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ABSTRACT
Purpose. The aim of this study was to explore the effective immune scoring method
and mine the novel and potential immune microenvironment-related diagnostic and
prognostic markers for cervical squamous cell carcinoma (CSSC).
Materials andMethods. The Cancer Genome Atlas (TCGA) data was downloaded
and multiple data analysis approaches were initially used to search for the immune-
related scoring system on the basis of Estimation of STromal and Immune cells in
MAlignant Tumour tissues using Expression data (ESTIMATE) algorithm. Afterwards,
the representative genes in the gene modules correlated with immune-related scores
based on ESTIMATE algorithm were further screened using Weighted Gene Co-
expressionNetworkAnalysis (WGCNA) andnetwork topology analysis. Gene functions
were mined through enrichment analysis, followed by exploration of the correlation
between these genes and immune checkpoint genes. Finally, survival analysis was
applied to search for genes with significant associationwith overall survival and external
database was employed for further validation.
Results. The immune-related scores based on ESTIMATE algorithm was closely
associated with other categories of scores, the HPV infection status, prognosis and
the mutation levels of multiple CSCC-related genes (HLA and TP53). Eighteen new
representative immune microenvironment-related genes were finally screened closely
associated with patient prognosis and were further validated by the independent dataset
GSE44001.
Conclusion. Our present study suggested that the immune-related scores based
on ESTIMATE algorithm can help to screen out novel immune-related diagnostic
indicators, therapeutic targets and prognostic predictors in CSCC.

Subjects Bioinformatics, Computational Biology, Gynecology and Obstetrics, Oncology, Data
Mining and Machine Learning
Keywords Cervical carcinoma, TCGA, Immune, Prognosis

INTRODUCTION
Cervical squamous cell carcinoma (CSCC) is one of the most common malignancies in
female reproductive system, which severely threatens female health and life quality (Marth
et al., 2018). CSCC is highly prevalent in developing countries, accounting for 60–90%
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of global cases (Chen et al., 2017). Radical hysterectomy is currently considered as the
dominant therapy for early-stage cervical cancer (Gil-Moreno & Magrina, 2019; Uppal et
al., 2019). With the popularization of cervical cancer screening, the therapeutic efficacy
and prognosis of early-stage patients has been greatly improved (Altobelli et al., 2019;
Ngo-Metzger & Adsul, 2019). Postoperative relapse and metastasis of CSCC remain the
major causes of death in clinical practice (Alvarado-Cabrero et al., 2017;Nanthamongkolkul
& Hanprasertpong, 2018). Patients with advanced-stage CSCC generally undergo adjuvant
radiotherapy and/or chemotherapy; however, the therapeutic effect seems unsatisfactory
(Angeles et al., 2019; Bosque, Cervantes-Bonilla & Palacios-Saucedo, 2018). At present, the
International Federation of Gynaecology and Obstetrics (FIGO) staging classification is the
major criterion for the prognostic prediction of patients with CSCC (Matsuo et al., 2019).
Nevertheless, CSCC patients within similar clinical stage usually show diverse prognostic
outcomes. Indeed, we now understand that the natural history of CSCC tumorigenesis
is a continuous progress accompanied by a series of gene mutations over time. Based on
this, CSCC was considered as a heterogenous collection of diseases, which were regarded
as the major cause of anti-cancer treatment resistance and cancer relapse (Bachtiary et al.,
2006; Kidd & Grigsby, 2008; Srivastava et al., 2019). As FIGO staging lacks heterogeneity of
CSCC, clinical treatment decisions are now made depending on multiple factors including
gene expression and mutation status other than traditional clinicopathological features.
Thus, there is an urgent need to identify high-risk subgroups for individualized monitoring
and optimized postoperative therapy in routine clinical practice.

Given the increasing evidence that various immune cells and inflammatory mediators
are closely associated with the development of CSCC, tumor immune microenvironment
is drawing accumulating attention nowadays (Piersma, 2011). The leukocytes, neutrophils,
lymphocytes andmacrophages directly contribute to the immune response, which could be
easily and conveniently detected (Chen et al., 2019;Heintzelman, Lotan & Richards-Kortum,
2000; Lu et al., 2018; Rangel-Corona et al., 2011). In addition, several immune checkpoint
biomarkers and cytokines have been identified tomediate the crosstalk between cancer cells
and stromal microenvironment (De Nola et al., 2019; Otter et al., 2019). In the last decade,
various studies have investigated the relationship between the prognosis of patients with
primary CSCC and the immunological landscape through high-throughput quantitative
measurements of cellular and molecular characteristics (Minion & Tewari, 2018; Punt et
al., 2015). These studies revealed the great heterogeneity of the inflammatory/immune
response in CSCC, which might determine to a large extent the final outcome of patients
(Bachtiary et al., 2006). More recently, several researchers proposed a novel classification
based on the immunological status of CSCC according to the ratio of different immune cells
(such as monocyte/lymphocyte ratio or Th17/Treg ratio) in the tumor microenvironment,
which might play a significant role in the accurate prediction of patient prognosis (Huang
et al., 2019; Zhang et al., 2011). Unfortunately, almost none of the previous studies have
reached clinical practice because of lacking the exploration from large sample data.

On this account, multiple immune scoring methods have been exploited using the
expression data of immune-related genes in The Cancer Genome Atlas (TCGA) database
which enable us to quantify the immune microenvironment status of a specific patient
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(Lee et al., 2012; Shen et al., 2018). For instance, the systemic immune-inflammation index
(SII) established according to peripheral lymphocyte, neutrophil and platelet counts has
been considered as a good indicator reflecting the local immune response and systemic
inflammation (Fest et al., 2019). Moreover, SII has been confirmed to have remarkable
association with the prognosis of numerous tumors, including non-small cell lung cancer
(Guo et al., 2019), esophageal cancer (Ishibashi et al., 2018) and colorectal cancer (Xie et
al., 2018). However, there have been only limited studies designed to develop an immune-
related prognostic signature for CSCCup to now.Yang et al. (2019) established a prognostic
immune signature for CSCC based on differential expression analysis and LASSO penalized
Cox proportional hazards regression. However, like many other immune-related models
(Cheng et al., 2016; Li et al., 2020; Lu et al., 2020), the variables were screened out based
on single gene expression or immune cell proportion. Therefore, despite the predictive
efficiency of these models, their relevance to tumor immunemicroenvironment is still need
to be demonstrated. Moreover, among several existing immune-scoring systems, which
one is most suitable for CSCC is waiting to be solved.

Earlier published work by Yoshihara group presents a new algorithm that uses the
transcriptional profiles of cancer samples to infer the fraction of infiltrating stromal
and immune cells, called ESTIMATE (Yoshihara et al., 2013). Importantly, the ESTIMATE
method can be broadly applied across almost all human solid cancers. Thus, the ESTIMATE
method is a powerful tool for oncologists to elucidate the complex roles of tumor
microenvironment and explore potential solutions for tumor heterogeneity.

To this end, our present study was designed to explore the immune scoring method
suitable for CSCC. In addition, the gene members in the scoring system were further
analyzed by a series of bioinformatic means to mine the novel and potential immune
microenvironment-related diagnostic and prognostic markers.

MATERIAL AND METHODS
Database sources and pre-processing
The overall flow diagram of present study was summarized in Fig. 1. The RNA-seq counts
data, SNP data, and clinical follow-up information were downloaded from the TCGA
database. The Reads PerKilobase Million (FPKM) data of RNA-Seq were transformed
into Transcripts PerKilobase Million (TPM) expression profiles. In consistent with
previous studies, 13 metagenes (shown in ImmuneScore.genes.ids.txt, Supplemental File)
corresponded to various immunocyte types, reflecting the different immune functions.

Computational methods of multiple immune scores and result
determination
The scores of each sample in the 13 types of metagenes were calculated based on
the log2-transformed expression of each gene member in the immune metagene
(shown in immune.meta.score.txt, Supplemental File) (Safonov et al., 2017). TIMER
(https://cistrome.shinyapps.io/timer/) database (immune.immu.score.txt, Supplemental
File) was utilized to calculate the scores of each sample in the immunocyte infiltration
(six categories in total) (Li et al., 2016). Moreover, the ImmuneScore (that represents the
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Figure 1 Flow diagram of methods for mining of prognostic immune-related genes in CSCC.
Full-size DOI: 10.7717/peerj.9627/fig-1

infiltration of immune cells in tumor tissue), StromalScore (that captures the presence
of stroma in tumor tissue) and ESTIMATEScore (that infers tumor purity) of each
sample (immune.est.score.txt, Supplemental File) were calculated by ESTIMATE function
of R software package (Yoshihara et al., 2013). Detailed description of above 3 scores
could be found on the website below: https://bioinformatics.mdanderson.org/public-
software/estimate/. Finally, R software packageMCPcounter was utilized for the calculation
of the abundances of ten immune-related cell (eight categories of immune cells, endothelial
cells and fibroblasts) populations in the tumor microenvironment (Supplemental File).

Survival analysis
Patients were divided into several groups according to each specific parameter (including
ImmuneScore, StromalScore, ESTIMATEScore and gene expression level). Afterwards, the
association between the gene expression level (or level of ImmuneScore, StromalScore,
ESTIMATEScore) and overall survival was analyzed by univariate Cox regression model.

The construction of immune scores-related gene modules through
WGCNA
To begin with, transcripts with over 75% TPM of >1 and median absolute deviation
(MAD) of >median were chosen from the expression profile data of all the obtained
samples. Hierarchical clustering for cluster analysis of the samples was also adopted.
Subsequently, samples with a distance of over 80,000 were taken as the outlier samples for
screening. Moreover, the distance between any two transcripts was calculated by Pearson
correlation coefficient, the establishment of the distance between any two transcripts was
performed by the R software package Weighted Gene Co-expression Network Analysis
(WGCNA) (Xia et al., 2019), and the soft threshold was set as eight for the screening of
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the co-expression modules. The co-expression network has been suggested to conform to
the scale-free network. In other words, the logarithm of node with the connectivity of k
(log(k)) should be negatively correlated with the logarithm of the occurrence probability
of the specific node (log(P(k))), and the correlation coefficient should be >0.85. Proper β
value was selected in order to ensure the network as a scale-free network. The expression
matrix was subsequently transformed into the adjacent matrix, and the latter was further
transformed into the topological matrix for gene clustering based on Topological Overlap
Matrix (TOM) utilizing the average-linkage hierarchical clustering method in accordance
with the mixed dynamic shear tree standard. In addition, the gene number of each gene
network module was set at least 30. The dynamic shear method was used to determine the
gene module, followed by calculation of the eigengene value of each module in succession.
Afterwards, clustering analysis was performed on the modules, in which, modules close
to each other were merged into a new module, with re-set appropriate height, deepSplit
and minModuleSize values. Finally, the association of the acquired gene modules with
ImmuneScore, StromalScore and ESTIMATEScore were separately calculated, in order to
explore the gene modules with high correlation for further research.

Establishment of the gene interaction network and functional
analysis
Genes were mapped into the String database (Szklarczyk et al., 2019). The gene-gene
interactions were acquired at the score threshold of >0.4, followed by visualization using
Cytoscape software (Shannon et al., 2003). Meanwhile, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) enrichment analysis was performed by
utilizing the clusterprofile R package (Xu et al., 2019) to examine the signaling pathways
affected by these genes.

RESULTS
The immune-related scores based on ESTIMATE algorithm is the most
suitable immune scoring method for CSCC
To be specific, we retrieved CSCC samples from the TCGA database and analyzed their
scores in 23 types of scoring systems, including 13 types of metagenes scores, six types
of immunocyte infiltration scores, three types of immune-related scores according to
ESTIMATE algorithm (ImmuneScore, StromalScore and ESTIMATEScore) and 10 types
of abundances of immune-related cell. In addition, Spearman’s correlation coefficient
was used to calculate the correlations among these scoring systems (shown in Fig. 2). As
shown in Fig. 2A, the average correlation between different types of immune-related scores
was greater than 0.4. Among which, ImmuneScore (R= 0.59), Co_inhibition (R= 0.59)
and LCK (R= 0.62) had the highest relevance with other immune scores. These findings
showed that there were fine consistency and comparability between different immune
scoring systems. The clustering heat maps of various types of scoring systems were shown
in Fig. 2B, suggesting the great correlation among the scoring systems MHC1, MHC2,
Monocytic lineage, Dendritic, Macrophages, ESTIMATEScore, ImmuneScore, Tfh, LCK,
Co_stimulation, Co_inhibition, Mete_ImmuneScore, Neutrophil and STAT1. We further
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Figure 2 The correlations of immune-related scoring system based on ESTIMATE algorithmwith other categories of scores among CSCC sam-
ples. (A) The correlations of various immune scoring systems among CSCC samples. Spearman correlation coefficients are shown color-coded to
illustrate positive (red) or negative (green) associations. (B) The clustering heat maps of various types of scoring systems. (C) The relationships
among immune scores according to four different algorithms. Mete, metagene immune score; Est, ESTIMATE immune score; Timer, Timer im-
mune score; Mcp, MCPcounter immune score.

Full-size DOI: 10.7717/peerj.9627/fig-2

investigated the average correlation among immune scores according to four different
algorithms. As shown in Fig. 2C, the immune-related scores calculated by the ESTIMATE
algorithm harbored the highest average correlation with the other three algorithms, which
is greater than 0.52 on average. These findings implicated that the immune-related scores
based on ESTIMATE algorithm were the most representative immune scoring methods for
CSCC.

It is widely accepted that HPV infection has a significant association with the occurrence
and progression of CSCC (Ding et al., 2019). Therefore, we separately analyzed the
ImmuneScore, StromalScore and ESTIMATEScore distribution among CSCC patients
with or without HPV infection. As shown in Figs. 3A–3C, the three immune-related scores
in CSCC with HPV infection were significantly higher than those without HPV infection.
It should be noted that ImmuneScore was most significantly correlated with the infection
status of HPV (p< 0.05).

Subsequently, in order to investigate the association between the above three immune-
related scores and prognosis, samples were sorted based on the median of scores of all
samples. And then, prognostic difference was analyzed by Kaplan–Meier method (Zou,
O’Malley & Mauri, 2007). As a result, the prognosis of samples in different groups was
significantly different (shown in Fig. 4). And the five-year survival rate of samples with
high ImmuneScore and ESTIMATEScore were significantly superior in comparison with
those with low scores, suggesting that the three immune-related scores on the basis of
ESTIMATE algorithm could be accepted as promising novel prognostic markers for CSCC.

A large number of somatic mutations of HLA genes have been reported in CSCC,
strongly indicating that loss of function due to HLAmutations is tightly correlated with the
immune escape of cancer cells (Xiao et al., 2013). It is of great significance for us to analyze
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Figure 3 StromalScore (A), ImmuneScore (B) and ESTIMATEScore (C) distribution among CSCC pa-
tients with or without HPV infection.

Full-size DOI: 10.7717/peerj.9627/fig-3

Figure 4 The relationships between levels of StromalScore (A), ImmuneScore (B) or ESTIMATEScore
(C) and prognosis for CSCC patients.H, High immune score; L, Low immune score.

Full-size DOI: 10.7717/peerj.9627/fig-4

the changes of HLA gene sequence in tumor patients. In addition, the mutation of TP53,
a tumor suppressor gene, can induce unlimited proliferation and apoptosis resistance
of tumor cells (Laprano et al., 2014; Li et al., 2015). Next, we focused on analyzing the
associations of three immune-related scores with mutations of HLA and TP53. To this end,
we extracted the mutation data of HLA-A, HLA-B, HLA-C and TP53 from the mutect-
processed SNP database and then calculated the three immune-related scores based on
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Figure 5 The correlations of immune-related scores based on ESTIMATE algorithmwith gene mu-
tations. The StromalScore (A, D, G, J), ImmuneScore (B, E, H, K) and ESTIMATEScore (C, F, I, L) were
calculated respectively in HLA-A (A, B, C), HLA-B (D, E, F), HLA-C (G, H, I) and TP53 (J, K, L) muta-
tion and non-mutation groups. Green represents the mutant group and red represents the wild type. Mut,
Mutant; WT, Wild type.

Full-size DOI: 10.7717/peerj.9627/fig-5

ESTIMATE algorithm in HLA-A, HLA-B, HLA-C and TP53 mutation and non-mutation
groups. As shown in Fig. 5, there was higher level of ImmuneScore in HLA-A and HLA-B
mutation groups compared with wild-type groups, while there was also higher level of
ESTIMATEScore in HLA-B mutation groups but lower level in TP53 mutation groups
comparison with that in wild-type groups.

In summary, we demonstrated that the immune-related scores on the basis of ESTIMATE
algorithm were the most proper immune scoring method for CSCC. Additionally, the co-
expressed genes with remarkable correlation with these three immune-related scores might
be considered as the representative genes in CSCC immune microenvironment, which
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Figure 6 Immune scores-related gene modules mined throughWGCNA. (A) Sample clustering analy-
sis. (B, C) Analysis of network topology for various soft-thresholding powers. (D) Gene dendrogram and
module colors. (E) Correlation between each module and three immune-related scores.

Full-size DOI: 10.7717/peerj.9627/fig-6

could be further validated as potential prognostic markers and novel therapeutic targets of
CSCC.

Screening of the representative genes in the immune scores-related
gene modules
In this section, clustering analysis was first conducted through hierarchical clustering. As
shown in Fig. 6A, a total of 296 samples were finally screened out among all the outlier
samples, which had a distance of larger than 80,000. Subsequently, the weight co-expression
network was constructed by WGCNA with β=8 to guarantee the scale-free network (Figs.
6B and 6C). Afterwards, dynamic shear method (Dong & Horvath, 2007) was utilized to
determine the gene modules, and clustering analysis was performed on these modules.
Additionally, modules with close distance were furthermerged into the newmodule, having
height, deepSplit and minModuleSize set to 0.25, 2 and 30, respectively. Finally, a total
of 30 modules were acquired (Fig. 6D). Of note, the grey module indicated gene sets that
could not be clustered into other modules. The transcripts of each module were counted
and displayed in Table 1. In total, 6,679 transcripts were allocated to 29 co-expression
modules. The correlations of the eigenvectors of these 30 modules with ImmuneScore,
StromalScore and ESTIMATEScore were subsequently calculated, respectively. As shown
in Fig. 6E, the yellow module obviously harbored extremely high association with these
three immune-related scores based on ESTIMATE algorithm containing 422 genes.

The gene functions in the yellowmodule were subsequently analyzed.Meanwhile, KEGG
and GO enrichment analysis was also conducted using the clusterProfiler of R software
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Table 1 Number of transcripts in eachmodule.

Modules Genes

Black 232
Blue 676
Brown 469
Cyan 82
Darkgreen 53
Darkgrey 44
Darkorange 38
Darkred 54
Darkturquoise 47
Green 276
Greenyellow 110
Grey 7,417
Grey 60 67
Lightcyan 68
Lightgreen 66
Lightyellow 65
Magenta 181
Midnightblue 78
Orange 40
Pink 232
Purple 116
Red 261
Royalblue 64
Saddlebrown 31
Salmon 97
Skyblue 33
Tan 98
Turquoise 2,642
White 37
Yellow 422

package, with flase discovery rate (FDR) set as <0.05. The detailed enrichment results
were shown as supporting information file (yellow enrich.txt). As a result, the genes in the
yellow module were enriched into 50 KEGG pathways, 670 GO biological processes (BP),
85 GO cellular components (CC) and 74 molecular functions (MF). The most significant
top 20 KEGG pathways and GO terms were shown in Fig. 7. The enriched pathways mainly
included Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction and so
on. And the enriched biological processes primarily included T cell activation, leukocyte
cell–cell adhesion and so on. The enriched cell components mainly included MHC class II
protein complex and T cell receptor complex, and so on. The enriched molecular functions
mainly included cytokine receptor activity and MHC class II receptor activity, and the rest.
Intriguingly, these enriched pathways and GO term have previously been reported to have
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Figure 7 The KEGG pathway and GO enrichment analysis of the genes in yellowmodule. (A) Top 20
KEGG pathways enriched by the genes in yellow module. (B) Top 20 GO BP terms enriched by the genes
in yellow module. (C) Top 20 GO CC terms enriched by the genes in yellow module. (D) Top 20 GOMF
terms enriched by the genes in yellow module. GO, Gene Ontology; BP: biological process; CC, cellular
component; MF, molecular function.

Full-size DOI: 10.7717/peerj.9627/fig-7

close association with CSCC and its immune microenvironment (Roca et al., 2019; Wang
et al., 2017; Yasmeen et al., 2010; Zehbe et al., 2005).

Finally, to further mine the immune scores-related genes, the weight co-expression
relationship between genes in the yellow modules was calculated, with the weight threshold
greater than 0.2. Cytoscape software was used for derivation and visualization of the co-
expression network of these genes (as shown in Fig. 8A). Afterwards, we further analyzed
the topological properties of the network, which contained 244 nodes and 4,083 edges,
indicating that genes with greater association withmodules hadmore close correlation with
other genes in the network. As shown in Fig. 8B, the degree distribution of the network
was further analyzed, suggesting that the degree of the majority of nodes was extremely
small, while the degree of a few nodes was rather large, which was consistent with the
characteristics of biological network. The correlation between the gene and the module
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Figure 8 Construction of co-expression network of yellowmodule-related genes. (A) Co-expression network of weights between genes in yellow
module. (B) The degree distribution of nodes in yellow module. (C) The correlation of genes and module in the network.

Full-size DOI: 10.7717/peerj.9627/fig-8

was further calculated. As shown in Fig. 8C, the correlation between most genes and the
module was over 0.6, suggesting a high expression similarity between the genes in the
module. Moreover, a total of 26 genes (Table 2 and lst.genes.txt as Supplemental File)
with a correlation over 0.9 and a degree over 50 in the network were selected, with seven
members of LCK Metagenes, and one member of Co_inhibition Metagenes. Thus, 18 new
representative immune microenvironment-related genes were finally screened.

Function analysis of 18 novel representative immune
microenvironment-related genes in CSCC patients
Firstly, to further analyze the functions of these 18 novel representative immune
microenvironment-related genes, the R software package clusterProfiler was utilized for
KEGG and GO enrichment analysis, with the significance FDR set at <0.05. The detailed
results were summarized in lst enrich.txt (Supplemental File). In brief, these 18 genes were
enriched into 11 KEGG pathways, 202 GO biological processes, 8 GO cell components,
19 molecular functions. The most significant 20 KEGG pathways and GO terms were
shown in Fig. 9, the majority of which were involved in the proliferation, growth and
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Table 2 Genes with a correlation over 0.9 and a degree over 50 in the network.

ENSG Symbol corr.R Degree MeteGene

ENSG00000015285 WAS 0.964019 188
ENSG00000110324 IL10RA 0.944217 154 LCK
ENSG00000134516 DOCK2 0.932541 113
ENSG00000149781 FERMT3 0.957826 171
ENSG00000043462 LCP2 0.941048 102 CLK
ENSG00000185862 EVI2B 0.94047 153 LCK
ENSG00000117091 CD48 0.918649 107 LCK
ENSG00000089012 SIRPG 0.918974 119
ENSG00000135077 HAVCR2 0.932432 95 Co_inhibition
ENSG00000116824 CD2 0.915954 124 LCK
ENSG00000142347 MYO1F 0.962694 193
ENSG00000198851 CD3E 0.90917 130
ENSG00000123329 ARHGAP9 0.925285 126
ENSG00000010671 BTK 0.913087 85
ENSG00000105122 RASAL3 0.92036 124
ENSG00000162511 LAPTM5 0.912211 72
ENSG00000005844 ITGL 0.92691 125
ENSG00000010610 CD48 0.908066 57
ENSG00000123338 NCKAP1L 0.953232 162
ENSG00000102879 CORO1A 0.909449 94 LCK
ENSG00000126860 EVI2A 0.923238 70
ENSG00000143119 CD53 0.957049 178 LCK
ENSG00000160791 CCR5 0.926682 104
ENSG00000110077 MS4A6A 0.915621 57
ENSG00000122122 SASH3 0.949558 153
ENSG00000167208 SNX20 0.942276 123

differentiation of T cells. Intriguingly, LAPTM5, EVI2A and MS4A6A were not enriched
in any signaling pathways and GO term, indicating that the functions of these three genes
remained completely unclear, which is the focus of our further studies.

Secondly, to further investigate the potential roles of the 18 novel representative immune
microenvironment-related genes in clinical practice, theRpackage corrgramwas utilized for
the calculation of the association between these genes and immune checkpoints (PDCD1,
CD274, PDCD1LG2, CTLA4, CD86, CD80, CD276, VTCN1). As shown in Fig. 10, apart
from CD276 and VTCN1, the other 6 immune checkpoints were significantly related to
these 18 genes, with an average correlation coefficient over 0.5, which indicated that these
immune microenvironment-related genes might be promising targets for immunotherapy.

Finally, the prognostic significance of 18novel representative immunemicroenvironment-
related genes was assessed. According to the median of gene expression, samples were
categorized into high and low expression groups. And then the differences of prognosis
between these groups were analyzed. As shown in Fig. 11, high expression of 13 genes were
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Figure 9 The KEGG pathway and GO enrichment analysis of 18 novel representative immune
microenvironment-related genes for CSCC patients. (A) Top 20 KEGG pathways enriched by 18 novel
representative immune microenvironment-related genes. (B) Top 20 GO BP terms enriched by 18 novel
representative immune microenvironment-related genes. (C) Top 20 GO CC terms enriched by 18 novel
representative immune microenvironment-related genes. (D) Top 20 GOMF terms enriched by 18 novel
representative immune microenvironment-related genes. GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function.

Full-size DOI: 10.7717/peerj.9627/fig-9

significantly associated with better overall survival according to the threshold of p< 0.05,
suggesting that these genes might be closely associated with patient prognosis.

Validation of the correlations of 18 immune microenvironment-related
genes with ImmuneScore for CSCC patients by using external dataset
External database was used for further validation of the correlations of 18 immune
microenvironment-related genes with the immune-related scores according to ESTIMATE
algorithm for CSCC patients. Standardized expression matrix was downloaded and
extracted from an independent dataset GSE44001 (Lee et al., 2013) from Gene Expression
Omnibus (GEO). R packages hgu133plus2.db was utilized to map a probe for gene
to extract the expression profiles of these 18 genes, followed by the calculation of the
ImmuneScore for each sample using R software package ESTIMATE. Subsequently, the
Pearson correlation was calculated between expression of these genes and the level of
ImmuneScore for every CSCC sample in this dataset. As shown in Fig. 12, apart from
CCR5 (P = 0.867, R= 0.01), the other 17 genes were significantly associated with the
ImmuneScore, which was consistent with our previous findings.

DISCUSSION
Great attention has been paid to the association of the immune systemwith the pathogenesis
and progression of tumor in recent years, which has shed light on CSCC therapy, promoting
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Figure 10 The association between 18 novel representative immunemicroenvironment-related genes
for CSCC patients and immune checkpoints. Apart from CD276 and VTCN1, the other 6 immune
checkpoints were significantly related to 18 immune microenvironment-related genes.

Full-size DOI: 10.7717/peerj.9627/fig-10

the continuous development of anti-cancer therapy (Dyer et al., 2019; Orbegoso, Murali
& Banerjee, 2018). The external anti-CSCC approaches are frequently applied in previous
clinical practice, including surgical resection and chemotherapy. However, the effect of
surgical resection is generally restricted due to the invasion into adjacent tissues by cancer
cells or distant metastasis. In addition, the application of chemotherapy is limited due to
its toxicity to normal tissues (Menderes et al., 2016). Thus, conventional therapies would
exert great burden on the body while providing therapeutic benefits. To this end, it has
been widely accepted as a novel direction of anti-cancer therapy by starting from the
tumor origin, in other words, the immune system of human body, to control and even kill
tumor cells via the modulation of the immune system and enhancement of the anti-tumor
immunity in the tumor microenvironment (Ring et al., 2017).

The tumor microenvironment, mainly composed of immune cells, inflammatory cells,
mesenchymal cells, tumor cells, stromal cells, inflammatory mediators and cytokines,
provides support for tumor biological behavior including the pathogenesis, progression,
invasion and metastasis (Piersma, 2011; Qi & Wu, 2019; Tuccitto et al., 2019). Therefore,
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Figure 11 The relationship between 18 novel representative immunemicroenvironment-related genes
and prognosis (A–R). Apart from DOCK2 (P = 0.12765), SIRPG (P = 0.0658), CD4 (P = 0.29192),
NCKAP1L (P = 0.12765) and CCR5 (P = 0.06736), high expression of other 13 genes were significantly
associated with better overall survival.

Full-size DOI: 10.7717/peerj.9627/fig-11

Figure 12 The correlations of 18 immunemicroenvironment-related genes with ImmuneScore for
CSCC patients in independent dataset (A–R). Apart from CCR5 (P = 0.867, R= 0.01), the other 17 genes
were significantly associated with the ImmuneScore.

Full-size DOI: 10.7717/peerj.9627/fig-12
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it is of great significance to discover novel and meaningful immune microenvironment-
related genes in CSCC as prognostic predictor and therapeutic targets.

In this study, the TCGA database was used to search for the immune microenvironment
markers related to the survival time of CSCC patients. And 18 genes were finally detected
having remarkable correlation with the prognosis of patients, which was further validated
in the GEO database.

To be specific, firstly, multiple methods of data analysis were utilized to search for
the three immune-related scores on the basis of ESTIMATE algorithm, showing high
correlations with diverse other immune-related scores, patients prognosis, HPV infection
status and the mutation levels of multiple well-defined CSCC-related genes (HLA and
TP53). Secondly, the representative genes in the gene modules associated with immune-
related scores according to ESTIMATE algorithm were further searched using WGCNA
and network topology analysis. Thirdly, we mined the gene functions through enrichment
analysis, followed by the exploration of the association between these genes and immune
checkpoint genes. Finally, survival analysis was employed to search for the genes with
evident correlation with OS. In addition, external database was employed for further
validation of the association of these immune microenvironment-related genes with
ImmuneScore for CSCC patients. In total, we successfully mined 18 novel potential
immune microenvironment-related diagnostic and prognostic indicators or therapeutic
targets.

Of note, 11 out of these 18 genes (IL10RA, CD4, HAVCR2, CD2, CCR5, CD3E, BTK,
etc.) have previously been demonstrated to participate in the pathogenesis, progression,
malignant transformation, and pathological process of immune microenvironment of
CSCC, which are also significantly associated with patient survival, prognosis and diagnosis
(Cao et al., 2013; Che, Shao & Wang, 2016; Hussain et al., 2013; Punt et al., 2015). These
above-described observations validate the great reliability and accuracy of the bioinformatic
mining results in our present study, in which, we combined TCGA database screening with
GEO database for verification. However, the correlations of two genes (LAPTM5 and
EVI2A) with CSCC have never been confirmed by any basic or clinical studies, which we
are most interested in. LAPTM5, Laptm5, a lysosomal transmembrane protein enhancing
the degradation of several targets involved in immune signaling (such as ubiquitin-editing
enzyme A20), has been validated to be participate in the modulation of the lethal T cell
alloreactivity mediated by dendritic cells and immunoreactions in multiple inflammatory
disease, such as host versus graft disease (GVHD) (Glowacka et al., 2012; Hubbard-Lucey
et al., 2014). On the other hand, EVI2A has been confirmed to be involved in lymphocyte
proliferation and viability, which is a well-defined immune-specific tumor suppressor in
head and neck cancer (Li et al., 2014).

At present, accumulating studies focus on the mining of the association of numerous
genes expression with the survival of CSCC patients, however, the majority of previous
studies are only performed in animal model, in vitro cell model or small sample samples
of tumor patients. Thus, more comprehensive, large-scale population studies are required
due to the complexity of CSCC microenvironment. Fortunately, the rapid development of
genome-wide sequencing renders the free utilization of high-throughput tumor databases,
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such as TCGA, making it possible to apply the bioinformatic big data for the large-scale
CSCC population.

CONCLUSION
In the present study, wemainly studied the CSCC immunemicroenvironment-related gene
characteristics. Consequently, these genes are involved in the pathogenesis, progression and
malignant transformation of CSCC, affecting OS of CSCC patients. Our present findings
can offer more information to decode the complex tumor-tumor interactions in CSCC
microenvironment. These findings will help to mine the novel immune-related diagnostic
indicators, therapeutic targets and prognostic predictors in CSCC. Besides, the methods of
our study have general applicability and provide some references value for the identification
of potential diagnostic and prognostic biomarkers for other biologically heterogeneous
cancers.
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