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ABSTRACT
Machine learning techniques are increasingly used in the analysis of high throughput
genome sequencing data to better understand the disease process and design of
therapeutic modalities. In the current study, we have applied state of the art machine
learning (ML) algorithms (RandomForest (RF), Support VectorMachineRadial Kernel
(svmR), Adaptive Boost (AdaBoost), averagedNeural Network (avNNet), andGradient
Boosting Machine (GBM)) to stratify the HNSCC patients in early and late clinical
stages (TNM) and to predict the risk using miRNAs expression profiles. A six miRNA
signature was identified that can stratify patients in the early and late stages. The
mean accuracy, sensitivity, specificity, and area under the curve (AUC) was found
to be 0.84, 0.87, 0.78, and 0.82, respectively indicating the robust performance of
the generated model. The prognostic signature of eight miRNAs was identified using
LASSO (least absolute shrinkage and selection operator) penalized regression. These
miRNAs were found to be significantly associated with overall survival of the patients.
The pathway and functional enrichment analysis of the identified biomarkers revealed
their involvement in important cancer pathways such as GP6 signalling,Wnt signalling,
p53 signalling, granulocyte adhesion, and dipedesis. To the best of our knowledge, this
is the first such study and we hope that these signature miRNAs will be useful for the
risk stratification of patients and the design of therapeutic modalities.

Subjects Bioinformatics, Computational Biology, Mathematical Biology, Oncology, Data Mining
and Machine Learning
Keywords Head and neck cancer, TNM stage, Machine learning, Biomarker, microRNA, mRNA

INTRODUCTION
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common type of
cancer (Bray et al., 2018) and is associated with 650,000 new cases and ∼330,000 deaths
annually worldwide (Boscolo-Rizzo et al., 2018; Kapoor & Kumar, 2019). The majority of
the HNSCC cases are Oral Squamous Cell Carcinomas (OSCC) (Deshpande & Wong,
2008). More than 90% of HNSCC are associated with OSCC patients (Vigneswaran &
Williams, 2014). The incidence rates (mainly OSCC (Collaboration, 2019)) are higher
in South Asian countries such as India (Poddar et al., 2019), Bangladesh (Collaboration,
2019), and Pakistan (Akhtar et al., 2016) as compared to other parts of the world. There
are several known risk factors of HNSCC such as chewing tobacco, smoking cigarettes,
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excessive alcohol consumption (Stenson, Brockstein & Ross, 2016) and oncogenic virus such
as Human papillomavirus (HPV) (Marur et al., 2010). Additionally, epigenetic regulation,
mutation, copy number variation (CNV) and immune host response also play a key role
in carcinogenesis (Network, 2015; Leemans, Snijders & Brakenhoff, 2018). Despite current
advancement in cancer diagnosis and treatment, the overall 5-year survival rate is less
than ∼50% in HNSCC due to a lack of proper diagnostic markers and targeted therapies
(Wiegand et al., 2015).

It has been well documented that detection in early stages leads to higher survival
as compared to late stages in various cancers including HNSCC. The American Joint
Committee of Cancer staging (TNM) describes an early stage, primary tumor as ∼2–4 cm
in diameter without lymph node proliferation and metastasis (TNM stage I and II). The
tumor is considered advanced (late stage), if it is larger (>5 cm) and has spread into
either nearby lymph nodes only (TNM stage III) or has metastasized to other parts of
the body also (TNM stage IV) (https://www.cancer.org/treatment/understanding-your-
diagnosis/staging.html).

A lot of new research have happened in HNSCC in the past few decades, however
without clinically meaningful discoveries. While there are some biomarkers (e.g., HPV+ve
and −ve), however, they lack important features, such as high specificity and sensitivity,
low cost, and short turnaround time. A quick and accurate diagnosis would have numerous
benefits for the patients such as proper treatment resulting in reduced morbidity as well
as and improve treatment outcomes. Unfortunately, there is no such universally accepted
biomarker for HNSCC accepted for clinical use. There is an urgent need for more effective
therapies, and clinically relevant biomarkers to stratify patients in HNSCC.

The micro-RNAs (miRNAs) are ∼18–25 nucleotide long non-coding RNAs. They can
regulate mRNA expression by interacting with the 3′ untranslated regions (UTR) leading to
mRNA degradation. These miRNAs by virtue of their control over mRNA expression have
important regulatory roles such as regulation of cell division, cell maturation, angiogenesis,
proliferation, migration, invasion, metastasis, autophagy, and apoptosis (MacFarlane &
Murphy, 2010). However, in various diseases especially cancers, these miRNAs themselves
can get dysregulated leading to pathological conditions (Esteller, 2011). A large number of
miRNAs have been quite well characterized for their biological function in cancer and their
ability to regulate the expression of different cancer pathways (Iorio & Croce, 2012). It is
also known that the changes in miRNA expression profile can be detected even before the
appearance of clinical symptoms in some cancers (Bianchi et al., 2011). These miRNA due
to their stability and ease of detection (in tissues as well as biological fluids) offer a rational
approach for the development of excellent biomarkers (Mostert et al., 2011). The analysis
of miRNA expression profiles may also offer an insight into underlying tumor progression
and/or identifying new therapeutic targets.

Mathematical modeling has been widely used in disease modeling, classification and
molecular function prediction for long. The advancement of next generation sequencing
(NGS) technology and the availability of massive sequencing data have opened new
avenues in disease process understanding and monitoring by machine learning. The
machine learning techniques are generally used for risk stratification, mutational frequency
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prediction, CNV, and new target identification. It has been suggested that machine learning
(ML) techniques can be utilized for diagnosis and prognosis in cancers (Obermeyer &
Emanuel, 2016). For instance, the ML techniques have been used for the detection of Rat
Sarcoma (RAS) activation pathways in cancers utilizing expression data, SNPs (single
nucleotide polymorphisms) and CNVs (copy number variations) (Way et al., 2018). A
multi-parametric Decision Support System (DSS) with a multitude of heterogenic data
(clinical information, genomics, and imaging data) has been used to predict the OSCC
progression and potential relapse (local or metastatic) (Komura & Ishikawa, 2018). A
study by Avissar et al. (2009) for identification of the miRNAs to predict the presence of
HNSCC identified miR-221 and miR375 to be predictors. However, the study was done
without considering stages/grade. Recently, a machine learning study used neural networks
to predict recurrences in tongue cancer (Alabi et al., 2019). Kim et al. (2019) developed
predictive models for survival prediction in oral cancer patients. There is no report to date
that stratifies the clinical stages in HNSCC patients using miRNA expression profiles. The
identification of late stages often involves cumbersome examination and invasive tests;
therefore, such studies could be immensely useful in accomplishing better diagnosis and
clinical outcomes. Such strategy can also be extended to the cancers that are difficult to
reach and detect such as pancreatic cancer.

In the current study, we have analyzed the miRNA expression patterns in HNSCC
patients in order to identify miRNA signatures that can distinguish stages (early and late
stage) using machine learning approaches. It has to be remembered that the clinical stage is
known to play an important role in the overall survival of the patients. These studies have
led to the identification of signatures that can efficiently stratify the HNSCC patients into
early and late clinical stages as well as to stratify patient’s risk that may help in the decision
of the treatment regimens e.g., whether it is effective to use less aggressive treatment than
highly toxic therapies.

MATERIALS AND METHODS
The overall strategy involves the following steps. (1) data processing (2) data distribution
into training (70%) and test set (30%) (3) model building (4) 10-fold repeated internal
cross validation (5) independent external cross-validation. The detailed workflow has been
provided in Fig. 1. The studies were divided into three parts (i) Identification of diagnostic
signature: Involving the identification of signature miRNAs for patient’s classification into
early and late stage (ii) Identification of prognostic signature: evaluation of independent
prognostic marker using L1-Cox Proportional Hazards Model with penalized regression
to predict the risk to the patient (iii) Functional analysis: The identification of pathways
and processes regulated/influenced by the identified biomarkers.

Data retrieval and pre-processing
The normalized reads of miRNAs (Illumina HiSeq 2000 platform, miRgene-level,
Normalized), mRNAs (lluminaHiSeq 2000 platform, Gene-level) expression were retrieved
from the TCGA (https://cancergenome.nih.gov). A total of 528 samples (484 primary
tumors and 44 Normal Adjacent Tissue (NAT)) with associated clinical information such
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Figure 1 The schematic representation of workflow. The study was divided into four parts. (A) The ex-
pression data (mRNA and miRNA) along with clinical information of HNSCC patients was obtained from
the TCGA and was preprocessed by Z -score normalization and balancing (ROSE/SMOTE) prior to model
building. The data was then systematically divided into training (70%) and test (30%) sets. (B) Identifica-
tion of signature miRNA for early and late stage classification was accomplished using the miRNA expres-
sion data. The training set was used for feature selection and model building using machine learning tech-
niques viz. Random Forest (RF), Support Vector Machine using radial kernel (svmR), adaptive boosting
(adaBoost), Average neural network (avNNet), and Gradient Boosting Machine (GBM). The test set was
used as an external test set to rigorously and independently assess the performance of the generated model.
(C) Prognostic miRNA signature was identified using the LASSO (least absolute shrinkage and selection
operator) based L1-Cox-proportional hazards method. The individual miRNA was then accessed for their
influence on the overall survival of the patients using the Kaplan-Meir test. (D) The functional analysis in-
volved mRNA target prediction, pathways analysis, and Gene Ontology (GO).

Full-size DOI: 10.7717/peerj.9656/fig-1

as TNM stage, status, gender, and age etc. (Table S1) were selected whereas the samples with
unknown stage information were removed. Finally, the data contained 27, 74, 78 and 274
samples from stage I–IV respectively (total 453 samples). The stages I and II were treated
as early stage (total 101 samples) and stage III and IV as later stage (total 352 samples).
Further, miRNAs and mRNAs expression profiles were normalized using the limma-voom
(Law et al., 2014) library package in R3.3.5.

Differential miRNA and mRNAs expression analysis
Differential expression (DE) analysis of miRNAs and mRNAs were performed by
the limma-voom using student’s t -test. The mRNAs and miRNAs were considered
differentially expressed if (|log2FC≥ 1| and p-value < 0.05). The volcano plot and heat
map were generated using Enhancevolcano (Blighe, 2018) and Complexheatmap (Gu, Eils
& Schlesner, 2016) library in R3.3.5.
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Data scaling
In the current study the data was scaled using Z-scaling. The following equation was used
for the scaling of data set.

x ′=
x−x
σ

. (1)

Here, x−x , represented the expression variance. While σ is the standard deviation of
miRNAs expression. The x ′ is the normalized miRNAs expression. The ‘Z-score’ method
represent that data scaled to a mean of zero and a standard deviation of 1.

ML model building for stage classification
The ‘‘caret’’ library of R package (Kuhn, 2012) that contains several machine learning,
complex regression and classificationmethodswas utilized to develop variousML algorithm
based classification models. The machine learning techniques were employed for building
the models for patient classification into clinical stages using miRNA expression profiles. In
this study, four widely used machine learning (ML) methods namely RF, svmR, AdaBoost,
and avNNet were used.

The random forest (RF) method commonly uses non-linear regression models and
has been applied in a variety of computational studies. It is a simple, interpretive, and
flexible method which allows for a large number of predictor variables. Additionally, it also
predicts well in the small sample sizes and high genetic heterogeneity (Alexopoulos, 2010).
It comprises building trees from bootstrapped training data in such a way that each split
is based on a random sample of m variables from a full set of n attributes (Liaw &Wiener,
2002).

IG(n)= 1−
j∑

i=1

(pi)2. (2)

Here IG is Gini impurity of a node n is 1- the sum of overall predictor as j of the fraction
of each pi square

Support Vector Machine (SVM) is popular ML technique in medical research for
molecular function prediction, genomics variation, histopathology image classifications
and subtyping of diseases (Bianchi et al., 2011). It is a non-probabilistic algorithm classifier
based on the hyperplane line to maximize the maximum margin to separate two classes
based on the two vectors points to achieve the best fit classification (Huang et al., 2018).∫

(x)=β0+
∑
i∈S

αiK (x,xi). (3)

Here, function (x) is the kernel function which calculate the similarity between training
and predicted x,xi and αi represent the parameter corresponding to each training and
predictor variable. β0 isthe constant.

The AdaBoost is an algorithm for producing strong classifiers from the weak classifier.
It is based on the penalized weighted matrix of each instance and voting them according
to their weight scheme. It is a popular machine learning method for both balance and
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unbalanced data sets (Zemel & Pitassi, 2001). The AdaBoost equation is following

H (x)= sign

( T∑
t=1

αtht (x)

)
. (4)

Where, ht (x) is the out of weak classifier of t for input x and αt is weight given to model.
The αt = 0.5∗ ln(1−E)/E . Here, E is based on the error rate of model.

The avNNeT is a kind of neural network capable of learning nearly infinite number
of mapping functions. The neural network (NN) behaves like a natural human neuron.
Every predictor variables (inputs) connects to an output response variable (output), either
directly or through backward and forward propagation of single and several of hidden
nodes to calculate units (neurons). The depth of an NN corresponds to the number of
hidden layers. The calculation performed in NN are performed in a hidden layer called
deep network (Huang, Zhu & Siew, 2004). The NN is commonly used for calculation of
gene expression, CNV and clinical data for prognosis prediction of complex diseases such
as cancer (Mirza et al., 2019).

alj = σ

(∑
k

w l
jka

l−1
k +b

l
j

)
. (5)

Here, alj of the jth neuron in the lth layer is related to the activation in the (l−1)th
layer. The σ is vectorising function. The W l is weight matrix of each layer, l. The jth row
and kth column is w l

jk . Also, for each layer l as define j a bias vector blj .
The GBM algorithm is used to convert weak learners into strong learners. It is the

tree-decision boosting based classification model where each of instances assigned an equal
weight at the start. After the examination of first steps, then increase the weight of those
observation that are difficult to classify and lower the weight for those that are easy to
classify. This is the iterative process to optimized the best fit for classification (Friedman,
2001). The general equation used for the GBM is given below

hm(x)=
jm∑
j=1

bjm1Rjm(x). (6)

Here, m-th step fit the decision tree hm (x). jm number leaves in each steps. The bjm is
the value predicted in the region of Rjm.

Data balancing : A challenge in biomedical studies is working with imbalanced data
sets i.e., unequal number of normal and disease samples. Unbalanced predictive variable
ratio do not meet the assumptions of the machine learning models and its predict biased.
Therefore, SMOTE algorithm (Chawla et al., 2002) was used to balance the data using
the ‘DMwR’ library in R.3.3.5 package. The SMOTE is a popular algorithm to deal with
unbalanced data (Lusa, 2013; Ramezankhani et al., 2016). There are two types of sampling
strategies commonly employed in machine learning viz. oversampling and under-sampling
for unbiased classification. In under-sampling, the samples are reduced based on k nearest
neighbor (kNN) clustering centroid distance while in oversampling minority classes are
amplified to balance both predictors. In our data set, the number of late stage patient
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samples was reduced so as to match the number of early stage patient samples (N = 101)
(Fig. S1A) using the under-sampling method and in oversampling (Fig. S1B), early stage
data was amplified (N = 352) to balanced early and later-stage samples.

Thereafter, the datasets (under and over sampled) were systematically distributed into
training (70%) and test set (30%) separately. In under-sampled data, 141 and 61 samples
were used as training and test set respectively whereas in oversampled data 478 and 206
samples were used as training and test set respectively. First, the model was trained using
only training set the test set was kept aside for independent external cross-validation.
A 10-fold repeated internal cross-validation with 10-time iterations to randomized data
set was done to avoid generation of over/under fitting model. The cost functions were
optimized (100 to 3,000 with 100 steps per iteration) to achieve accurate classification.
The performance of the generated model was examined based on sensitivity, specificity,
accuracy, and AUC (ROC), precision and MCC by external independent data. Equations
are given below:

Sensitivity=
TP

TP+FN
(7)

Specificity=
TN

TP+FP
(8)

Precision=
TP

TP+FP
(9)

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (10)

Where TP is true positive; TN is true negative; FP false positive; and FN is false negative,
MCC is Matthews correlation coefficient.

Patient’s risk assessment based on signature miRNA expression
Further, we performed L-1 Penalized Estimation in the Cox Proportional Hazards Model
using optimal cross-validated likelihood to identify prognostic markers based on the
survival status (alive/dead), survival time and normalized miRNAs expression (Acharya et
al., 2017). The Kaplan–Meier curve and the Log-rank method were used to estimate the
significance of median miRNA expression on the survival of the patients. It evaluates the
independent survival of the patient between the two risk groups (low/high). The patient’s
clinical parameters such as age, survival status, gender, metastasis, TNM stages, andmedian
expression of significantmiRNAswere evaluated for their association with patient’s survival
using cox-regression for a univariate and multivariate analysis.

The risk score for individual patients was calculated using L1-penalized (LASSO)
likelihood Cox-regression (Goeman, 2010). As earlier, the data was partitioned into
training (70%) and test (30%) to assess the performance of the generated models. The
prognostic value of individual miRNAs was first calculated by the L1-penalised Cox
univariate proportional hazard regression in R tool using a ‘penalized’ package. The
significant miRNAs (p-value < 0.05) were used in subsequent Cox multivariate analysis.
The prognostic model was built by the linear combination of the expression level of
significant miRNAs multiplied with the Cox regression coefficient (β). The standard
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formula was as follows:

Risk Score=X1β1+X2β2+···+Xnβn+C . (11)

Using the median risk score the patients were divided into high- and low-risk groups.
The time-dependent receiver-operating characteristic (ROC) curve was created using
‘‘survivalROC’’ package in R to evaluate the performance (specificity and sensitivity) of
the generated miRNA prognostic signature (Chawla et al., 2002).

The mRNAs target identification for identified miRNAs
ThemRNAs targets of the identified biomarkers (diagnostic and prognostic) were predicted
using the IPA (Ingenuity Pathway Analysis). The IPA predict miRNAs target based on three
evidence (i) experimental (ii) high confidence (Kozomara & Griffiths-Jones, 2014) and (iii)
low confidence. The experimental and high confidence interactions are curated by experts.
In the current studies only experimentally validated and high confidence miRNA-mRNA
interactions were used. The miRNAs can have a broad range of mRNAs targets and many
of them may not be relevant to the disease under consideration. Therefore, the predicted
target mRNAs were considered only if they are also significantly differentially expressed
in the HNSCC. As a result, 2 sets (set 1 with 230 and set 2 with 262 mRNAs) were finally
selected for diagnosis and prognostic miRNA targets. The miRNA-mRNAs interactions
were further visualized for better understanding using Cytoscape3.7 (Shannon et al., 2003).

Pathway enrichment analysis
The previously identified genes (230) of set and 262 were further used for the identification
of pathways and other molecular functions, network and toxicity enrichment analysis in
the IPA (Ingenuity Pathway analysis). The IPA can analyze enriched biological pathways,
disease and functions, upstream and downstream interactions, molecular function and
toxicity for a given gene set. It also gives the statistical significance for each enriched process.

Gene ontology (GO) enrichment
The Gene Ontology is a vocabulary developed to compare and identify genes based
on the processes in which they are involved. The GO is defined into three categories
viz. Biological Process (BP), Molecular Function (MF), and Cellular Component
(CC). In the current studies, the enrichment analysis was performed using PANTHER
(Mi et al., 2019) (http://www.pantherdb.org/geneListAnalysis.do) and enrichR (https:
//maayanlab.cloud/Enrichr/) with p-value < 0.001 for identification of significant GO
terms.

RESULTS
One of the goals of this study was to develop an efficient miRNA signature to correctly
classify the early and late stage patients usingmiRNAs expression profiles using themachine
learning algorithms. Further, a least absolute shrinkage and selection operator (LASSO)
penalized regressionmodel was employed to identify signaturemiRNAs for their prognostic
potential. The network and pathways analysis revealed that several target genes involving
various tumor suppressor and oncogenes in cancer regulatory pathways may be affected by
the aberrant expression of the identified miRNAs. The important results are given below.
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Figure 2 Volcano plot for expressed genes in (A) early stage (B) late stage. The miRNAs were consid-
ered significantly differentially expressed (DE-miRNA) if (|log2FC ≥ 1| and p-value< 0.05). Total 171
DE-miRNAs (under-expressed= 62 and over-expressed= 109) were identified in early stage whereas 174
DE-miRNAs (under-expressed= 73 and over-expressed= 101) were identified in the late stage. (C) Top
five up (red) and down (black) regulated miRNAs in early stage (D) Top five up (red) and down (black)
regulated miRNAs in late stage.

Full-size DOI: 10.7717/peerj.9656/fig-2

Differentially expressed microRNAs (DE-miRNAs)
There were 171 miRNAs differentially expressed (62 over and 109 under-expressed) in
early and 174 miRNAs differentially expressed (73 over and 101 under-expressed) in late
stages (Figs. 2A & 2B) (Tables S2A & S2B). The top 5 over and under-expressed miRNAs
are given in Figs. 2C and 2D. The heat map of differentially expressed miRNAs in early
stage shows a visual distinction between the expression of miRNAs in normal and cancer
tissues (Figs. S2A & S3B).

An analysis of the common and stage specific miRNAs revealed that there are 148
miRNAs common to early and late stages, whereas 23 and 26 miRNAs are specific to early
and late stages respectively (Fig. 3A) (Table S3). Similar to the DE-miRNAs analysis, the
DE-mRNAs of 101 early stage with 44 normal adjacent tissues (NAT) samples were resulted
in the 3831 differentially expressed mRNAs (2407 over and 1424 under-expressed) with
(|log2FC≥ 1| and p-value < 0.05) (Fig. S3).

Identification of miRNA signature for classification of early and late
stages
An important objective of this study was to identify the miRNAs signature for the early
and late (TNM stage) using the miRNAs expression profiles. The signature miRNAs were
identified using the ensemble machine learning feature selection method (Random Forest
(RF), Support VectorMachine Radial Kernel (svmR), Adaptive Boost (AdaBoost), averaged
Neural Network (avNNet), and Gradient Boosting Machine (GBM)). A detailed method
for feature selection by minimum Redundancy Maximum Relevance (mRMR) algorithm
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Figure 3 Feature selection for model building. The distribution of miRNAs into early and late stages.
There were 23 miRNAs specific to early-stage while 26 miRNAs were specific to the late-stage. A total of
148 miRNAs were common to both the stages. (B) The schematic presentation of the feature selection in
machine learning. (C) The common and specific features among top 20 features predicted by each of the
five ML techniques. (D) The six common miRNAs (highlighted in red color box) predicted by all five ML
methods and eight common in any three methods with the average importance for predictors.

Full-size DOI: 10.7717/peerj.9656/fig-3

is given in Fig. 3B. The top 20 predictor miRNAs were identified using each of the machine
learning methods (RF, svmR, AdaBoost, avNNet and GBM) and the common among them
were chosen for further model building and evaluation (Fig. 3C, Table S4). The ensemble
ML based mRMR feature selection method reduce the bias that might be introduced by
one or twomethods. As a result, a 6 miRNA (let-7c, miR29c, miR-96, miR-133a, miR-196a,
miR-519a) with average importance ranging from 90.03 to 78.27 for classification were
selected for further studies. The mean importance of these miRNAs is shown in Fig. 3D.
Among them, the miR-96 and miR-196a are over-expressed while the rest (miR-133b,
miR-29c, miR-519a and let-7c) are under-expressed in normal vs primary tumor samples
(Fig. S4). It is interesting to note that miR-519a is significantly differentially expressed in
early stage only.

The performance of generated models for stage classification
The 6 miRNAs were selected by all five machine learning methods. The model was built
using a training set and an independent test set (70:30) ratio was used for model prediction.
The Synthetic Minority Oversampling Technique (SMOTE) algorithm was used for data
balancing. In the under sampling total 101 (early and late stage) samples were used
for internal model building and performance was evaluated using accuracy, sensitivity
specificity, area under the curve (AUC), precision call and MCC of RF, svmR, AdaBoost,
avNNet, and GBM. The accuracy of these five model was found to be 0.79 ± 0.03, 0.71 ±
0.04, 0.76 ± 0.03, 0.76 ± 0.03 0.79 ± 0.03, 0.71 ± 0.04, 0.76 ± 0.03, 0.76 ± 0.03, and 0.64
± 0.042 for under-sampling methods. Similarly, the accuracy for RF, svmR, AdaBoost,
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Figure 4 The performance of the generated model. The performance of the models was examined for
accuracy, specificity, sensitivity and ROC generated for (A) over sampled and (B) under sampled data set.
The model robustness was further evaluated by external data (test set) and AUC was shown in (C) over-
sampling and (D) under sampling. In both the sampling methods the generated models showed good clas-
sification accuracy. The estimated error bars shown as standard error.

Full-size DOI: 10.7717/peerj.9656/fig-4

avNNet and GBM was 0.87 ± 0.021, 0.86 ± 0.032, 0.87 ± 0.035, 0.85 ± 0.032, and 0.80 ±
0.038 respectively for oversampled data (early and late = 352 samples) The details of the
internal top 10 models of ML is given in the Table S5. The detailed performance of each
ML algorithm is given in Figs. 4A & 4B.

The final model performance was evaluated by the independent test set using accuracy,
sensitivity, specificity, AUC, precision, and MCC. The accuracy for RF, svmR, AdaBoost,
avNNet, GBM was found 0.87, 0.87, 0.87, 0.75, and 0.84 for test set generated using
oversampled data. Whereas the accuracy was 0.79, 0.76 0.78, 0.68, 0.77 for the above
five methods for the test set generated using under-sampled data . The MCC (0.65,
0.62, 0.64, 0.59, and 0.68 was for RF, svmR, AdaBoost, avNNet and GBM) gave better
model performance over other confusion matrix categories. The robustness of model was
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evaluated using the area under curve (AUC) of Receiver Operating Characteristics (ROC)
given in Figs. 4C & 4D for over and under sampled data. The RF and AdaBoost found
the subsequently higher prediction accuracy in the under and over sampling methods and
avNNet was the least prediction accuracy. The overall classification result showed, the
generated 6 miRNAs signature can stratify the HNSCC patients on clinical TNM stages
with reasonable accuracy based on expression profile.

Risk score calculation
To assess the prognostic performance of the generated model the time-dependent
ROC curve was considered for risk score (low and high) calculation. The overall 5-
year risk score was calculated of the normalized expression with the coefficient of
the LASSO cox-coefficient. As stated in methodology, the risk score can be used to
assess the risk for a patient based on the median value expression. The risk score was
calculated using the risk score equation as given below and plotted using Kaplan-
Meir plot Fig. 5. Kaplan-Meir plot for each of the signature miRNAs is given in
Fig. S5. Risk Score= (0.022× let−7expression)+ (−1.996×miR-96expression)+ (6.593×
miR-9expression)+ (1.361×miR-143expression)+ (−2.938×miR-379expression)+ (−1.249×
miR-545expression)+ (−1.969×miR-658expression)+ (−1.446×miR-3926expression)−1.505.

The patient samples were systematically divided into training (368 samples) and test
sets (160 samples). The 5 risk score (high and low) prediction was evaluated by AUC.
The AUC for the training set and test set was found to be ∼0.86 and ∼0.79, respectively
which indicated good performance of the identified signature (Figs. 6A & 6B). This
time-dependent risk prediction analysis clearly showed that these miRNAs can be used for
risk assessment of HNSCC patients.

Univariate and multivariate analysis for prognostic evaluation
The identified miRNA signature was evaluated against various clinical variables to check
their effect on survival using the standard Cox-proportional hazards regression (Table 1).
It indicates that advancing pathological stages may have a significant adverse impact on
the survival of the patients. The Cox univariate analysis showed that pathological stage,
T stage, N stage, metastasis and signature miRNAs were significantly associated with
the prognosis. While in multivariate analysis pathological T stage (p-value = 0.017) and
signature mRNA (p-value = 0.023) showed significant p-values associated with the poor
prognosis (Table S6).

The microRNA-mRNA interactions
It was imperative to understand the role of the identified miRNA signatures in different
biological processes. A mapping of the mRNA targets of the identified signatures (6
miRNAs for stage classification and 8 for prognosis) resulted in the identification of 1532
and 1446 mRNAs, respectively. Further, the analysis was done to select those mRNAs that
get differentially expressed in various stages of HNSCC. It was found that for the identified
diagnostic and prognostic miRNA signatures, there are 2 set of mRNA’ target (set 1 with
230 and set 2 with 262) mRNA that were differentially expressed respectively in the HNSCC
patients (Tables S7 & S8).
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Figure 5 Survival plot of prognostic signature miRNA as biomarker. The cumulative effect of identified
miRNA (eight in total) expression on the patient’s survival. The cox-proportional hazard analysis revealed
that the miRNAs were significantly associated with the overall survival of the patients (p-value< 0.05).

Full-size DOI: 10.7717/peerj.9656/fig-5

Figure 6 The time-dependent ROC curve for evaluation of the prognostic performance of the gener-
ated miRNA signature for (A) training set and (B) test set. The 5 years risk score prediction showed AUC
of 0.86 in training set and 0.79 in the test.

Full-size DOI: 10.7717/peerj.9656/fig-6

Biological pathways, diseases functions and network enrichment
analysis
As indicated earlier, the pathways enrichment analysis was performed by the Ingenuity
Pathway Analysis (IPA) separately for diagnostic targets (set 1) and prognostic targets
(set 2).
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Table 1 The univariate andmultivariate Cox regression analysis revealed independent risk factors.

Variables Cox univariate analysis Multivariate analysis

p-value HR (95% CI) p-value HR (95% CI)

Age (high vs. low) 0.54 1.3 (0.99–3.18)
Pathological stage (I+ II vs. III+ IV) 0.0082* 1.7 (1.1–2.40)
Pathological T stage (T1+ T2 vs. T3+ T4) 3.1e−05* 2 (1.5–2.8) 0.0175* 3.4 (1.24–9.42)
Pathological N stage (N0 vs. N1+ N2) 0.00075* 1.8 (1.3–2.6)
Pathological metastasis (M0 vs. M1) 0.0021* 28 (3.3–230)
Gender (Male vs. Female) 0.35 0.72 (0.54–0.98)
Signature miRNAs risk (Low vs. High) 0.044* 1.4 (1–2) 0.0235* 1.68 (0.88–3.20)

Analysis of set 1: The top enriched pathways for diagnostic targets were (i) GP6 signalling
(ii) Neuroinflammation signalling (iii) Intrinsic Prothrombin Activation Pathway (iv)
granulocyte adhesion and diapedisis (Fig. 7). Other enriched pathways are given in
Table S9. The KEGG pathways analysis also revealed that majority of the genes were
associated with pathways such as cytokine-cytokine receptor interaction, small cell lung
cancer, transcriptionalmisregulation in cancer, ECM-receptor, and glutathionemetabolism
(Table S10). While WikiPathways enrichment showed, nuclear receptors meta-pathways
(ID: WP2882), TGF-beta signalling pathways (WP366), PI3K-Akt-mTOR-signalling
pathway (WP4172) (Table S11). The pathway analysis revealed that these miRNAs targets
are highly enriched with cancer associated pathways. The top disease and disorders
associated with the set 1 are organismal injury and abnormalities, cancer, connective tissue
disorder, and skeletal muscle disorder. Top molecular functions and cellular functions
were linked with cellular movement, cellular assembly and organization, cellular function
and maintenance, cell death & survival and cell development (Fig. 8) (Table S12). The top
upstream regulators were miR-29c, TGFB1, estrogen receptor, histone h4, and CREBwhich
are associated with cell growth and proliferation. The miR-29, a potent tumor suppressor,
is found under-expressed in this study. Interestingly, the top analysis of the upstream
regulatory genes showed that miR-29 directly targets 11 genes (9 over-expressed and 2
under-expressed) associated with head and neck cancer (Fig. S6). A thorough look at these
mRNAs revealed that many of them are transcription factors (total 31) and part of cancer
gene panels (total 19) (Sondka et al., 2018). These mRNAs were used in the subsequent
functional analysis step. It was imperative to note that many of the transcription factors
and cancer censes gene are targeted by the let-7c which is well known for its role in a variety
of cancers (Fig. S7). The toxicity enrichment analysis revealed increased levels of alkaline
phosphatase (ALP). Interestingly, the serum ALP level have been found to be significantly
higher in OSCC patients (Acharya et al., 2017).

Analysis of set 2: The pathway enrichment analysis by IPA showed that the top enriched
pathways are neuroinflammation signalling, small cell lung cancer, MAPK signalling, and
cell cycle: G2/M DNA damage checkpoints (Fig. 9) (Table S13). Top prognostics signature
miRNAs are directly targeting several key cancer regulatory pathways such as p53 signalling,
ATM signalling, EMT pathways etc., (Fig. 10). The KEGG pathways analysis also revealed
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Figure 7 The pathway enrichment analysis of signature miRNA. The pathway enrichment analysis for
the identified signatures of set 1 genes (230 mRNA). The top most enriched pathways of diagnostic signa-
ture miRNA targets genes in IPA.

Full-size DOI: 10.7717/peerj.9656/fig-7

Figure 8 The signature miRNAs targets different pathways genes. The targets of signature miRNA in
different pathways. The signature miRNA are regulating key cancer pathways e.g., Epithelial-Mesenchymal
Transition, Wnt/β-catenin signalling, molecular mechanism of cancer, p53 signalling, and HOTAIR regu-
latory pathways.

Full-size DOI: 10.7717/peerj.9656/fig-8

that majority of the genes were associated with cancer progression such as protein digestion
and absorption, ECM-receptor, transcriptionalmisregulation in cancer, and focal adhesion.
In case of WikiPathways, the ECM and membrane receptors (ID: WP291), miR-509-3p
alteration of YAP1/ECM axis (WP3967), and focal adhesion-PI3K-Akt-mTOR-signalling
pathway (WP3932) were found enriched (Table S14).
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Figure 9 The pathways enrichment analysis for the identified signatures of set 2 genes as prognostic
marker. The enriched biological pathways by IPA. The prognostics signature miRNAs are mostly enriched
cancer-related pathways such as small cell lung cancer, Cell-Cycle:G2/M DNA damage checkpoint regula-
tion, NF-kappa B signalling, etc.

Full-size DOI: 10.7717/peerj.9656/fig-9

Figure 10 The prognostics signature target different carcinogenic gene and pathways. The molecular
target of these eight signature miRNA were predominantly associated with tumor-suppressors and onco-
genes in different pathways. Most of the miRNA targets are directly associated with HNSCC progression
and proliferation. These miRNAs also targeting different cancer regulatory pathways i.e., p53 signalling,
ATM signalling, regulation of the EMT pathways, EIF2 signalling, HOTAIR Regulatory pathways, and
molecular mechanisms of cancer. The pink marked mRNAs are known to be associated with head and
neck cancer.

Full-size DOI: 10.7717/peerj.9656/fig-10
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The top regulatory effect networks were MITF, CD3, YAP1, let7, TGF β1, and
TNF. MITF is mitochondrial transcription factor genes and have essential roles in
cell differentiation, proliferation and survival of cell (Bertolotto et al., 1998). It is also
important co-activator of TGF β (Nijman et al., 2006). CD3 is cluster of differentiation
3 activates in early oral premalignant (Öhman et al., 2015). The Hippo-YAP1 pathway
is oncogenic in head and neck cancer (Santos-de Frutos, Segrelles & Lorz, 2019). TGF β1
dysregulation is very common in several cancers including HNSCC. It is key regulator of
epithelial cell proliferation, growth factor and angiogenesis (Rothenberg & Ellisen, 2012).
The dysregulation of TNF genes are involved in almost all types of cancer. The TNF plays
an important role in cytokine production and have critical role in immune regulation
(Alsahafi et al., 2019).

The top diseases and disorders found to be associated with the genes of this set were
cancer, organismal injury & abnormalities, and hematological disorders. Additionally,
top associated network functions were associated with cell death and survival, cellular
development, cellular growth, and proliferation (Table S15). The miRNA-mRNA
interaction analysis showed that there are 16 mRNAs which are part of cosmic consensus
cancer gene panel and there are 20 transcription factors among the targets. Six mRNAs
were common to transcription factors and cancer gene panels (Fig. S8). Overall enrichment
analysis revealed that these miRNAs were directly or indirectly associated with the
tumorigenesis and poor prognosis.

Gene ontology enrichment analysis
Set 1: The most enriched biological processes were associated with extracellular
matrix proteins organization (GO:0030198), regulation of natural kill cell chemotaxis
(GO:2000501) and response to alcohol (GO:0097305). While top molecular functions
enriched genes were mRNA 3′-UTR binding (GO:0003730), chemokine activity
(GO:0008009) and transforming growth factor beta-activated receptor activity
(GO:0005024). The cellular component such as messenger ribonucleoprotein complex
(GO:1990124), serine/threonine protein kinase complex (GO:1902554), gamma-tubulin
large complex (GO:0000931) were found majority of genes involved in these process
(Fig. S9).

Set 2: Many of the enriched GO processes are similar to set 1. However, there
are notable differences as well. The most enriched genes were involved in biological
process such as collagen fibril organization (GO:0030199), negative regulation of
myeloid cell differentiation (GO:0045638), and negative regulation of cell differentiation
(GO:0045596). In the molecular functions enriched genes were platelet-derived growth
factor binding (GO:0048407), transcriptional activator activity, RNA polymerase II
transcription regulatory region sequence-specific binding (GO:0001228), cell proliferation
(GO:0008283), metabolic process (GO:0008152), biological adhesion (GO:0022610). The
endoplasmic reticulum lumen (GO:0005788), integral component of plasma membrane
(GO:0005887), and intermediate filament (GO:0005882) were most enriched cellular
component terms (Fig. S10).
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DISCUSSION
The HNSCC is associated with high mortality and morbidity. It is highly heterogeneous
and identification of robust, potential and reproducible biomarker is a major challenge.
The TCGA provides detailed transcriptomic data with clinical information that
can be gainfully used for better risk prediction and disease management. The ML
techniques, riding the recent advancement in software, hardware, and sequencing
technologies, are being used to identify patterns or factors (mutation/variation) for
personalized diagnostics, prognostics, and therapeutics (Kann et al., 2019; Topol, 2019).
The alteration in miRNA expression in tissue as well as in biological fluids has been
reported to be an important biomarker in various cancers. Interestingly, during
the course of this work, we came across the announcement by Toshiba company
(https://www.toshiba.co.jp/rdc/rd/detail_e/e1911_06.html) about a device that can predict
the presence of 13 different cancers using the miRNA expression in blood alone with high
(>99%) accuracy. Thus proving beyond doubt that miRNA expression data can be utilized
for the development of a simple yet highly accurate screening tool for various cancers.

The etiology and aggressive behavior of HNSCC are not well understood at themolecular
level. It calls for the studies to improve the molecular understanding leading to overall
better clinical outcomes. Therefore, the main purpose of this study was to identify a set of
signature miRNA using ML techniques to correctly classify the early and late-stage along
with other prognostic biomarkers. The main findings of the study are outlined below:

The machine learning techniques identified biomarkers with good accuracy: The analysis
resulted in the identification of 6 miRNA signature which predicted the early and late
stages with good accuracy on external data set. The good accuracy in classification of the
samples in the external set further validated the good classification ability of the generated
models. It is pertinent to note that the stage is also a significant prognostic indicator.

The evaluation of the identified prognostic signature indicated that these miRNAs
are significantly associated with poor survival of the patient and thus it can be a good
prognostics biomarker. The IPA, KEGG and WiKipathways analysis also revealed that
target of these miRNAs are highly associated with the cancer initiation and progression.
The molecular functional analysis of the identified miRNA also indicated that they directly
or indirectly regulate several oncogenes, tumor suppressor genes and transcription factors.

The data balancing by enhanced sampling can improve accuracy: The small cohort and
imbalanced data highlight the major challenges in this study. The SMOTE algorithm
was therefore utilized to generate a balanced dataset for classification of stages (Vafaee
et al., 2018). It was interesting to note that the models generated with oversampling of
the data showed better accuracy as compared to the undersampled data. Perhaps, the
undersampling of the data might have resulted in loss of important information and thus
reduced accuracy.

The identified miRNAs are detectable in biological fluids: A detailed literature survey
suggested that the identified miRNAs are related to diagnostics and prognostics of many
cancers. Interestingly, they are also found in biological fluids (plasma, serum, etc.) in
several cancers including HNSCC. The miR-29 and let-7 family miRNAs were significantly

Kumar et al. (2020), PeerJ, DOI 10.7717/peerj.9656 18/24

https://peerj.com
https://www.toshiba.co.jp/rdc/rd/detail_e/e1911_06.html
http://dx.doi.org/10.7717/peerj.9656


downregulated (p< 0.001) in the serum of patients with high-risk oral lesions. The
miR-196a was found up-regulated in the plasma of HNSCC patients. The miR-486 was
found downregulated in blood samples of non-small lung cancer patients. The reduced
expression of circulatingmiRNA-133bwas also associatedwith the clinical stage,metastasis,
and survival of breast cancer patients. The upregulation ofmiR-96 is associated with various
cancers such as breast (Zhang et al., 2017), hepatic (Musaddaq et al., 2019), and colorectal
(Brunet Vega et al., 2013). The deregulation of miR-519 is linked with the prognosis and
diagnosis of lung cancer and it’s found to be in circulating in plasma (Wang et al., 2019).
The overall literature survey suggested that the identified miRNAs were found dysregulated
in biological fluids of patients of various cancers. They can also be useful for the detection
and prognosis of HNSCC in biological fluids as well, though experimental validation would
be needed to prove this assumption.

CONCLUSION
In this study we have tried to identify miRNA expression patterns for classification of
TNM stage (early and late stage) in HNSCC patients using machine learning algorithms
(RF, svmR, adaBoost, avNNet and GBM). The dissection of miRNA expression with the
help of machine learning tools provided us with miRNA signatures that can distinguish
between early and late-stage tumor samples and risk to the patient with good accuracy.
The five-year overall survival analysis revealed that the dysregulation of the identified
miRNAs is significantly correlated with poor prognosis. We have further identified the
functional roles of the identified miRNAs, their mRNA targets, pathways and process that
may get perturbed in the HNSCC carcinogenesis and progression. Very interestingly, the
identified miRNAs were also found to be differentially expressed in the biological fluids
of patients of HNSCC patients. This opens a possibility that these miRNAs can also be
proposed as non-invasive biomarkers for HNSCC, although it will need a large number of
patient samples and experimental validation. We hope that these studies will help in the
development of potential biomarkers and miRNA based therapies in cancer.
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