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ABSTRACT
Background and Purpose. Caveolae act as signalling hubs in endothelial and
smooth muscle cells. Caveolar disruption by the membrane cholesterol depleting
agent methyl-β-cyclodextrin (M-β-CD) has various functional effects on arteries
including (i) impairment of endothelium-dependent relaxation, and (ii) alteration of
smooth muscle cell (SMC) contraction independently of the endothelium. The aim
of this study was to explore the effects of M-β-CD on rat femoral arteries.
Methods. Isometric force was measured in rat femoral arteries stimulated to contract
with a solution containing 20 mM K+ and 200 nM Bay K 8644 (20 K/Bay K) or with
one containing 80 mM K+ (80 K).
Results. Incubation of arteries with M-β-CD (5 mM, 60 min) increased force in
response to 20 K/Bay K but not that induced by 80 K. Application of cholesterol
saturated M-β-CD (Ch-MCD, 5 mM, 50 min) reversed the effects of M-β-CD. After
mechanical removal of endothelial cells M-β-CD caused only a small enhancement
of contractions to 20 K/Bay K. This result suggests M-β-CD acts via altering release
of an endothelial-derived vasodilator or vasoconstrictor. When nitric oxide synthase
was blocked by pre-incubation of arteries with L-NAME (250 µM) the contraction of
arteries to 20 K/Bay K was enhanced, and this effect was abolished by pre-treatment
with M-β-CD. This suggests M-β-CD is inhibiting endothelial NO release. Inhibi-
tion of large conductance voltage- and Ca2+-activated (BKCa) channels with 2 mM
TEA+ or 100 nM Iberiotoxin (IbTX) enhanced 20 K/Bay K contractions. L-NAME
attenuated the contractile effect of IbTX, as did endothelial removal.
Conclusions. Our results suggest caveolar disruption results in decreased release
of endothelial-derived nitric oxide in rat femoral artery, resulting in a reduced
contribution of BKCa channels to the smooth muscle cell membrane potential,
causing depolarisation and contraction.
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INTRODUCTION
Caveolae are flask shaped invaginations, 50–100 nm in diameter, present in the plasma

membrane of endothelial cells (ECs) and smooth muscle cells (SMCs) (Cohen et al.,

2004). Caveolae have been implicated in cell signalling and transport processes in the

vasculature, with roles that include the regulation of contractility, trans-endothelial

transport and cholesterol metabolism (Cohen et al., 2004). Many of the functions of

caveolae are attributed to the caveolin family of proteins, of which cavolin-1 is the most

widely expressed subtype (Cohen et al., 2004).

Disruption of caveolae causes arterial contractility to change by acting on both ECs and

SMCs. Disruption of endothelial caveolae by cholesterol depleting agents such as M-β-CD

and filipin reduces responses to endothelial-dependent vasodilators (Darblade et al., 2001;

Xu et al., 2008). Caveolin-1 has a tonic inhibitory effect on endothelial NO synthase

(eNOS) activity, and it is thought that on cholesterol-depletion caveolin-1 re-distributes

from caveolar to non-caveolar membranes (Xu et al., 2008). This results in a reduction

in eNOS activation in response to endothelium-dependent vasodilators, possibly due to

disrupted organisation of signalling complexes normally located in caveolae (Xu et al.,

2008). As well as regulating NO synthesis, caveolae are implicated in the response to other

endothelium-derived vasodilators including endothelial derived hyperpolarising factor

(EDHF) (Graziani et al., 2004; Xu et al., 2007). Caveolar disruption may underlie the

reduced endothelium-dependent vasodilation seen in a number of diseases, including

atherosclerosis (Darblade et al., 2001; Xu et al., 2008).

Caveolae in SMCs also regulate contractility (e.g., Razani et al., 1990; Dreja et al., 2002;

Potoknik et al., 2007). The response to some vasoconstrictors (e.g., 5-hydroxytryptamine,

endothelin-1) is reduced after caveolar disruption (Dreja et al., 2002; Prendergast et al.,

2010), although the response to elevated extracellular K+ and to α-adrenergic agonists is

generally unaffected (Dreja et al., 2002; Prendergast et al., 2010; though see Je et al., 2004).

Myogenic tone that develops in response to pressurization of small resistance-sized arteries

is reduced (Dubroca et al., 2007; Potoknik et al., 2007). Caveolar disruption may lead to a

reduced responsiveness to vasoconstrictors and pressure via loss of caveolar localisation

of signal transduction pathways (e.g., Clarke, Ohanian & Ohanian, 2007; Dubroca et al.,

2007), ion channels (e.g., Sampson et al., 2007) and Ca2+-signalling molecules (e.g., Löhn et

al., 2000; Shaw et al., 2006).

One important influence on vascular tone is the activity of large conductance Ca2+-

and voltage-activated K+ (BKCa) channels (Wray & Burdyga, 2010). Indeed, BKCa channel

dysfunction occurs in several vascular diseases including hypertension and atherosclerosis,

and pharmacological modulation of these channels is a promising avenue for novel

treatments (Félétou, 2009). BKCa channel regulation is complex and multi-factorial, with

influences including Ca2+, voltage, cellular microarchitecture, protein kinases, and the

accessory β1- subunit which enhances the Ca2+ sensitivity of the pore forming α subunit

(reviewed by Hill et al., 2010). As a consequence of this complex regulation, BKCa channels

show artery and vascular bed-specific properties (Hill et al., 2010). In cerebral resistance

arteries, SR Ca2+ release through ryanodine receptors (Ry-R) triggers Ca2+ ‘sparks’ in
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SMCs (Nelson et al., 1995). The resulting local increase in [Ca2+ ] in the sub-sarcolemmal

domain triggers activation of clusters of BKCa channels in the plasma membrane, resulting

in spontaneous transient outward currents (STOCs). These STOCs result in membrane

hyperpolarisation, closure of VDCCs and relaxation, providing a brake on myogenic tone

(Nelson et al., 1995). It is thought that caveolae allow the plasma membrane to come into

closer opposition with the superficial SR and so localised Ca2+ signalling between SR and

BKCa channels can occur in the sub-membrane domain (Löhn et al., 2000; Drab et al.,

2001; Wray & Burdyga, 2010). Caveolins bind directly to BKCa channels and this likely

serves to localise them within caveolae (e.g., Yamamura et al., 2012). In contrast to cerebral

resistance arteries, some other arteries do not display this tight spark-STOC coupling. In

particular, arteries supplying skeletal muscle have BKCa channels that have lower Ca2+

sensitivity and that are not activated by sparks, and this is thought to be due to lower

expression of the β1 subunit relative to the α subunit as well as a lower overall level of

α-subunit expression (Yang et al., 2009; Yang et al., 2013; Nourian et al., 2014). Decreased

activity results in a smaller contribution of BKCa channels to the cell membrane potential

and this may in turn permit higher levels of vascular resistance in the skeletal muscle

circulation (Jackson & Blair, 1998; Hill et al., 2010).

The contribution of caveolae and BKCa channels to arterial contractility in response

to caveolar disruption are complex and artery dependent. Furthermore, a role for

endothelial-derived substances or endothelial caveolae on SMC BKCa channel activity

has not been reported. In this study, we have investigated the effects of caveolar disruption

by membrane cholesterol depletion on the contraction of rat femoral artery in vitro. Our

results are consistent with caveolar loss causing reduced NO release from ECs. Lower

NO availability results in a decrease in the contribution of BKCa channels to the SMC

membrane potential, leading to depolarisation and smooth muscle cell contraction.

Caveolar disruption has only a small direct effect on SMCs in the absence of the

endothelium in rat femoral arteries.

MATERIALS AND METHODS
Animals
Tissues were obtained from adult male Wistar rats (175–200 g; Charles River Laboratories)

which were killed by a rising concentration of CO2 followed by exsanguination. The care

and euthanasia of animals conformed to the requirements of the UK Animals (Scientific

Procedures) Act 1986.

Myography
Isometric tension of rat femoral arteries was measured in a small artery myograph (Model

500A; Danish Myotechnology, Aarhus, Denmark) as previously described (Quayle et al.,

2006). Arteries were dissected in cold 5.4 mM K+ physiological saline solution (PSS)

containing (mM): 137 NaCl, 5.4 KCl, 0.44 NaH2PO4, 0.42 Na2HPO4, 4.17 NaHCO3, 1

MgCl2, 2 CaCl2, 10 HEPES, 10 glucose, pH adjusted to 7.4 with NaOH. Ring segments

of artery were then mounted in the myograph by threading two strands of tungsten wire
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(diameter 40 µm) through the vessel lumen. After vessel mounting and equilibration

at 37 ◦C, passive tension was adjusted to allow measurement of active force production

(Mulvany & Halpern, 1977). Arteries were stimulated to contract by; (i) an 80 mM K+

containing saline (80 K), which had the composition of the 5.4 mM K+ saline except

74.6 mM NaCl was substituted with KCl, or, (ii) a 20 K/Bay K containing saline, which had

the composition of the 5.4 mM K+ saline except 14.6 mM NaCl was substituted with KCl

and that 200 nM of the dihydropyridine voltage-dependent calcium channel agonist ±Bay

K8644 had been added. This solution has proved useful for inducing arterial contraction

in the absence of agonists that are coupled to receptors and second messenger pathways

(Davie, Kubo & Standen, 2008). The endothelium was removed from some arteries by

rubbing a human hair through the lumen. Removal of a functional endothelium was

confirmed by absence of relaxation to 10 µM acetylcholine.

Transmission electron microscopy
Femoral arteries were treated with 5 mM M-β-CD (n = 5) and matched with a control

group of arteries (n = 5). Both groups were cut into small pieces (about 0.5 mm3). The

segments were immediately fixed with 4% paraformaldehyde and 2.5% glutaraldehyde in

0.1 M sodium cacodylate (pH 7.4) overnight at room temperature. Next day, the samples

were rinsed three times in 0.1 M sodium cacodylate and then post-fixed in 1% (w/v)

osmium tetroxide (OsO4) in 0.1 M sodium cacodylate for 1 h. The samples were then

rinsed with 0.1 M cacodylate for 30 min, and incubated with 0.1 M cacodylate overnight.

Samples were washed with distilled water and ethanol, 30 min each, and incubated in 2%

aqueous uranyl acetate for 60 min before embedding in resin. Samples were dehydrated

through a graded series of alcohol (60, 70, 80, 90 and 100%), five minutes each. Segments

were then immersed in 100% acetone to remove water and then embedded in resin (30%

resin:70% acetone; 70% resin:30% acetone and 100% resin) for 1, 1 and 2 h, respectively.

Samples were left in the oven at 60 ◦C to polymerise overnight. Ten sections were cut

from each group (i.e., control and M-β-CD treated) at a thickness of 70–90 nm using an

ultramicrotome (Leica EM FC6). Ultrathin sections were picked up on coated copper grids

of 300-mesh, with 0.3% Pioloform and the grids dried overnight at room temperature.

Grids were then double stained with 2% aqueous uranyl acetate for four minutes, and

thereafter rinsed with distilled water for a minute, re-stained again with 0.1 M lead citrate

for four minutes, washed with distilled water for a minute and left overnight at room

temperature to dry.

Drugs and chemicals
5 mM M-β-CD was dissolved directly in the extracellular solution. 5 mM cholesterol-

saturated M-β-CD (Ch-MCD) was prepared by dissolving directly in PSS by heating at

80 ◦C for 10 min using a water bath. Filipin (4 µg/ml) was prepared by dissolving in PSS

at 37 ◦C for 10 min using a water bath. L-NAME (250 µM) was dissolved directly in PSS.

±BayK 8644 was made up as a 5 mM stock in ethanol and added to the 20 K extracellular

solution. Tetraethylammonium (TEA+) chloride and iberiotoxin (IbTX) were dissolved in

the appropriate extracellular solution.
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Data analysis and statistics
Data were recorded on computer using a MiniDigi analogue to digital interface in

combination with Axoscope software (Axon Instruments, Union City, California, USA).

Results were analysed using Axoscope and SigmaPlot 11. The passive or resting tension

was subtracted prior to data analysis, and active force measured in the steady state is

shown. Statistical significance was assessed by ANOVA with Tukey’s post-test comparison

or by paired Student’s t-test, using GraphPad InStat 3 software. Significance is given as

P < 0.05(∗), P < 0.01(∗∗), P < 0.001(∗∗∗) or not significant (n.s.) Data are reported as

mean ± SEM, and n is the number of arteries, isolated from at least three animals.

RESULTS
Cholesterol depletion by M-β-CD disrupts caveolae in smooth
muscle and endothelial cells of rat femoral artery
M-β-CD depletes membrane cholesterol, which is essential for caveolar stability (Zidovet-

zki & Levitan, 2007). Figure 1 illustrates transmission electron micrographs of sections of

control (untreated) and M-β-CD treated rat femoral artery. Omega shaped invaginations

of the plasma membrane characteristic of caveolae were seen in control sections in both

ECs and SMCs. After treatment with M-β-CD, caveolae were seen less frequently, and

those that were present showed an opened-out, cup-like profile. These images establish

that treatment with M-β-CD disrupts caveolae of rat femoral ECs and SMCs.

Disruption of caveolae enhances femoral artery contraction
To investigate the functional role of caveolae in rat femoral artery, the effect of treatment

with M-β-CD on the contractile response to 80 K and 20 K/Bay K was recorded (Fig. 2).

Both solutions will cause contraction by membrane depolarisation and activation of

voltage-dependent calcium channels in SMCs (e.g., Meisheri, Cipkus Dubray & Oleynek,

1990; Davie, Kubo & Standen, 2008). After M-β-CD treatment, 20 K/Bay K-induced

contraction significantly increased from 11.84 ± 1.30 mN to 18.25 ± 2.00 mN (n = 12,

P < 0.01). In contrast, the contraction to 80 K was virtually identical, with a maximum

force of 33.40 ± 1.43 mN before and 33.16 ± 2.02 mN after M-β-CD treatment (n = 12,

n.s.). Filipin, a macrolide antibiotic which binds cholesterol and disrupts caveoli, also

significantly increased force in response to 20 K/Bay K (Fig. 3) (5.36 ± 1.66 mN to

9.36± 2.21 mN, n = 14, P < 0.001), but not 80 K (18.60 ± 2.92 to 18.73 ± 3.12, n.s.)

M-β-CD might have non-specific effects (Zidovetzki & Levitan, 2007). To examine

if the above results were due to caveolae disruption, we attempted to reverse the effects

of M-β-CD by subsequent incubation of arteries with cholesterol saturated M-β-CD

(Ch-MCD) (e.g., Dreja et al., 2002; Prendergast et al., 2010). Ch-MCD (5 mM, 50 min)

had no significant effect on 20 K/Bay K induced tone by itself (3.15 ± 0.45 mN to 2.98

± 0.59 mN, n = 6, n.s.). However, Ch-MCD reversed the enhancing effect of M-β-CD

on 20 K/Bay K contractions (Fig. 4), with force changing from 3.50 ± 0.61 mN in

20 K/Bay K, to 5.60 ± 1.46 mN after M-β-CD, to 3.02 ± 0.64 mN following Ch-MCD

(n = 14). Ch-MCD significant inhibited contractions to 80 K solution, with force changing
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Figure 1 M-β-CD disrupts caveolae in rat femoral artery. (A) (i) Transmission electron micrograph of
rat femoral artery showing caveolae covering most of the EC membrane. IEL is the internal elastic lamina.
Magnification was ×60,000. Scale bar = 1 µm. (ii) Detail from marked area in (i) showing caveolae (Cav)
and caveosomes (V). (iii) After treatment with 5 mM M-β-CD, EC cell membrane was free of caveolae.
(B) (i) TEM of smooth muscle cell. Magnification was ×60,000. Scale bar = 1 µm. (ii) Detail from marked
area in (i) showing caveolae (Cav) and mitochondrion (M). (iii) After treatment with 5 mM M-β-CD,
SMC cell membrane was free of caveolae.
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Figure 2 Effect of caveolar disruption with M-β-CD on rat femoral artery contraction. (A) Original
traces show that treatment with 5 mM M-β-CD augments contraction in response to 20 K/Bay K but not
to 80 K. (B) Mean data showing the effects of cholesterol depletion on the response to 20 K/Bay K and
80 K. Statistically significant difference was detected using Student’s t-test. n = 12.
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Figure 3 Effect of caveolar disruption with filipin. (A) Filipin treatment augments contraction in
response to 20 K/Bay K but not to 80 K. (B) Mean data showing the effects of filipin treatment on the
response to 20 K/Bay K and 80 K. Statistical significance was detected using Student’s t-test. n = 14.
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Figure 4 Ch-MCD reverses the effect of M-β-CD on contractions. (A) M-β-CD treatment augments
contraction to 20 K/ BayK and Ch-MCD reverses this effect. (B) Mean data showing the effect of M-β-CD
and Ch-MCD on 20 K/Bay K and 80 K contractions. Statistical significance was examined using ANOVA.
n = 14.
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from 16.72 ± 2.05 mN in 80 K to 13.55 ± 2.20 mN in 80 K in the presence of Ch-MCD

(n = 14, P < 0.001).

The effect of M-β-CD on force is endothelium-dependent
Caveolar disruption has been reported to reduce endothelium-dependent vasodilation

but it can also alter contraction by directly acting on SMCs (see Introduction). In order

to distinguish these two possibilities, ECs were mechanically removed and absence of a

functional endothelium confirmed for each artery by a lack of a vasodilator response to

10 µM acetylcholine. Endothelial removal reduced the ability of M-β-CD to enhance

contractions to 20 K/Bay K (Fig. 5) (6.62 ± 0.92 mN to 7.52 ± 1.03 mN after M-β-CD,

n = 22, n.s.). The results indicate that M-β-CD acts on endothelium where it alters release

of an endothelial-derived vasodilator or vasoconstrictor.

L-NAME enhances 20 K/Bay K contractions but has no effect after
M-β-CD treatment
One candidate for an endothelial factor influencing SMC contraction is NO. When arteries

were pre-incubated with the eNOS inhibitor L-NAME (250 µM) the contraction to

20 K/Bay K was enhanced (Fig. 6) (6.82 ± 1.61 mN to 14.90 ± 2.67 mN, n = 6, P < 0.001).

However, after M-β-CD treatment, L-NAME no longer had a significant effect on the

response to 20 K/Bay K (17.74 ± 3.46 mN to 16.10 ± 3.19 mN, n = 6, n.s). This result is

consistent with the hypothesis that caveolar disruption by M-β-CD results in decreased

release of NO from the endothelium.

Effect of L-NAME on femoral artery responses to phenylephrine
Contraction induced with 20 K/Bay K has the advantage of being relatively simple in mech-

anism, by-passing receptors and second messenger systems. However, it may not reflect

events occurring during more physiological contractions. To address whether basal release

of NO occurred in the presence of a physiological stimulus the effect of L-NAME was

examined in arteries contacted with the α-adrenergic agonist, phenylephrine. Contraction

was triggered with cumulative doses of phenylephrine (PE) (0.1–30 µM) (Fig. S1). Arteries

were then pre-incubated with L-NAME (250 µM) for 10 min and phenylephrine applied

in the presence of L-NAME. A given concentration of phenylephrine was more effective

after L-NAME treatment, and concentration–response curves were shifted to the left

(Fig. S1). This results suggests endothelial NO synthesis also occurs during phenylephrine

contractions in these arteries.

Effect of inhibition of BKCa channels by TEA+ and iberiotoxin on
the response to M-β-CD
M-β-CD augmented the response to 20 K/Bay K but not to 80 K (see Fig. 2). In 80 K

solution the cell membrane potential will lie close to the equilibrium potential for K+. In

this case, opening of K+ channels will not lead to hyperpolarisation, and the inability of a

substance to cause relaxation in 80 K solution may implicate K+ channel activation in va-

sodilation (e.g., Meisheri, Cipkus Dubray & Oleynek, 1990). One explanation for our data is

therefore that NO release from the endothelium causes SMC relaxation via K+ channel ac-
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Figure 5 Effect of M-β-CD on endothelium-denuded femoral artery. (A) After endothelial removal
incubation with M-β-CD did not augment contractions to 20 K/Bay K. Absence of a functional endothe-
lium was shown by lack of relaxation to ACh. (B) Mean data showing no significant difference in the
contractions of endothelium-denuded arteries stimulated with 20 K/Bay K following M-β-CD treatment.
Statistical significance was examined using Student’s t-test. n = 22.
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Figure 6 Effect of inhibition of NO synthase by L-NAME. (A) Incubation with 250 µM L-NAME
augmented contraction response to 20 K/Bay K. When arteries were incubated with M-β-CD, contraction
with 20 K/Bay K was enhanced. However, L-NAME no longer had an additional contractile effect after
M-β-CD treatment. (B) Mean data showing 250 µM L-NAME significantly increases the contraction
response to 20 K/Bay K. L-NAME did not enhance the contraction after M-β-CD treatment. Statistical
significance was examined using ANOVA. n = 6.
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tivation. In order to test this, the effect of the BKCa channel inhibitors TEA+ and IbTX was

investigated before and after caveolar disruption with M-β-CD. BKCa channels have been

previously implicated in NO-induced vasodilation (e.g., Kahn, Higdon & Meisheri, 1998).

Initially, 2 mM TEA+ was used to inhibit BKCa channels, and at this concentration

it can be regarded as selective (Langton et al., 1991). TEA+ increased resting force from

1.15 ± 0.68 mN to 2.15 ± 0.81 mN (n = 8, ns, Fig. 7). In some experiments, including

that illustrated in Fig. 7, spikes were superimposed on top of the increase in resting force,

indicating TEA+ is inducing spontaneous oscillations in this vessel. 2 mM TEA+ applica-

tion significantly increased the contraction with 20 K/Bay K from 7.07 ± 2.05 mN to 18.53

± 3.25 mN (n = 8, P < 0.05). These results suggest TEA+-sensitive K+ channels contribute

to the membrane potential at both resting state and during contraction with 20 K/Bay

K. Incubating arteries with 5 mM M-β-CD augmented contraction to 20 K/Bay K, as

previously shown (7.07 ± 2.05 mN to 15.29 ± 2.84 mN; n = 8, P < 0.01). After treatment

with M-β-CD, TEA+ no longer caused significant additional contraction to 20 K/Bay K

(15.29 ± 2.84 mN to 19.54 ± 2.22 mN; n = 8, ns). The observation that TEA+ significantly

increased force before, but not after, M-β-CD treatment suggests caveolar disruption

decreases the contribution of a TEA+-sensitive K+ channel to the membrane potential.

In endothelium-denuded arteries, 2 mM TEA+ caused a small but non-significant

increase in 20 K/Bay K contraction (from 6.06 ± 1.44 mN to 8.01 ± 1.58 mN; n = 8,

ns, Fig. 8). M-β-CD application had no significant effect on 20 K/Bay K contraction in

endothelium-denuded arteries, as previously shown (6.06 ± 1.44 mN to 6.19 ± 1.32 mN;

n = 8, ns). After endothelium-denuded arteries were incubated with M-β-CD, TEA+

caused a small, non-significant, additional contraction in response to 20 K/Bay K, from

6.19 ± 1.32 mN to 7.23 ± 1.61 mN (n = 8, ns).

The experiments with TEA+ were repeated with the more selective BKCa channel

inhibitor iberiotoxin (IbTX) (Fig. 9). Incubating arteries with 100 nM IbTX augmented

contraction to 20 K/Bay K (5.13 ± 0.93 mN to 11.60 ± 1.84 mN; n = 6, P < 0.01). After

endothelial removal, incubation of arteries with 100 nM IbTX no longer significantly

enhanced 20 K/Bay K contractions (6.76 ± 0.88 mN to 8.30 ± 1.15 mN, n = 6, ns).

Overall, the results with TEA+ and IbTX indicate that inhibition of BKCa channels

increases contraction to 20 K/Bay K in rat femoral artery. Endothelium removal largely

abolishes this effect, as does caveolar disruption by treatment with M-β-CD. Both M-β-

CD treatment and removal of endothelium may inhibit endothelial NO release. NO is a

known activator of BKCa channels in SMCs, so reduced release may decrease BKCa channel

activity, leading to SMC depolarization and contraction.

Effects of IbTX on tone are reduced by inhibition of basal NO
release
Further experiments were designed to examine whether the effects of L-NAME and IbTX

on contraction were additive, an indication that two mechanisms act through different

pathways. Adding IbTX (100 nM) at the peak of the 20 K/Bay K contraction induced

significant further contraction (Fig. 10). When arteries were pre-treated with L-NAME, the

20 K/Bay K contractions were enhanced, again consistent with previous observations, but
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Figure 7 Effect of TEA+ on 20 K/Bay K contractions. (A) Incubation of arteries with 2 mM TEA+

increased basal tone, and also augmented the response to 20 K/Bay K. M-β-CD caused an enhanced
contraction in response to 20 K/Bay K, but this effect of M-β-CD was absent in the presence of TEA+.
(B). Mean data for effect of TEA+ on femoral artery contractions to 20 K/Bay K before and after M-β-CD
treatment. Data show a significant increase in the contraction in response to 20 K/Bay K after incubation
of the artery with 2 mM TEA+ before, but not after, treatment with M-β-CD. Statistical significance was
examined using ANOVA. n = 8.
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Figure 8 Effect of TEA+ on 20 K/Bay K contractions in an endothelium-denuded artery. (A) 2 mM
TEA+ had little effect on 20 K/Bay K contractions in endothelium-denuded artery. (B) Mean data
showing a non-significant increase in the contraction response to 20 K/Bay K by TEA+. Statistical
significance was examined using ANOVA. n = 8.
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Figure 9 Effect of IbTX on 20 K/Bay K contractions. (A) Original trace shows incubation of artery with
100 nM IbTX augments contraction in response to 20 K/ Bay K. After endothelial removal, IbTX was
no longer effective at increasing force. (B) Mean data showing an increase in the contraction response to
20 K/Bay K after incubation of the artery with IbTX. Statistical significance was examined using Student’s
t − test. n = 6.
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Figure 10 Combined effect of IbTX and L-NAME on 20 K/Bay K contractions. (A) Addition of 100 nM
IbTX induced further contraction to 20 K/Bay K. When arteries were pre-incubated with 250 µM
L-NAME, IbTX was less effective in increasing force. (B). Mean data showing a significant increase in
contraction response to 20 K/Bay K by IbTX before, but not after, incubation with L-NAME. Statistical
significance was established using Student’s t-test. n = 8.

the contractile effect of IbTX was now much smaller. IbTX (100 nM) caused additional

contraction over and above that caused by 20 K/Bay K of 6.86 ± 0.81 mN and 3.50

± 0.55 mN (n = 8) in the absence and presence of L-NAME, respectively. Once again,

this result is consistent with NO release from the endothelium causing activation of BKCa

channels in vascular SMCs, and that inhibiting NO synthesis with L-NAME or BKCa

channels with IbTX therefore has a similar overall effect on force.
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Figure 11 Effect of TEA+ on SNP-induced relaxation in endothelium-denuded femoral artery. (A)
Traces showing vasorelaxation in an artery contracted by 20 K/Bay K. SNP (0.1–100 µM) produced
relaxation before and after treatment with 2 mM TEA+; (B) Trace showing vasorelaxation produced by
SNP (0.1–100 µM) in an artery contracted with 80 K. (C) Concentration-response curves for relaxations
induced by SNP in arteries contracted with 20 K/Bay K in the absence (•) and presence (◦) of 2 mM
TEA+, and in arteries contracted with 80 K (▼).

NO donors relax rat femoral arteries partly via activation of BKCa
channels
NO and other guanylate cyclase coupled vasodilators exert their effect in part through

activation of BKCa channels in some arteries (e.g., Kahn, Higdon & Meisheri, 1998;

Robertson et al., 1993). In rat femoral arteries, the NO donor sodium nitroprusside (SNP)

caused vasorelaxation, and this relaxation was attenuated in the presence of 2 mM TEA+

(Fig. 11). The vasorelaxation response to SNP was significantly inhibited by TEA+ at
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concentrations of SNP of 1 µM and above (1 µM SNP, P < 0.01; 3–100 µM SNP, P < 0.001,

n = 8). Furthermore, vasorelaxation in response to SNP was also attenuated in arteries

contracted with 80 K solution (1 µM SNP, P < 0.01; 3–100 µM SNP, P < 0.001, n = 8).

These results suggest that NO donors cause relaxation of rat femoral artery partly though

activation of BKCa channels.

DISCUSSION
The caveolar disrupting agents M-β-CD and filipin both enhanced contraction of rat

femoral arteries in response to 20 K/Bay K (Figs. 2 and 3). In the case of M-β-CD, the

contraction was reversed by Ch-MCD (Fig. 4), and depended on an intact endothelium

(Fig. 5). Arteries also showed enhanced contractions to 20 K/Bay K when NO synthesis

was inhibited by L-NAME (Fig. 6). However, L-NAME did not augment 20 K/Bay K

contractions following pre-treatment with M-β-CD. The BKCa channel inhibitors TEA+

and IbTX both enhanced contractions to 20 K/Bay K, and the effect of these agents was

much reduced after removal of the endothelium or M-β-CD treatment (Figs. 7 and 8

and 9). Relaxations to the NO donor SNP were attenuated by inhibition of BKCa channels

with TEA+ (Fig. 11). Taken together, these results suggest that caveolar disruption in

rat femoral arteries results in a reduced NO release from ECs, and that this enhances

arterial contraction due a reduced contribution of BKCa channels to the smooth muscle cell

membrane potential.

Effect of caveolar disruption on endothelium-dependent
vasodilation
Caveolae are specialised membrane domains characterised by a high cholesterol and

sphingolipid content, and by the presence of the signature proteins the caveolins (Rothberg

et al., 1992; Cohen et al., 2004). Caveolin-1 is necessary and sufficient to drive caveolar for-

mation and knockout of caveolin-1 results in caveolar loss (Drab et al., 2001). Caveolin-2 is

generally co-expressed with caveolin-1, with which it forms hetero-oligomeric complexes.

Caveolin-2 appears to have a supporting role in caveolar formation (Sowa et al., 2003).

Caveolin-3 is muscle specific and most muscle cells exclusively express caveolin-3, where it

has roles analogous to caveolin-1 in non-muscle cells (Cohen et al., 2004). Vascular smooth

muscle is unusual in expressing all three caveolin isoforms (Cohen et al., 2004; Kamishima

et al., 2007). Caveolae have been shown to be important in physiological regulation of

arterial tone, and disruption of caveolae may be a factor in vascular pathologies, including

atherosclerosis (Darblade et al., 2001; Xu et al., 2008; Prendergast et al., 2014).

One particularly well characterised function of caveolae and the caveolins is in the

regulation of the activity of endothelial nitric oxide synthase. Caveolin-1 binds to eNOS

through a scaffolding domain, and this causes tonic inhibition of enzyme activity (Michel

et al., 1997a). This inhibition is relieved in the presence of Ca2+-calmodulin (Ca2+-CaM),

and endothelial Ca2+ is therefore is a major regulator of NO synthesis (Michel et al.,

1997b). Many factors stimulate NO production by increasing cytoplasmic Ca2+, including

endothelium-dependent vasodilators like acetylcholine (Michel & Vanhoutte, 2010).

The functional effects of caveolin-1 loss have been addressed by gene knockout
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(Drab et al., 2001). Arteries from caveolin-1 knockout (cav1-/-) mice have an enhanced

response to the endothelium-dependent vasodilator acetylcholine, and have increased

basal NO release (Drab et al., 2001; Razani et al., 1990). Both effects are consistent with the

reported tonic inhibition of eNOS activity by caveolin-1.

The role of caveolae in vascular function has also been addressed by pharmacological

disruption of caveolae by cholesterol depleting agents such as M-β-CD and filipin

(Zidovetzki & Levitan, 2007; Rothberg et al., 1992; this study). In contrast to the studies

on caveolin knockout animals discussed above, many studies have shown that disruption

of caveolae by cholesterol depleting agents reduces the response to endothelium-dependent

vasodilators such as acetylcholine (e.g., Darblade et al., 2001; Graziani et al., 2004;

Linder et al., 2005; Xu et al., 2007). Caveolar disruption inhibits both NO-mediated

and endothelial-derived hyperpolarizing factor (EDHF)-mediated vasodilation. In the

case of NO-mediated vasodilation, disruption of caveoli by M-β-CD may result in (i)

re-distribution of eNOS to non-caveolar membranes that contain caveolin-1, which then

further inhibits eNOS activity, (ii) loss of local caveolar signalling pathways required to

efficiently couple vasodilator-receptor binding to eNOS activation (Xu et al., 2007). It is

possible similar mechanisms may be responsible for the effects we observed for M-β-CD

in rat femoral artery. We have not specifically looked for EDHF-mediated responses in rat

femoral artery. However, the NOS inhibitor L-NAME abolished the vasodilator response

to ACh (Fig. 6), suggesting that NO is the main mediator of the response in these vessels.

EDHF may become more important in resistance-sized arteries (see e.g., Hill et al., 2010;

Garland, Hiley & Dora, 2011).

It should be noted that the agents we have used to deplete membrane cholesterol

(M-β-CD, filipin) will also affect other (non-caveolar) lipid rafts (Zidovetzki & Levitan,

2007). However, given the well-documented localisation of eNOS within caveolae it seems

more likely that our results can be understood in terms of the effects on this cellular

structure.

Ch-MCD reversed the effects of M-β-CD, suggesting the effect was mediated by

cholesterol depletion (Fig. 4). Interestingly, Ch-MCD significantly reduced contraction

to 80 K solution. In this study we were focused on the effects of cholesterol depletion,

and we have not investigated the basis for the effect of Ch-MCD further, but cholesterol

has been shown to directly inhibit K+-induced contractions of rat aorta by inhibiting

voltage-dependent Ca2+ currents (Álvarez et al., 2010). Cholesterol has also been reported

to have a variety of direct, usually inhibitory, effects on ion channels (reviewed by Levitan,

Singh & Rosenhouse-Dantsker, 2014).

Direct effects of caveolar disruption on smooth muscle cell
contraction
Disruption of caveolae in SMCs has previously been shown to modify the response to some

receptor-coupled vasoconstrictors (e.g., Dreja et al., 2002; Clarke, Ohanian & Ohanian,

2007; Potoknik et al., 2007; Prendergast et al., 2010), and also reduces the myogenic response

to increased intravascular pressure (e.g., Adebiyi et al., 2007; Dubroca et al., 2007; Potoknik

et al., 2007). Generally, these results have been interpreted as providing evidence for the
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importance of a caveolar location for receptors, signalling molecules or ion channels

that are involved in the contractile response. In rat femoral artery caveolar depletion had

relatively modest effects on contraction to 20 K/Bay K in the absence of the endothelium

(Fig. 5), despite the presence of caveolae in SMCs (Fig. 1). Disruption of SMC caveolae may

not have a major effect on contraction in these arteries.

Basal NO release in rat femoral artery
Several studies have addressed the effect of caveolar disruption on relaxations to

endothelium-dependent vasodilators such as acetylcholine (e.g., Darblade et al., 2001; Xu et

al., 2008). Our study looked at the effect of caveolar disruption on NO mediated responses

that occur in the absence of an endothelium-dependent receptor-coupled vasodilator.

The eNOS inhibitor L-NAME increased contractions triggered by 20 K/Bay K (Fig. 6).

PE concentration–response curves were also shifted to the right by pre-incubation of

arteries in L-NAME (Fig. S1). Both observations are consistent with substantial basal NO

release without an application of endothelium-dependent vasodilator in these arteries.

Generally, NO synthesis by endothelial cells is low in the absence of a stimulating factor

such as an endothelium-dependent vasodilator or flow. This is likely due to tonic and

almost complete inhibition of eNOS activity by caveolin-1 in the absence of Ca2+–CaM

(Michel & Vanhoutte, 2010). However, basal NO release does occur and may be particularly

important in large arteries (e.g., Martin et al., 1986; Fleming et al., 1999). The mechanisms

of such a basal NO release have been debated and several hypotheses have been advanced.

Lumenal flow can trigger NO release via Akt-induced phosphorylation and activation of

eNOS, and this is likely to be important in vivo (reviewed in Fleming, 2010). However, our

experiments were conducted in the absence of flow, so this seems unlikely to contribute to

basal NO release in our study. Isometric contraction may by itself induce the activation of

eNOS and so NO production (Fleming et al., 1999). Contraction is associated with a rise

in vascular smooth muscle cell Ca2+ concentration, and this can, in turn, bring about a

rise in endothelial cell Ca2+, so triggering Ca2+-dependent activation of eNOS activity and

subsequent NO release (Dora, Doyle & Duling, 1997; Dora et al., 2000; Jackson et al., 2008).

Ca2+ may move directly from smooth muscle to endothelial cells via myo-endothelial gap

junctions (Dora, Doyle & Duling, 1997). Such a mechanism may contribute to the basal NO

release observed in our study.

Role of K+ channels in the response to M-β-CD
Whilst contraction to 20 K/Bay K was enhanced by M-β-CD and filipin treatment, that to

80 K was unaltered (Figs. 2 and 3). When extracellular K+ is raised to 80 mM, the mem-

brane potential of the cell is depolarised and approaches the K+ equilibrium potential, and

so K+ channel opening will not cause membrane potential hyperpolarisation or relaxation

through closure of VDCCs. Thus if a reduced responsiveness to a vasodilator is seen as the

extracellular [K+ ] is elevated this can be taken as evidence for the involvement of K+ chan-

nels in smooth muscle cell in the response (e.g., Meisheri, Cipkus Dubray & Oleynek, 1990).

It should be noted that raising extracellular K+ would also lower the driving force

for Ca2+ entry into the endothelial cell, which by itself may decrease basal NO release.

Al-Brakati et al. (2015), PeerJ, DOI 10.7717/peerj.966 21/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.966/supp-1
http://dx.doi.org/10.7717/peerj.966/supp-1
http://dx.doi.org/10.7717/peerj.966


However, further experiments showed that 20 K/Bay K contractions were enhanced

by TEA+ and IbTX, both BKCa channel inhibitors (Figs. 7, 9 and 10). This effect

of TEA+ and IbTX was lost if the endothelium was removed (Figs. 8 and 9). When

arteries were pre-incubated in L-NAME the contractile effect of IbTX was considerably

reduced (Fig. 10). The simplest explanation for our data is that endothelial-derived

NO normally has a tonic inhibitory effect on femoral artery contraction via SMC BKCa

channel activation. Nitrovasodilators are known to cause vasorelaxation through K+

channel opening. For instance, nitroglycerin becomes a less effective relaxant of dog

coronary artery as extracellular K+ is elevated, and the relaxations in physiological K+

are reduced by pharmacological inhibition of BKCa channels by charybdotoxin and

iberiotoxin (Kahn, Higdon & Meisheri, 1998). The pathway for regulation of BKCa channels

by nitrovasodilators may involve activation of guanylate cyclase, generation of cGMP,

activation of cGMP-dependent protein kinase and subsequent opeining of SMC BKCa

channels (Robertson et al., 1993). In rat femoral artery inhibition of BKCa channels with

TEA+, and elevation [K+
]o to 80 mM, reduced the ability of the NO donor sodium

nitroprusside to cause relaxation (Fig. 11).

Endothelial BKCa channels
An alternative explanation for the contractile effects of IbTx (Figs. 9 and 10) is that

inhibition of BKCa channels by this compound depolarises the endothelial cell membrane

potential. In ECs the consensus view is that the presence of voltage-independent Ca2+

‘leak’ pathways means that membrane depolarisation will lead to a fall in Ca2+ concen-

tration due to an decrease in the driving force for Ca2+ entry into the cell (reviewed by

Dora & Garland, 2013, though see Bossu et al., 1992). This would reduce Ca2+-dependent

activation of eNOS, decrease NO release and so enhance arterial contraction. There are

numerous reports of the presence of BKCa channels in endothelial cells (reviewed in

Sandow & Grayson, 2009). However, their presence is not universally accepted and it has

been argued that they have mainly been reported in cultured cells and are not present in

the endothelium of non-diseased arteries (Sandow & Grayson, 2009). In the context of

the current study it is interesting to note that BKCa channels in cultured bovine aortic

endothelial cells (BAECs) cannot be recorded in resting conditions, but that they become

active after cholesterol depletion (Wang et al., 2005). In BAECs, caveolin-1 appears to

directly interact with and inhibit the activity of endothelial BKCa channels. Interestingly,

endothelial BKCa channels activity can also be induced by activation of endothelial

β-adrenoreceptors or by chronic hypoxia, and in both cases this occurs via release of

caveolin-1 inhibition of channel activity (Wang et al., 2005; Riddle, Hughes & Walker,

2011). Further electrophysiological experiments will be required to determine whether

BKCa channels are present in rat femoral artery endothelial cells, or if their activity can be

modulated by cholesterol depletion.

Role of BKCa channels in regulating femoral artery tone
In our study, inhibiting BKCa channels with TEA+ or IbTX enhanced 20 K/Bay K

contractions in endothelium-intact arteries more than two-fold (Figs. 7, 9 and 10), but
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only by about 25% in endothelium-denuded arteries (Figs. 8 and 9). Clearly BKCa channels

contribute to the membrane potential in both conditions, and the results are consistent

with the well-documented role of BKCa channels in providing negative feedback inhibition

in conditions of tone generation (e.g., Nelson et al., 1995; Hill et al., 2010). However,

the substantially larger contraction seen in the presence of an intact endothelium may

mean endothelial NO is a major driver of BKCa channel activity in rat femoral arteries.

Interestingly BKCa channels appear to make a relatively small contribution to membrane

potential and resting tone in the arteries supplying the rat cremaster muscle, partly due

to a low Ca2+- sensitivity of the channel (Jackson & Blair, 1998). BKCa channels form as a

heterotetramer of pore forming α subunits, with the accessory β subunits enhancing the

Ca2+-sensitivity of the channel. The low Ca2+ sensitivity of the BKCa channel in cremaster

arterioles may derive from a relative lack of β-subunit expression in this artery (Yang

et al., 2009). Our data suggests the contribution of the BKCa channel to the membrane

potential and contraction in femoral artery can be enhanced by endothelial derived NO,

adding another factor that must be considered when assessing the role of this channel

in the skeletal muscle vasculature. Regional variation in the regulation of BKCa channels

is likely to be important in fine control of vascular contractility in accordance with the

physiological function of the tissue (Hill et al., 2010; Yang et al., 2013).

CONCLUSIONS
Caveolar disruption in rat femoral artery results in contraction due to decreased release

of endothelial-derived NO. The mechanism may involve a reduced contribution of BKCa

channels to the smooth muscle cell membrane potential. Endothelial-derived NO appears

to be a major influence on the BKCa activity in SMCs in these arteries, and this observation

adds to our understanding of the complex regulation of KCa channel activity in the skeletal

vasculature.
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459:807–816.

Mulvany MJ, Halpern W. 1977. Contractile properties of small arterial resistance vessels
in spontaneously hypertensive and normotensive rats. Circulation Research 41:19–26
DOI 10.1161/01.RES.41.1.19.

Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. 1995. Relaxation
of arterial smooth muscle by calcium sparks. Science 270:633–636
DOI 10.1126/science.270.5236.633.

Nourian Z, Li M, Leo MD, Jaggar JH, Braun AP, Hill MA. 2014. Large conductance
Ca2+-activated K+ channel (BKCa) α-subunit splice variants in resistance arteries from rat
cerebral and skeletal muscle vasculature. PLoS ONE 9:1–12 DOI 10.1371/journal.pone.0098863.

Potoknik SJ, Jenkins N, Murphy TCV, Hill MA. 2007. Membrane cholesterol depletion with
β-cyclodextrin impairs pressure-induced contraction and calcium signalling in isolated skeletal
muscle arterioles. Journal of Vascular Research 44:292–302 DOI 10.1159/000101451.

Prendergast C, Quayle JM, Burdyga T, Wray S. 2010. Cholesterol depletion alters coronary
artery myocyte Ca2+ signalling in a stimulus-specific manner. Cell Calcium 47:84–91
DOI 10.1016/j.ceca.2009.11.009.

Prendergast C, Quayle JM, Burdyga T, Wray S. 2014. Atherosclerosis affects calcium signalling in
endothelial cells from apolipoprotein E knockout mice before plaque formation. Cell Calcium
55:146–154 DOI 10.1016/j.ceca.2014.02.012.

Al-Brakati et al. (2015), PeerJ, DOI 10.7717/peerj.966 26/28

https://peerj.com
http://dx.doi.org/10.3389/fphys.2014.00065
http://dx.doi.org/10.1124/jpet.105.083634
http://dx.doi.org/10.1161/01.RES.87.11.1034
http://dx.doi.org/10.1016/0160-5402(90)90010-I
http://dx.doi.org/10.1074/jbc.272.41.25907
http://dx.doi.org/10.1074/jbc.272.25.15583
http://dx.doi.org/10.1161/01.RES.41.1.19
http://dx.doi.org/10.1126/science.270.5236.633
http://dx.doi.org/10.1371/journal.pone.0098863
http://dx.doi.org/10.1159/000101451
http://dx.doi.org/10.1016/j.ceca.2009.11.009
http://dx.doi.org/10.1016/j.ceca.2014.02.012
http://dx.doi.org/10.7717/peerj.966


Quayle JM, Turner MR, Burrell HE, Kamishima T. 2006. The effects of hypoxia, anoxia and
metabolic inhibitors on KATP channels in rat femoral artery myocytes. American Journal of
Physiology 291:H71–H80.

Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG,
Li M, Pestell RG, Di Vizio D, Hou H, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Rees DD,
Palmer RM, Schulz R, Hodson HF, Moncada S. 1990. Characterization of three inhibitors
of endothelial nitric oxide synthase in vitro and in vivo. British Journal of Pharmacology
101:746–752 DOI 10.1111/j.1476-5381.1990.tb14151.x.

Riddle MA, Hughes JM, Walker BR. 2011. Role of caveolin-1 in endothelial BKCa channel
regulation of vasoreactivity. American Journal of Physiology 301:C1404–C1414
DOI 10.1152/ajpcell.00013.2011.

Robertson BE, Schubert R, Hescheler J, Nelson MT. 1993. cGMP-dependent protein kinase
activates Ca2+-activate K+ channels in cerebral artery smooth muscle cells. American Journal of
Physiology 265:C299–C303.

Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenny JR, Anderson RGW. 1992. Cavolin, a
protein component of caveolae membrane coats. Cell 68:673–682
DOI 10.1016/0092-8674(92)90143-Z.

Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. 2007. Angiotensin II-activated
protein kinase C targets caveolae to inhibit aortic ATP-sensitive potassium channels.
Cardiovascular Research 76:61–70 DOI 10.1016/j.cardiores.2007.05.020.

Sandow SL, Grayson TH. 2009. Limits of isolation and culture: intact vascular endothelium and
BKCa. American Journal of Physiology 297:H1–H7 DOI 10.1152/ajpcell.00176.2009.

Shaw L, Sweeney MA, O’Neill SC, Jones CJP, Austin C, Taggart MJ. 2006. Caveolae and
sarcoplasmic reticular coupling in smooth muscle cells of pressurised arteries: the relevance
for Ca2+ oscillations and tone. Cardiovascular Research 69:825–835
DOI 10.1016/j.cardiores.2005.12.016.

Sowa G, Pypaert M, Fulton D, Sessa WC. 2003. Phosphorylation of caveolin-2 on serines 23 and
36 modulates caveolin-1 dependent caveolae formation. Proceedings of the National Academy of
Sciences of the United States of America 100:6511–6516 DOI 10.1073/pnas.1031672100.

Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, Sieck GC, Lee HC. 2005. Caveolae tar-
geting and regulation of large conductance Ca2+-activated K+ channels in vascular endothelial
cells. Journal of Biological Chemistry 280:11656–11664 DOI 10.1074/jbc.M410987200.

Wray S, Burdyga T. 2010. Sarcoplasmic reticulum function in smooth muscle. Physiological
Reviews 90:113–178 DOI 10.1152/physrev.00018.2008.

Xu Y, Buikema H, Van Glist WH, Henning RH. 2008. Caveolae and endothelial dysfunction:
filling the caves in cardiovascular disease. European Journal of Pharmacology 585:256–260
DOI 10.1016/j.ejphar.2008.02.086.

Xu Y, Henning RH, Van der Want JJL, Van Buiten A, Gilst WH, Buikema H. 2007. Disruption
of endothelial caveolae is associated with impairment of both NO- as well as EDHF in
acetylcholine-induced relaxation depending on their relative contribution in different vascular
beds. Life Sciences 80:1678–1685 DOI 10.1016/j.lfs.2007.01.041.

Yamamura H, Ikeda C, Suzuki Y, Ohya S, Imaizumi Y. 2012. Molecular assembly and dynamics
of fluorescent protein-tagged single KCa1.1 channel in expression system and vascular smooth
muscle cells. American Journal of Physiology 302:C1257–C1268 DOI 10.1152/ajpcell.00191.2011.

Yang Y, Murphy TV, Ella SR, Grayson TH, Haddock R, Hwang YT, Braun AP, Peichun G,
Korthuis RJ, Davis MJ, Hill MA. 2009. Heterogeneity in function of small artery smooth

Al-Brakati et al. (2015), PeerJ, DOI 10.7717/peerj.966 27/28

https://peerj.com
http://dx.doi.org/10.1111/j.1476-5381.1990.tb14151.x
http://dx.doi.org/10.1152/ajpcell.00013.2011
http://dx.doi.org/10.1016/0092-8674(92)90143-Z
http://dx.doi.org/10.1016/j.cardiores.2007.05.020
http://dx.doi.org/10.1152/ajpcell.00176.2009
http://dx.doi.org/10.1016/j.cardiores.2005.12.016
http://dx.doi.org/10.1073/pnas.1031672100
http://dx.doi.org/10.1074/jbc.M410987200
http://dx.doi.org/10.1152/physrev.00018.2008
http://dx.doi.org/10.1016/j.ejphar.2008.02.086
http://dx.doi.org/10.1016/j.lfs.2007.01.041
http://dx.doi.org/10.1152/ajpcell.00191.2011
http://dx.doi.org/10.7717/peerj.966


muscle BKCa: involvement of the β1 subunit. Journal of Physiology 587:3025–3044
DOI 10.1113/jphysiol.2009.169920.

Yang Y, Sohma Y, Nourian Z, Ella SR, Li M, Stupica A, Korthuis RJ, Davis MJ, Braun AP,
Hill MA. 2013. Mechanisms underlying regional differences in the Ca2+ sensitivity
of BKCa current in arteriolar smooth muscle. Journal of Physiology 591:1277–1293
DOI 10.1113/jphysiol.2012.241562.

Zidovetzki R, Levitan I. 2007. Use of cyclodextrins to manipulate plasma membrane cholesterol
content: evidence, misconceptions and control strategies. Biochimica et Biophysica Acta
1768:1311–1324 DOI 10.1016/j.bbamem.2007.03.026.

Al-Brakati et al. (2015), PeerJ, DOI 10.7717/peerj.966 28/28

https://peerj.com
http://dx.doi.org/10.1113/jphysiol.2009.169920
http://dx.doi.org/10.1113/jphysiol.2012.241562
http://dx.doi.org/10.1016/j.bbamem.2007.03.026
http://dx.doi.org/10.7717/peerj.966

	Caveolar disruption causes contraction of rat femoral arteries via reduced basal NO release and subsequent closure of BK Ca  channels
	Introduction
	Materials and Methods
	Animals
	Myography
	Transmission electron microscopy
	Drugs and chemicals
	Data analysis and statistics

	Results
	Cholesterol depletion by M-β-CD disrupts caveolae in smooth muscle and endothelial cells of rat femoral artery
	Disruption of caveolae enhances femoral artery contraction
	The effect of M-β-CD on force is endothelium-dependent
	L-NAME enhances 20 K/Bay K contractions but has no effect after M-β-CD treatment
	Effect of L-NAME on femoral artery responses to phenylephrine
	Effect of inhibition of BK Ca  channels by TEA+  and iberiotoxin on the response to M-β-CD
	Effects of IbTX on tone are reduced by inhibition of basal NO release
	NO donors relax rat femoral arteries partly via activation of BKCa  channels

	Discussion
	Effect of caveolar disruption on endothelium-dependent  vasodilation
	Direct effects of caveolar disruption on smooth muscle cell  contraction
	Basal NO release in rat femoral artery
	Role of K+  channels in the response to M-β-CD
	Endothelial BKCa channels
	Role of BK Ca  channels in regulating femoral artery tone

	Conclusions
	Acknowledgements
	References


