast monsoons
(Eso, Kuning & Chuai-Aree, 2015). In previous years, several areas in Thailand have been
affected by heavy rain that produced flooding, a major cause of economic, life, and
property loss.

It is important to investigate the coefficient of variation of rainfall data series to
understand the dynamics of precipitation in each area. Furthermore, the difference
between two areas or time periods of heavy rainfall measured with their coefficients of
variation is of interest. The government can use this information for advanced planning to
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prevent problems caused by excessive rainfall. Many researchers have found that rainfall
data series follow a bivariate lognormal distribution (a delta-lognormal distribution)
(Fukuchi, 1988; Shimizu, 1993; Kong et al., 2012;Maneerat, Niwitpong & Niwitpong, 2019a,
2019b; Yosboonruang, Niwitpong & Niwitpong, 2019b; Yue, 2000).

Confidence interval construction is another method of effective statistical inference for
applying to delta-lognormal distributions and methods to construct them have been
reported by several researchers. Zhou & Tu (2000) proposed confidence intervals for the
mean including a percentile-t bootstrap interval based on sufficient statistics, a
bias-corrected maximum likelihood method, and an interval based on a likelihood ratio
testing method; the bootstrap interval performed the best for both one-sided and
two-sided intervals with a small sample size. Tian (2005) compared the generalized
variables method and the generalized pivotal quantity (GPQ) to construct confidence
intervals for the mean, between which the generalized variables method was preferable.
Tian & Wu (2006) recommended using the adjusted signed log-likelihood ratio statistic to
construct confidence intervals for the mean. Chen & Zhou (2006) considered interval
estimations for the ratio of or difference between two means using a true generalized
pivotal (GP) method, an approximate GP method, a signed log-likelihood ratio method,
and a modified signed log-likelihood ratio method; their results show that the approximate
GP method performed the best. Fletcher (2008) used three methods, Aitchison’s
estimator, a modification of Cox’s method, and a profile-likelihood interval, to construct
confidence intervals for the mean; they found that the profile-likelihood interval was
the best unless the sample size was small with a low-to-moderate level of skewness.
Li, Zhou & Tian (2013) presented an approximate GPQ and the fiducial quantity to
establish confidence intervals for the mean; their results indicate that the fiducial method
was the most suitable. Wu & Hsieh (2014) introduced the generalized confidence interval
(GCI) to construct confidence intervals for the mean that were better than Aitchison’s
method, a modified Land’s method, and the profile-likelihood interval. Maneerat,
Niwitpong & Niwitpong (2018) constructed confidence intervals for the mean using GCI,
the method of variance estimate recovery (MOVER) based on the variance stabilizing
transformation (VST), Wilson’s score, and Jeffrey’s method; GCI and the three MOVER
methods had similar performances except for cases where the probability had values close
to zero and the coefficient of variation was large. Moreover, they compared GCI and
MOVER based on a weighted beta distribution and VST to construct confidence intervals
for the mean and recommended MOVER based on VST (Maneerat, Niwitpong &
Niwitpong, 2019b). In addition, Maneerat, Niwitpong & Niwitpong (2019a) suggested
Bayesian methods to construct the highest posterior density (HPD) intervals for a single
mean and the difference between two means.

Apart from the mean, the coefficient of variation, which is defined as the ratio of the
standard deviation to the mean, has been used to solve this statistical problem. There have
been many studies focused on confidence interval estimation for the coefficient of variation
of normal and non-normal distributions. For instance, Wong & Wu (2002) constructed
confidence intervals by developing small sample asymptotic methods for both normal and
non-normal models. In addition, confidence interval estimations for the coefficient of

Yosboonruang et al. (2020), PeerJ, DOI 10.7717/peerj.9662 2/22

http://dx.doi.org/10.7717/peerj.9662
https://peerj.com/


variation of a normal distribution have been reported by Tian (2005), Donner & Zou
(2012), and Wongkhao, Niwitpong & Niwitpong (2015). Confidence intervals for the
coefficient of variation have been established for skewed distributions. Sangnawakij &
Niwitpong (2017a) presented confidence interval estimations for the coefficient of variation
and the difference between coefficients of variation based on MOVER, GCI, and
asymptotic confidence interval for two-parameter exponential distributions, their results
indicating that GCI outperformed the other methods. Thangjai & Niwitpong (2017)
proposed confidence intervals for the weighted coefficients of variation of two-parameter
exponential distributions using the adjusted MOVER, GCI, and large sample methods,
their result showing that GCI was the best choice. Yosboonruang, Niwitpong & Niwitpong
(2018) constructed confidence intervals for the coefficient of variation of a delta-lognormal
distribution using GCI and a modified Fletcher method and found that GCI was the
most appropriate. Yosboonruang, Niwitpong & Niwitpong (2019a) presented the fiducial
generalized confidence interval (FGCI) and MOVER to construct confidence intervals
for three parameters of a delta-lognormal coefficient of variation. They reported that FGCI
was suitable for small sample sizes while MOVER performed similarly well to FGCI when
the sample sizes were large. In addition, they constructed confidence intervals using
Bayesian methods with equitailed confidence intervals and the HPD interval and
compared them with FGCI; their results show that the Bayesian equitailed confidence
interval was appropriate in all cases (Yosboonruang, Niwitpong & Niwitpong, 2019b).

Confidence interval estimations for functions of the coefficient of variation are of
interest. For normal distributions, Donner & Zou (2012) presented MOVER to construct a
confidence interval for the difference between two coefficients of variation. Their proposed
method performed well for both the coverage percentage and balance between the tail
errors. Niwitpong (2015) proposed confidence intervals for the difference between the
coefficients of variation with bounded parameters; their results show that their proposed
confidence intervals outperformed other classical ones in terms of the coverage probability
and the average length.

For skewed distributions, Buntao & Niwitpong (2012) constructed confidence intervals
for the difference between coefficients of variation for lognormal and delta-lognormal
distributions by using the GP method and a closed-form method of variance estimation;
their results for both lognormal and delta-lognormal distributions indicate that the
GP method was better than the closed-form method in all cases. Buntao & Niwitpong
(2013) produced confidence intervals for the ratio of the coefficients of variation of
delta-lognormal distributions based on the GP method and the MOVER based Wald
interval; they suggested that the GP method was the most appropriate. Sangnawakij &
Niwitpong (2017b) constructed new confidence intervals for functions of the difference
between and the ratio of the coefficients of variation with restricted parameters in two
gamma distributions; they found that the expected lengths of the proposed confidence
intervals were shorter than other classical estimators.

Although a number of previous studies have reported on constructing confidence
intervals for several parameters in each distribution, there has been only one study on
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constructing confidence intervals for the difference between the coefficients of variation of
two delta-lognormal distributions. Constructing confidence intervals using general
methods are quite complex. Furthermore, results have revealed that the performances of
these methods are not consistent since the coverage probabilities are less than the target
in a few cases. From the perspective of rainfall data, estimating the difference between
two independent coefficients of variation can help to elucidate rainfall variability in terms
of time or area. It is useful for forecasting rainfall to help in planning for and managing
risky situations that can arise from rainfall variation.

In this study, the difference between the coefficients of variation of two delta-lognormal
distributions was investigated. In previous studies (Donner & Zou, 2012; Li, Zhou &
Tian, 2013; Wu & Hsieh, 2014; Sangnawakij & Niwitpong, 2017a; Thangjai & Niwitpong,
2017; Maneerat, Niwitpong & Niwitpong, 2018, 2019a; Yosboonruang, Niwitpong &
Niwitpong, 2018, 2019a), confidence intervals for the difference between the coefficients of
variation of two delta-lognormal distributions were constructed using three methods
(GCI, FGCI, andMOVER). Our preliminary study indicates that these methods performed
similarly, although FGCI is the best due to having the shortest expected length. Therefore,
we constructed new confidence intervals for the difference between the coefficients of
variation of two delta-lognormal distributions using Bayesian methods and a standard
bootstrap (SB) method and compared them with FGCI. The details of each method are
presented in the next section, after which the results are presented. Next, the efficacies of
the proposed methods for constructing confidence intervals are illustrated using rainfall
data in an empirical example, followed by a discussion and conclusions of the study
outcomes.

MATERIALS AND METHODS
In statistical inference and its applications, data containing non-negative values can be
skewed and many zero observations can be observed. Aitchison (1955) introduced the
delta-lognormal distribution for data series containing non-negative values and
true-zero values of the variables. The positive observed values, denoted by ni(1), have a
lognormal distribution, and the true-zero observed values, denoted by ni(0), have a
binomial distribution with the probability of zero observations ~di ¼ 1� di, where
ni = ni(1) + ni(0). Let Xij = (Xi1, Xi2, …, Xini

) be a non-negative random sample
from a delta-lognormal distribution with parameters δi, mi and s2

i , denoted by
Xij�Dðdi;mi;s

2
i Þ. The distribution function of the delta-lognormal distribution

presented by Tian & Wu (2006) is

Fðxij; di;mi;s
2
i Þ ¼

~di ; xij ¼ 0
~di þ diHðxij;mi;s

2
i Þ ; xij > 0;

 
(1)

where Hðxij;mi;s
2
i Þ is the lognormal cumulative distribution function. Assume that

Yij = ln(Xij), i = 1, 2, j = 1, 2,…,ni(1) is a normal distribution with mean mi and
variance s2

i . Thus, the population mean and variance of a delta-lognormal
distribution as presented by Aitchison (1955) are EðXijÞ ¼ di expðmi þ s2

i =2Þ and
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VarðXijÞ ¼ di expð2mi þ s2
i Þ ½expðs2

i Þ � di�, respectively. Herein, we focus on confidence
interval estimations for the difference between the coefficients of variation of two
delta-lognormal distributions. The coefficient of variation of a delta-lognormal
distribution can be expressed as

CV Xij
� � ¼ hi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xij
� �q

E Xij
� � ¼ exp s2

i

� �� di

di

� �1
2

: (2)

It is easy to find the difference between two independent coefficients of variation:

g ¼ h1 � h2 ¼
exp s2

1

� �� d1

d1

� �1
2
� exp s2

2

� �� d2

d2

� �1
2
: (3)

The fiducial generalized confidence interval
The basic concept of the fiducial distribution was introduced by Fisher (1930). Moreover,
statistical inference using fiduciality can be found in several studies (Dawid & Stone,
1982; Aldrich, 2000; Hannig et al., 2006; Hannig, Iyer & Patterson, 2006; Hannig, 2009;
Hannig & Lee, 2009). After that, Li, Zhou & Tian (2013) proposed the generalized fiducial
quantity (GFQ) of a population mean by using the concept of fiducial inference and
then constructed confidence intervals for the mean based on the fiducial of a lognormal
distribution with excess zeros. Furthermore, Yosboonruang, Niwitpong & Niwitpong
(2019a) recommended FGCI to construct confidence intervals for the coefficient of
variation of a delta-lognormal distribution. From Hannig (2009) and Li, Zhou & Tian
(2013), the GFQs for δi and s2

i are

Tdi �
1
2
Betaðnið1Þ; nið0Þ þ 1Þ þ 1

2
Betaðnið1Þ þ 1; nið0ÞÞ (4)

and

Ts2
i
¼ ðnið1Þ � 1Þŝ2

i

Ui
; (5)

respectively, where Ui� v2nið1Þ�1. Next, the GFQ for γ can be defined as

Tg ¼ Th1
� Th2

¼
exp Ts2

1

� �
� Td1

Td1

2
4

3
5
1
2

�
exp Ts2

2

� �
� Td2

Td2

2
4

3
5
1
2

: (6)

Therefore, the 100 (1 − a)% confidence interval for γ is

CIFGCIg ¼ Tg; lð Þ;Tg; uð Þ
	 
 ¼ Tg a=2ð Þ;Tg 1� a=2ð Þ	 


; (7)

where Tγ (a/2) and Tγ (1 − a/2) are the 100 (a/2)-th and 100 (1 − a/2)-th percentiles of the
distribution of Tγ, respectively.
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The algorithm to construct FGCI

1. Generate datasets xij, i = 1,2, j = 1,2,…,ni from the delta-lognormal distribution.

2. Generate Beta ni 1ð Þ; ni 0ð Þ þ 1
� �

and Beta ni 1ð Þ þ 1; ni 0ð Þ
� �

.

3. Compute Tδi, Ts2
i
, and Tγ.

4. Repeat steps 2 and 3 5,000 times.

5. Compute the 100 1� að Þ% confidence intervals for γ.

6. Repeat steps 1–5 15,000 times.

Bayesian methods
A delta-lognormal distribution is a combination of the two distributions mentioned earlier,
with unknown parameters comprising δi, mi and s2

i , denoted as u ¼ ðdi;mi;s
2
i Þ.

To compare the two population coefficients of variation, the joint likelihood function is
expressed as

L ujxij
� � /Y2

i¼1

~d
ni 0ð Þ
i d

ni 1ð Þ
i

Yni 1ð Þ

j¼1

1
si

exp � 1
2s2

i
ln ðxijÞ � mi

� �2� �( )
: (8)

Our approach points toward the difference between two independent coefficients of
variation, given as Eq. (3), thus the unknown parameters are δi, mi and s2

i , denoted as
~u ¼ ðd1;m1;s

2
1; d2;m2;s

2
2Þ. The Fisher information of ~u computed by the second-order

derivative of the log-likelihood function which is defined as

I ~u
� � ¼ �E

@2 lnðLÞ
@~u

2

� �
: (9)

By Eq. (8), the Fisher information matrix for ~u becomes

I ~u
� � ¼ diag

n1
~d1d1

n1d1
s2
1

n1d1
2 s2

1ð Þ2
n2
~d2d2

n2d2
s2
2

n2d2
2 s2

2ð Þ2
� �

: (10)

To establish confidence intervals using the Bayesian methods, the left-invariant Jeffreys,
the Jeffreys’ Rule, and uniform priors were used. In this study, we are interested in
constructing the HPD intervals. The probability of the shortest interval is discovered when
the posterior density value at the lower and upper limits is equal, thus the upper and lower
tail areas are not necessarily equal (Bolstad & Curran, 2017).

The Bayesian method using the left-invariant Jeffreys prior
Rainfall series that consist of zero and non-zero values follow a combination of two
distributions: binomial and lognormal. As mentioned previously, the parameter of interest
for a binomial distribution is ~di and by using the Fisher information matrix of ~di, we can
obtain the invariant Jeffreys prior by the square root of the determinant of Fisher
information matrix which is defined as

p ~di
� � / ffiffiffiffiffiffiffiffiffiffiffiffiffi

I ~di
� ��� ��q

/ ~d
� 1

2
i d

� 1
2

i ; (11)
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which is Beta (1/2,1/2). Subsequently, the posterior distribution of ~di for binomial
distribution can be expressed as

p ~dijni 0ð Þ
� � / L ~di

� �
p ~di
� �

R1
�1 L ~di

� �
p ~di
� �

d~di

/ ~d
ni 0ð Þ� 1

2
i d

ni 1ð Þ� 1
2

i ;

(12)

which is Beta (ni(0) + 1/2,ni(1) + 1/2). By Eq. (10), the left-invariant Jeffreys prior for the
parameter of interest, s2

i , from a lognormal distribution obtained by the square root of the
determinant of Fisher information matrix is pðs2

i Þ ¼ 1=s2
i (Rao & D’Cunha, 2016).

Suppose that ~di and s2
i are independent, then the prior distribution for a delta-lognormal

distribution can be written as pð~di;s2
i Þ / s�2

i
~d
� 1

2
i d

� 1
2

i . Consequently, the joint posterior

density function can be defined as

p ~ujdata� � ¼ Q2
i¼1

1
Beta a; bð Þ

~da�1
i db�1

i
1ffiffiffiffiffi

2p
p siffiffiffiffiffiffiffiffini 1ð Þ

p
exp � 1

2
s2
i

ni 1ð Þ

mi � m̂ið Þ2

2
6664

3
7775

8>>><
>>>:

� sr

� rð Þ s2
i

� �� rþ1ð Þ
exp � s

s2
i

� �
;

(13)

where a = ni(0) + 1/2, b = ni(1) + 1/2, r = (ni(1) − 1)/2, s ¼ ðnið1Þ � 1Þŝ2
i =2,

m̂i ¼
Pnið1Þ

j¼1 lnðxijÞ=nið1Þ, and ŝ2
i ¼

Pnið1Þ
j¼1 ½lnðxijÞ � m̂i�2=ðnið1Þ � 1Þ. Therefore, the

posterior distribution of ~di is a beta distribution, ~dijdata � Betaðnið0Þ þ 1=2; nið1Þ þ 1=2Þ.
Similarly, the posterior distribution of s2

i is an inverse gamma distribution,
s2
i jdata � Inv � Gamma½ðnið1Þ � 1Þ=2; ðnið1Þ � 1Þŝ2

i =2�.
The Bayesian method using the Jeffreys’ Rule prior
Based on the Fisher information, the Jeffreys’ Rule prior can be obtained from jIðuÞj12.
Thus, the Jeffreys’ Rule priors for ~di in a binomial distribution and s2

i in a lognormal

distribution are pð~diÞ / ~d
� 1

2
i d

1
2
i and pðs2

i Þ / s�3
i (Harvey & Van der Merwe, 2012),

respectively. Following Eq. (2), the parameters of interest are ~di and s2
i , which are

independent. Thus, the Jeffreys’ Rule prior for ð~di;s2
i Þ of a delta-lognormal distribution

can be written as pð~di;s2
i Þ / s�3

i
~d
� 1

2
i d

1
2
i . Subsequently, the joint posterior density function

is defined as Eq. (13) with a = ni(0) + 1/2, b = ni(1) + 3/2, r = ni(1)/2, and s ¼ nið1Þŝ2
i =2.

This leads to the posterior density of ~di and s2
i , which follow a beta distribution,

~dijdata�Betaðnið0Þ þ 1=2; nið1Þ þ 3=2Þ, and an inverse gamma distribution,
s2
i jdata� Inv � Gammaðnið1Þ=2; nið1Þŝ2

i =2Þ, respectively.
The Bayesian method using the uniform prior
The uniform priors for ~di of a binomial distribution and s2

i of a lognormal distribution
are pð~diÞ / 1 (Bolstad & Curran, 2017) and pðs2

i Þ / 1 (Kalkur & Rao, 2017),
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respectively. Since ~di and s2
i are independent, then the uniform prior of a delta-lognormal

distribution is pð~di;s2
i Þ / 1. Thus, the joint posterior distribution corresponds with

Eq. (13) when a = ni(0) + 1, b = ni(1) + 1, r = (ni(1) − 2)/2, and s ¼ ðnið1Þ � 2Þŝ2
i =2.

Subsequently, the posterior distributions of ~di and s2
i are a beta distribution,

~dijdata�Betaðnið0Þ þ 1; nið1Þ þ 1Þ, and an inverse gamma distribution,
s2
i jdata� Inv � Gamma½ðnið1Þ � 2Þ=2; ðnið1Þ � 2Þŝ2

i =2�, respectively.
Subsequently, the Bayesian HPD intervals are constructed by substituting ~dijdata and

s2
i jdata from each method into Eq. (3). The following algorithm was constructed to obtain

the 100 1� að Þ% HPD intervals for γ.

The algorithm to construct the Bayesian HPD intervals

1. Generate datasets xij, i = 1,2, j = 1,2,…,ni from a delta-lognormal distribution.

2. Generate the posterior densities of the ~dijdata.
� Beta (ni(0) + 1/2, ni(1) + 1/2) for the left-invariant Jeffreys prior.

� Beta (ni(0) + 1/2, ni(1) + 3/2) for the Jeffreys’ Rule prior.

� Beta (ni(0) + 1, ni(1) + 1) for the uniform prior.

3. Generate the posterior densities of the s2
i jdata.

� Inv � Gamma½ðnið1Þ � 1Þ=2; ðnið1Þ � 1Þŝ2
i =2� for the left-invariant Jeffreys prior.

� Inv � Gammaðnið1Þ=2; nið1Þŝ2
i =2Þ for the Jeffreys’ Rule prior.

� Inv � Gamma½ðnið1Þ � 2Þ=2; ðnið1Þ � 2Þŝ2
i =2� for the uniform prior.

4. Compute γ from Eq. (3).

5. Repeat steps 2–4 5,000 times.

6. Compute the 100 1� að Þ% HPD intervals for γ.

7. Repeat steps 1–6 15,000 times.

The standard bootstrap method
Bootstrapping is a type of resampling method that draws samples with replacement
from the initial population Efron (1979). According to sample the data xij = (xi1,xi2,…,xini),
i = 1,2, j = 1,2,…,ni from a delta-lognormal distribution, let x�ij ¼ ðx�i1; x�i2; . . . ; x�iniÞ be a
bootstrap sample from the data. Since d̂i and ŝ2

i are the independent unbiased
estimators of δi and s2

i , respectively, the bootstrap estimators of δi and s2
i are d̂

�
i and ŝ2�

i ,
respectively. By resampling K bootstrap samples, let ĝ�k ¼ ĝ�1;k � ĝ�2;k, k = 1,2,…,K be the
kth bootstrap estimator of γ. Subsequently, the 100 (1 − a)% confidence interval for γ
using SB is

CISBg ¼ ðĝ1 � ĝ2Þ � Z1� a
2
S�ĝ� ; (14)

where S�ĝ� is the standard error of ĝ�.
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The algorithm to construct the SB confidence interval

1. Generate datasets xij, i = 1,2, j = 1,2,…,ni from a delta-lognormal distribution.

2. Resample samples x�ij from xij.

3. Compute d̂�i and ŝ2�
i .

4. Compute ĝ� from Eq. (3).

5. Repeat steps 2–4 3,000 times.

6. Compute the 100 1� að Þ% SB confidence interval for γ.

7. Repeat steps 1–6 15,000 times.

RESULTS
The Monte Carlo simulation study
Coverage probabilities and expected lengths were used to compare the performance of the
confidence intervals of the proposed methods via Monte Carlo simulation at a nominal
confidence level of 0.95. The coverage probabilities that were greater than the nominal
confidence level together with the shortest expected lengths were considered as the best.
A total of 15,000 replications for each parameter combination were applied for the
simulation study involving all of the methods. Moreover, 5,000 duplicates were used for
the FGCI and Bayesian methods, and 3,000 resampling samples were used for the
bootstrap method. The sample sizes were set as n1,n2 = 25,50,100; m1,m2 = 0;
δ1,δ2 = 0.2,0.5,0.8; and s2

1;s
2
2 ¼ 0:5; 1:0; 2:0. Note that in the studies by Fletcher (2008) and

Wu & Hsieh (2014), the combinations of n1,n2 = 25; δ1,δ2 = 0.2; and s2
1;s

2
2 ¼ 0:5; 1:0; 2:0

were not considered because the expected non-zero values were less than 10.
The methods to construct confidence intervals for the difference between the

independent coefficients of variation of two delta-lognormal distributions were evaluated.
The results in Table 1 and Figs. 1–3 show that FGCI was stable and close to the target
in terms of coverage probability for almost all cases. For the Bayesian HPD intervals based
on the left-invariant Jeffreys prior (Blinvj), Jeffreys’ Rule prior (Bjrule), and the uniform prior
(Buni), the coverage probabilities were close to or greater than the target in all cases.
In addition, the coverage probabilities of the SB were greater than the target in cases of
variances equal to 1.0 and 2.0. However, according to the expected lengths, Bjrule mostly
had shorter expected lengths than the other method except for a few cases when the
sample sizes were large in both groups (n1,n2 = 50,100) and the variance was equal to 0.5
and 1.0, for which the expected lengths of FGCI were the shortest. Moreover, in cases of
n1:n2 = 25:25, 50:50, 100:100 and s2

1 : s
2
2 ¼ 1:0 :1:0, 2.0:2.0, n1:n2 = 25:50, 50:100 and

s2
1 : s

2
2 ¼ 2:0 :2:0, and n1:n2 = 25:100 and s2

1 : s
2
2 ¼ 1:0 :2:0, the SB method had the

shortest expected lengths.

The empirical study
Datasets of rainfall from Thailand were chosen because they usually contain zero values,
albeit data containing non-zero values normally follow a lognormal distribution.
For rainfall data, Ananthakrishnan & Soman (1989) used the normalized rainfall curve
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Table 1 The coverage probabilities and expected lengths of 95% confidence intervals for the
difference CVs.

n1:n2 δ1:δ2 σ21:σ
2
2 Coverage probabilities (Expected lengths)

FGCI Blinvj Bjrule Buni SB

25:25 0.5:0.5 0.5:0.5 0.9673 0.9973 0.9966 0.9979 0.8869

(2.1594) (2.2567) (2.0837) (2.4013) (1.0054)

0.5:1.0 0.9559 0.9889 0.9843 0.9913 0.8613

(4.6245) (4.1756) (3.7971) (4.5568) (1.9066)

0.5:2.0 0.9533 0.9627 0.9529 0.9699 0.7995

(33.3988) (19.2637) (16.7548) (22.7213) (7.2489)

1.0:1.0 0.9573 0.9976 0.9957 0.9984 0.9555

(6.8460) (6.4599) (5.7927) (7.1950) (2.5935)

1.0:2.0 0.9530 0.9793 0.9732 0.9845 0.8525

(35.1495) (21.5802) (18.6556) (25.3295) (8.2679)

2.0:2.0 0.9517 0.9983 0.9969 0.9989 0.9913

(68.0825) (45.4033) (37.8180) (54.8612) (11.6755)

0.8:0.8 0.5:0.5 0.9567 0.9861 0.9827 0.9889 0.9183

(1.2510) (1.2894) (1.2393) (1.3425) (0.8089)

0.5:1.0 0.9523 0.9785 0.9751 0.9836 0.9056

(2.3240) (2.2129) (2.1182) (2.3214) (1.4044)

0.5:2.0 0.9522 0.9608 0.9537 0.9651 0.8502

(9.5540) (7.3571) (6.9618) (7.8340) (4.5031)

1.0:1.0 0.9511 0.9889 0.9848 0.9899 0.9567

(3.2549) (3.1689) (3.0159) (3.3480) (1.8576)

1.0:2.0 0.9529 0.9753 0.9720 0.9796 0.8833

(10.1630) (8.2686) (7.7973) (8.8496) (4.6834)

2.0:2.0 0.9477 0.9940 0.9928 0.9959 0.9917

(3.0485) (14.5891) (13.6002) (15.7798) (6.8311)

25:50 0.5:0.5 0.5:0.5 0.9624 0.9901 0.9863 0.9921 0.8592

(1.7255) (1.7888) (1.6832) (1.8646) (0.8931)

0.5:1.0 0.9599 0.9909 0.9899 0.9929 0.9269

(2.5974) (2.6381) (2.4939) (2.7539) (1.5072)

0.5:2.0 0.9509 0.9686 0.9642 0.9721 0.8709

(8.1783) (7.0822) (6.7312) (7.3973) (4.5482)

1.0:1.0 0.9549 0.9903 0.9867 0.9921 0.9263

(4.9820) (4.5559) (4.2090) (4.9041) (2.2435)

1.0:2.0 0.9561 0.9877 0.9855 0.9907 0.9216

(10.1142) (9.3743) (8.7358) (10.0319) (5.0513)

2.0:2.0 0.9522 0.9918 0.9900 0.9929 0.9769

(37.8763) (26.1295) (22.8554) (30.0308) (9.3159)

0.8:0.8 0.5:0.5 0.9528 0.9811 0.9776 0.9841 0.9013

(1.0224) (1.0467) (1.0148) (1.0790) (0.7012)

0.5:1.0 0.9531 0.9805 0.9774 0.9817 0.9360

(1.5016) (1.5188) (1.4793) (1.5628) (1.0872)
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Table 1 (continued)

n1:n2 δ1:δ2 σ21:σ
2
2 Coverage probabilities (Expected lengths)

FGCI Blinvj Bjrule Buni SB

0.5:2.0 0.9533 0.9633 0.9609 0.9651 0.9000

(4.1192) (3.7823) (3.6962) (3.8776) (2.9613)

1.0:1.0 0.9512 0.9812 0.9773 0.9845 0.9398

(2.5113) (2.4208) (2.3346) (2.5203) (1.6020)

1.0:2.0 0.9528 0.9772 0.9745 0.9801 0.9347

(4.8629) (4.6740) (4.5325) (4.8398) (3.2412)

2.0:2.0 0.9508 0.9871 0.9841 0.9898 0.9751

(11.2886) (9.8332) (9.3589) (10.4176) (5.6187)

25:100 0.5:0.5 0.5:0.5 0.9603 0.9811 0.9749 0.9832 0.7991

(1.5388) (1.5690) (1.4780) (1.6325) (0.8035)

0.5:1.0 0.9587 0.9885 0.9850 0.9899 0.9285

(1.9519) (2.0049) (1.9077) (2.0801) (1.1956)

0.5:2.0 0.9522 0.9769 0.9743 0.9787 0.9147

(4.4100) (4.2612) (4.1242) (4.3739) (3.1908)

1.0:1.0 0.9537 0.9771 0.9696 0.9802 0.8726

(4.5423) (3.8597) (3.5765) (4.1514) (2.0158)

1.0:2.0 0.9530 0.9913 0.9887 0.9926 0.9609

(6.5209) (6.1550) (5.8006) (6.5196) (3.6771)

2.0:2.0 0.9508 0.9789 0.9729 0.9825 0.9217

(36.2420) (21.8964) (19.2432) (25.4336) (8.1490)

0.8:0.8 0.5:0.5 0.9539 0.9764 0.9719 0.9824 0.8773

(0.9261) (0.9326) (0.9045) (0.9614) (0.6381)

0.5:1.0 0.9533 0.9767 0.9749 0.9793 0.9374

(1.1685) (1.1851) (1.1561) (1.2151) (0.8741)

0.5:2.0 0.9526 0.9672 0.9655 0.9688 0.9323

(2.5254) (2.4766) (2.4398) (2.5174) (2.0893)

1.0:1.0 0.9503 0.9721 0.9685 0.9769 0.9051

(2.2790) (2.1192) (2.0446) (2.2031) (1.4489)

1.0:2.0 0.9537 0.9805 0.9788 0.9827 0.9623

(3.3455) (3.2986) (3.2136) (3.3991) (2.4324)

2.0:2.0 0.9515 0.9759 0.9736 0.9790 0.9254

(10.1643) (8.1980) (7.8121) (8.6649) (4.9982)

50:50 0.2:0.2 0.5:0.5 0.9687 0.9990 0.9987 0.9993 0.8457

(4.3446) (4.4760) (3.9330) (4.8772) (1.5117)

0.5:1.0 0.9596 0.9938 0.9909 0.9955 0.8318

(11.3576) (9.2035) (7.8085) (10.6120) (3.0407)

0.5:2.0 0.9527 0.9628 0.9497 0.9692 0.7672

(379.5699) (68.3314) (50.3354) (102.5227) (13.8885)

1.0:1.0 0.9589 0.9995 0.9991 0.9997 0.9505

(17.8892) (14.9444) (12.3859) (17.8983) (4.2541)
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Table 1 (continued)

n1:n2 δ1:δ2 σ21:σ
2
2 Coverage probabilities (Expected lengths)

FGCI Blinvj Bjrule Buni SB

1.0:2.0 0.9535 0.9846 0.9763 0.9889 0.8213

(221.5949) (102.3997) (68.1067) (157.6987) (13.9408)

2.0:2.0 0.9527 0.9995 0.9987 0.9996 0.9905

(687.4366) (183.4749) (127.6218) (282.3258) (22.4336)

0.5:0.5 0.5:0.5 0.9609 0.9921 0.9904 0.9929 0.8980

(1.2063) (1.3303) (1.2870) (1.3520) (0.7659)

0.5:1.0 0.9561 0.9815 0.9789 0.9829 0.8954

(2.1991) (2.1818) (2.1051) (2.2345) (1.4150)

0.5:2.0 0.9528 0.9573 0.9526 0.9599 0.8577

(7.8990) (6.6471) (6.3821) (6.8773) (4.6165)

1.0:1.0 0.9559 0.9888 0.9879 0.9914 0.9531

(3.0060) (2.9998) (2.8860) (3.0909) (1.8965)

1.0:2.0 0.9527 0.9725 0.9679 0.9751 0.8837

(8.5000) (7.4233) (7.1057) (7.6981) (4.7694)

2.0:2.0 0.9514 0.9937 0.9930 0.9954 0.9889

(13.1899) (12.1455) (11.5553) (12.6939) (6.8683)

50:50 0.8:0.8 0.5:0.5 0.9537 0.9793 0.9785 0.9815 0.9224

(0.7572) (0.7973) (0.7838) (0.8097) (0.5878)

0.5:1.0 0.9521 0.9677 0.9651 0.9700 0.9216

(1.2943) (1.2861) (1.2634) (1.3091) (1.0115)

0.5:2.0 0.9519 0.9565 0.9547 0.9589 0.8909

(4.0145) (3.5922) (3.5249) (3.6685) (2.9205)

1.0:1.0 0.9513 0.9759 0.9736 0.9787 0.9513

(1.7224) (1.7283) (1.6967) (1.7633) (1.3158)

1.0:2.0 0.9521 0.9641 0.9613 0.9670 0.9110

(4.2510) (3.9321) (3.8539) (4.0204) (3.0627)

2.0:2.0 0.9523 0.9865 0.9844 0.9870 0.9845

(6.2427) (6.0484) (5.9146) (6.2018) (4.2865)

50:100 0.2:0.2 0.5:0.5 0.9640 0.9964 0.9941 0.9964 0.8360

(3.2908) (3.3693) (3.0608) (3.5439) (1.3380)

0.5:1.0 0.9623 0.9969 0.9956 0.9977 0.9038

(4.9483) (5.0554) (4.6240) (5.3501) (2.3793)

0.5:2.0 0.9552 0.9701 0.9655 0.9738 0.8367

(17.1227) (14.0971) (12.9842) (14.9740) (7.8643)

1.0:1.0 0.9587 0.9956 0.9930 0.9968 0.9299

(11.9262) (9.6133) (8.4150) (10.8005) (3.6621)

1.0:2.0 0.9534 0.9909 0.9869 0.9931 0.8973

(22.9239) (20.1401) (17.9128) (22.3911) (8.7065)

2.0:2.0 0.9509 0.9954 0.9919 0.9966 0.9803

(206.9601) (100.4277) (72.9777) (157.2391) (18.0215)
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Table 1 (continued)

n1:n2 δ1:δ2 σ21:σ
2
2 Coverage probabilities (Expected lengths)

FGCI Blinvj Bjrule Buni SB

0.5:0.5 0.5:0.5 0.9596 0.9859 0.9845 0.9875 0.8779

(1.0067) (1.1041) (1.0756) (1.1170) (0.6672)

0.5:1.0 0.9532 0.9823 0.9816 0.9836 0.9266

(1.4826) (1.5699) (1.5343) (1.5906) (1.0971)

0.5:2.0 0.9503 0.9615 0.9590 0.9637 0.9013

(4.0903) (3.8417) (3.7690) (3.8933) (3.1255)

1.0:1.0 0.9525 0.9801 0.9776 0.9827 0.9359

(2.3930) (2.3893) (2.3204) (2.4426) (1.6419)

1.0:2.0 0.9524 0.9768 0.9756 0.9799 0.9319

(4.6910) (4.5889) (4.4772) (4.6767) (3.4066)

2.0:2.0 0.9501 0.9829 0.9803 0.9847 0.9723

(9.6921) (8.9658) (8.6364) (9.2571) (5.7747)

0.8:0.8 0.5:0.5 0.9509 0.9723 0.9706 0.9763 0.9179

(0.6389) (0.6704) (0.6613) (0.6788) (0.5113)

0.5:1.0 0.9507 0.9697 0.9678 0.9702 0.9416

(0.9307) (0.9511) (0.9404) (0.9619) (0.7815)

0.5:2.0 0.9533 0.9577 0.9570 0.9595 0.9261

(2.3889) (2.2905) (2.2691) (2.3127) (2.0442)

1.0:1.0 0.9535 0.9701 0.9678 0.9722 0.9411

(1.4198) (1.4116) (1.3911) (1.4335) (1.1429)

1.0:2.0 0.9513 0.9679 0.9667 0.9693 0.9441

(2.6872) (2.6428) (2.6126) (2.6764) (2.2221)

2.0:2.0 0.9505 0.9757 0.9742 0.9783 0.9665

(4.9394) (4.7304) (4.6503) (4.8203) (3.6171)

100:100 0.2:0.2 0.5:0.5 0.9669 0.9954 0.9950 0.9959 0.8686

(2.1090) (2.3784) (2.2658) (2.4068) (1.1520)

0.5:1.0 0.9562 0.9871 0.9826 0.9881 0.8686

(3.9894) (3.9890) (3.7803) (4.0876) (2.2483)

0.5:2.0 0.9513 0.9582 0.9510 0.9615 0.8265

(16.4620) (12.9759) (12.1641) (13.5255) (7.9611)

1.0:1.0 0.9571 0.9943 0.9941 0.9961 0.9517

(5.5425) (5.6080) (5.2895) (5.7983) (3.0592)

1.0:2.0 0.9538 0.9755 0.9709 0.9775 0.8632

(17.6427) (14.6645) (13.7125) (15.3659) (8.2895)

2.0:2.0 0.9523 0.9963 0.9953 0.9971 0.9896

(27.9500) (25.3838) (23.5151) (26.9001) (12.1880)

0.5:0.5 0.5:0.5 0.9564 0.9865 0.9853 0.9874 0.9045

(0.7720) (0.8662) (0.8530) (0.8708) (0.5607)

0.5:1.0 0.9570 0.9731 0.9703 0.9740 0.9140

(1.3204) (1.3613) (1.3402) (1.3733) (1.0281)
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Yosboonruang et al. (2020), PeerJ, DOI 10.7717/peerj.9662 13/22

http://dx.doi.org/10.7717/peerj.9662
https://peerj.com/


(NRC) to describe the relationship between the accumulated percentage of the rain
amount and the number of rain days in a rainfall series. Their results indicate that the
coefficient of variation of the rainfall datasets can be used in the unique determination of

Table 1 (continued)

n1:n2 δ1:δ2 σ21:σ
2
2 Coverage probabilities (Expected lengths)

FGCI Blinvj Bjrule Buni SB

0.5:2.0 0.9503 0.9549 0.9525 0.9559 0.8907

(4.0361) (3.6979) (3.6367) (3.7426) (3.1053)

1.0:1.0 0.9518 0.9779 0.9761 0.9792 0.9519

(1.7362) (1.7898) (1.7605) (1.8090) (1.3591)

1.0:2.0 0.9511 0.9643 0.9619 0.9654 0.9125

(4.2295) (4.0091) (3.9418) (4.0614) (3.2737)

2.0:2.0 0.9505 0.9833 0.9811 0.9843 0.9809

(6.1135) (6.0198) (5.9072) (6.1094) (4.5458)

0.8:0.8 0.5:0.5 0.9531 0.9719 0.9719 0.9734 0.9296

(0.5013) (0.5311) (0.5269) (0.5348) (0.4237)

0.5:1.0 0.9511 0.9643 0.9625 0.9653 0.9302

(0.8306) (0.8394) (0.8328) (0.8460) (0.7232)

0.5:2.0 0.9525 0.9505 0.9495 0.9521 0.9194

(2.3561) (2.2276) (2.2088) (2.2473) (2.0198)

1.0:1.0 0.9529 0.9641 0.9618 0.9653 0.9511

(1.0792) (1.0925) (1.0835) (1.1015) (0.9386)

1.0:2.0 0.9534 0.9614 0.9606 0.9637 0.9299

(2.4814) (2.3968) (2.3755) (2.4182) (2.1126)

2.0:2.0 0.9521 0.9729 0.9710 0.9742 0.9747

(3.4679) (3.4336) (3.4027) (3.4682) (2.8902)

Figure 1 Graphs to compare the performance of the proposed methods in terms of (A) coverage
probability (B) expected length with varying sample size. Full-size DOI: 10.7717/peerj.9662/fig-1
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the NRC. Moreover, Shimizu (1993) introduced a probability model for a combination of
bivariate and lognormal distributions to represent rainfall data. The author used monthly
rainfall data from Jana and Ranod, Songkhla, Thailand from 2008 to 2017 to illustrate
confidence intervals for the difference between coefficients of variation from two areas.

Songkhla is located on the east coast of southern Thailand and is somewhat rainy due to
the influences of the southwest monsoon coming from the Indian Ocean and the northeast
monsoon coming from the Gulf of Thailand. This area has a lot of rain from May to
December, which decreases from January to April (the datasets were collected by the
Southern Meteorological Center (East Coast)). These datasets included both positive and
true-zero observations. The positive values for each area create skewness, as shown in
Fig. 4, and thus their distributions were subjected to Akaike information criterion (AIC)
analyses. The AIC values according to normal, Cauchy, lognormal, exponential, and
gamma distributions in Jana were 1421.5050, 1355.5600, 1279.9710, 1281.8810, and

Figure 2 Graphs to compare the performance of the proposed methods in terms of (A) coverage
probability (B) expected length with varying probabilities of non-zero values.

Full-size DOI: 10.7717/peerj.9662/fig-2

Figure 3 Graphs to compare the performance of the proposed methods in terms of (A) coverage
probability (B) expected length with varying variances. Full-size DOI: 10.7717/peerj.9662/fig-3
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1280.7610 and in Ranod were 1234.7680, 1155.3230, 1063.9270, 1090.1390, and 1073.1520,
respectively. The AIC values indicating a lognormal distribution were less than the
others, and so the positive datasets from Jana and Ranod are lognormal distributions.
To confirm AIC results, the normality plots of the log-transformation of the monthly
rainfall data from both areas in Figs. 5 and 6 indicate that both rainfall series are lognormal
distributions. Moreover, the true-zero values from Jana and Ranod are binomial
distributions. Therefore, the distributions of the monthly rainfall series from Jana and
Ranod are delta-lognormal. The summary statistics for Jana are n1 = 120, d̂1 ¼ 0:8917,
m̂1 ¼ 4:2556, ŝ2

1 ¼ 1:7953, and ĝ1 ¼ 0:3149 and for Ranod are n2 = 120, d̂2 ¼ 0:7417,
m̂2 ¼ 4:0846, ŝ2

2 ¼ 2:4928, and ĝ2 ¼ 0:3865. The difference between ĝ1 and ĝ2 is
γ = − 0.0716. The 95% confidence intervals for FGCI and SB are (−4.0492, −0.0558),

Figure 4 Histogram and theoretical densities of the positive monthly rainfall data from (A) Jana
(B) Ranod, Songkhla, Thailand from 2008 to 2017. Full-size DOI: 10.7717/peerj.9662/fig-4

Figure 5 Normal Q–Q plots of the log-transformed positive monthly rainfall data from (A) Jana
(B) Ranod, Songkhla, Thailand from 2008 to 2017. Full-size DOI: 10.7717/peerj.9662/fig-5
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and (−2.9163, −0.1118) with interval lengths of 3.9934 and 2.8045, respectively. Similarly,
the 95% Bayesian HPD intervals using the left-invariant Jeffreys, Jeffreys’ Rule, and
uniform priors are (−3.7924, 0.1359), (−3.5602, 0.1619), and (−3.7008, 0.0646) with
interval lengths 3.9283, 3.7221, and 3.7654, respectively. These intervals are shown in
Fig. 7. The Bayesian method using the Jeffreys’ Rule prior outperformed the others
in terms of the coverage probability and interval length. Therefore, these results are in

Figure 6 Histogram and theoretical density of the log-transformed positive monthly rainfall data
from (A) Jana (B) Ranod, Songkhla, Thailand from 2008 to 2017.

Full-size DOI: 10.7717/peerj.9662/fig-6

Figure 7 The 95% confidence intervals and Bayesian credible intervals for the difference between
coefficients of variation of the monthly rainfall data from Jana and Ranod, Songkhla, Thailand
from 2008 to 2017. Full-size DOI: 10.7717/peerj.9662/fig-7
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accordance with those from the simulation studies when the variance is large.
Furthermore, the results for the Bayesian method using the Jeffreys’ Rule prior
demonstrate that there is not a difference in the rainfall intensity between the areas.

DISCUSSION
Herein, Bayesian and SB methods are proposed to construct confidence intervals for the
difference between delta-lognormal coefficients of variation and then compared with FGCI
recommended by Yosboonruang, Niwitpong & Niwitpong (2019a). It was found that the
coverage probabilities of FGCI were more consistent with the target than the Bayesian and
SB methods. The coverage probabilities of the Bayesian method were greater than the
nominal confidence level and mostly close to 1.00, which suggests overestimation.
Nevertheless, the expected lengths of the Bayesian method using the Jeffreys’ Rule prior
were shorter than FGCI in almost every case. This is due to the criterion that the posterior
density values at the lower and upper limits are equal, which was applied for constructing
the confidence intervals of the Bayesian methods. Moreover, in case of small variances, it is
notable that the expected lengths of the confidence intervals were sufficiently narrow. This
indicated that FGCI and the Bayesian methods can be efficiently used to construct the
confidence intervals. Furthermore, the coverage probabilities of the SB method were
greater than the nominal confidence level only for the large variance cases, although
remarkably, it supplied the shortest expected lengths. However, these three methods
required a large amount of computing to obtain the interval estimates due to FGCI must be
calculated GFQ for parameters of interest (δi and s2

i ) and the Bayesian method must be
obtained the posterior densities of ~di and s2

i . In addition, SB method have to resample
bootstrap samples for computing the estimators of δi and s2

i which takes more time than
FGCI and the Bayesian methods. The results using the two rainfall data series were
matched with the simulation, with the Bayesian method using the Jeffreys’ Rule prior
demonstrating the difference between their coefficients of variation much better than the
others.

CONCLUSIONS
In this study, the three concepts: FGCI, Bayesian, and SB methods were used to construct
five confidence intervals for the difference between two independent coefficients of
variation of a delta-lognormal distribution. Of these, the Bayesian method was used to
construct three confidence intervals using the left-invariant Jeffreys, Jeffreys’ Rule, and
uniform priors under HPD intervals. Other confidence intervals based on the SB method
and FGCI were also used.

The results of the simulation studies indicate that the performance of the Bayesian HPD
based on the Jeffreys’ Rule prior performed the best in almost all cases. Although the
coverage probabilities were close to 1.00 for all of the priors, the expected lengths of the
Jeffreys’ Rule prior were shorter for the confidence intervals of the difference between the
coefficients of variation of two delta-lognormal distributions in almost all cases. Moreover,
FGCI is appropriate for a large sample size together with small variance while the SB
method is suggested for a large variance. Furthermore, a comparison of the simulation
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results and using sets of real data indicates that the Bayesian method using the Jeffreys’
Rule prior can be recommended for constructing the confidence intervals for the difference
between two independent coefficients of variation of a delta-lognormal distribution.
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