
Genome‐wide identification of CpG island
methylator phenotype related gene
signature as a novel prognostic biomarker
of gastric cancer
Zhuo Zeng1,2, Daxing Xie1,2 and Jianping Gong1,2

1 Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, Hubei, China

2 Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, Hubei, China

ABSTRACT
Background: Gastric cancer (GC) is one of the most fatal cancers in the world.
Results of previous studies on the association of the CpG island methylator
phenotype (CIMP) with GC prognosis are conflicting and mainly based on selected
CIMP markers. The current study attempted to comprehensively assess the
association between CIMP status and GC survival and to develop a CIMP-related
prognostic gene signature of GC.
Methods: We used a hierarchical clustering method based on 2,082 GC-related
methylation sites to stratify GC patients from the cancer genome atlas into three
different CIMP subgroups according to the CIMP status. Gene set enrichment
analysis, tumor-infiltrating immune cells, and DNA somatic mutations analysis were
conducted to reveal the genomic characteristics in different CIMP-related patients.
Cox regression analysis and the least absolute shrinkage and selection operator
were performed to develop a CIMP-related prognostic signature. Analyses involving
a time-dependent receiver operating characteristic (ROC) curve and calibration plot
were adopted to assess the performance of the prognostic signature.
Results:We found a positive relationship between CIMP and prognosis in GC. Gene
set enrichment analysis indicated that cancer-progression-related pathways were
enriched in the CIMP-L group. High abundances of CD8+ T cells and M1
macrophages were found in the CIMP-H group, meanwhile more plasma cells,
regulatory T cells and CD4+ memory resting T cells were detected in the CIMP-L
group. The CIMP-H group showed higher tumor mutation burden, more
microsatellite instability-H, less lymph node metastasis, and more somatic mutations
favoring survival. We then established a CIMP-related prognostic gene signature
comprising six genes (CST6, SLC7A2, RAB3B, IGFBP1, VSTM2L and EVX2).
The signature was capable of classifying patients into high‐and low‐risk groups with
significant difference in overall survival (OS; p < 0.0001). To assess performance of
the prognostic signature, the area under the ROC curve (AUC) for OS was calculated
as 0.664 at 1 year, 0.704 at 3 years and 0.667 at 5 years. When compared with
previously published gene-based signatures, our CIMP-related signature was
comparable or better at predicting prognosis. A multivariate Cox regression analysis
indicated the CIMP-related prognostic gene signature was an independent
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prognostic indicator of GC. In addition, Gene ontology analysis indicated that
keratinocyte differentiation and epidermis development were enriched in the
high-risk group.
Conclusion: Collectively, we described a positive association between CIMP status
and prognosis in GC and proposed a CIMP-related gene signature as a promising
prognostic biomarker for GC.

Subjects Bioinformatics, Gastroenterology and Hepatology, Oncology
Keywords CpG islandmethylator phenotype, Prognostic signature, Gastric cancer, Overall survival

INTRODUCTION
Gastric cancer (GC) is responsible for over 1,000,000 new cases and around 783,000 deaths
in the world annually, making it the 5th most frequently diagnosed cancer and the
third leading cause of cancer-related death (Bray et al., 2018). Surgery with subsequent
adjuvant chemoradiotherapy remains the only treatment with curative potential
(Bang et al., 2012), and the prognosis for gastric adenocarcinoma is primarily determined
by the TNM classification of staging system (Warneke et al., 2011). The clinical outcome,
nonetheless, is notably variable and erratic in individual patient, which firmly implies
that a few of the biological determinants of tumor behavior are unidentified. Thus,
advances in molecular insight into GC are critically required for improved prognostic
stratification and new targeted therapeutic strategies.

Recently, with the progress of high-throughput screening, sequencing has enabled a
more thorough insight into the molecular identity of GC. An updated classification scheme
has been introduced based on comprehensive molecular characterization including tumors
infected with Epstein–Barr virus, tumors with microsatellite instability (MSI), and tumors
with a distinct degree of aneuploidy, which were termed genomic stability and
chromosomal instability. Each subgroup shows peculiar genetic and clinical characteristics
(Cancer Genome Atlas Research, 2014).

Alterations of DNA methylation is a vital event during tumorigenesis, and
gastrointestinal cancers show the highest frequency of DNA methylation alterations
among the reported tumor types (Cancer Genome Atlas Research, 2014). Methylation of
the dinucleotides of CpG islands throughout the genome is mediated by DNA
methyltransferases (Craig & Bickmore, 1994), and commonly results in gene silencing.
Disorder of DNA methylation in cancer affects gene expression and results in the cancer
progression (Vaissiere, Sawan & Herceg, 2008).

CpG island methylator phenotype (CIMP) in tumors, which has been initially described
and broadly debated in colorectal cancer (Hughes et al., 2013). Lately CIMP has been
described in other tumor types including bladder, breast, glioblastoma, pancreatic and
prostate cancers, as well as for gastric adenocarcinomas and is considered to be helpful
for predicting prognosis (Jia et al., 2019; Moarii, Reyal & Vert, 2015; Ueki et al., 2000).
In GC, conflicting conclusions regarding the prognostic association of CIMP have
been scattered among previous studies, owing to the limitation of selected DNA
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methylation markers and the presence of multiple confounding factors in these studies
(An et al., 2005; Ben Ayed-Guerfali et al., 2011; Park et al., 2010). Although a meta-analysis
of the prognostic value of CIMP status in GC has been performed, an explicit conclusion
was not reached (Powell et al., 2018).

In this study, we aimed to use publicly available data to comprehensively analyze CIMP
in GC, and to develop a CIMP-related prognostic gene signature.

MATERIALS AND METHODS
Data acquisition
We downloaded methylation data, which has 408,376 probes and 397 samples,
including 395 GC samples and two normal samples, measured by the Illumina
HumanMethylation450 platform, from the cancer genome atlas (TCGA)-STAD project
(https://portal.gdc.cancer.gov/) by using the TCGA-Assembler 2 package (Wei et al., 2018).
RNA-Seq profiles were obtained from TCGA by virtue of GDC Data Transfer Tool.
We downloaded two verified microarrays with matched clinical information from the
GEO GC database: GSE13861 (Cho et al., 2011) (65 GC samples; platform: GPL6884
Illumina HumanWG-6 v3.0 expression beadchip ), GSE62254 (Cristescu et al., 2015)
(300 GC samples; platform: GPL570 Affymetrix Human Genome U133 Plus 2.0 Array ).
We used the TCGAbiolinks package to acquire the mutation data of GC samples (Colaprico
et al., 2016). We obtained complete and matched clinical information on GC patients
from cBioportal, including sex, age, histologic features, pathologic stage, family history
and, infection status for Helicobacter pylori and Epstein–Barr virus.

Our study was performed according to the publication guidelines required by TCGA.

Data analysis
TheMinfi package was adopted to analyze methylation data (Aryee et al., 2011). In view of
the distribution of CpG islands and the technical limitations of sequencing, we filtered
the probes from the X and Y chromosomes or probes that are known to have common
SNPs at the CpG site, and cross-reactive probes. The DESeq2 package was adopted to
analyze the differentially expressed genes (DEGs) between CIMP-related subgroups
(Love, Huber & Anders, 2014). The criteria to determine DEGs were an adjusted
p-value < 0.05 and an absolute value of log2 fold change >2, and BH method was used for
adjustment for multiple testing. In order to identify the different pathways between GC
samples with specific CIMP status, we performed GSEA analysis (Subramanian et al.,
2005). The mRNA expression data downloaded from the Gene Expression Omnibus
(GEO) database were normalized and analyzed by the limma package (Ritchie et al., 2015).
The mutation data were summarized and analyzed by the maftools package (Mayakonda
et al., 2018). Raw code for analyzing was uploaded in Data S1.

Identification of CIMP in GC samples
To assess the CIMP feature in GC, CpG methylation sites with a relatively high
variability of β-values in tumor samples (SD > 0.2) and relatively low β-values in normal

Zeng et al. (2020), PeerJ, DOI 10.7717/peerj.9624 3/26

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13861
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62254
http://dx.doi.org/10.7717/peerj.9624/supp-9
http://dx.doi.org/10.7717/peerj.9624
https://peerj.com/


samples (mean β value < 0.05), were chosen as the representative CpG methylation
sites for subsequent clustering analysis, following a previous study (Li et al., 2019).
The ConsensusClusterPlus package was adopted to run unsupervised clustering analysis
based on M value of the selected 2,082 probes by means of the K-means algorithm
(Wilkerson & Hayes, 2010).

Analysis of tumor-infiltrating immune cells
The proportions of the 22 types of tumor-infiltrating immune cells were counted by
CIBERSORT (Newman et al., 2015). CIBERSORT is a tool to provide an estimation of cell
composition of mixed tissues based on gene expression profiles. We uploaded the modified
gene expression data and standard annotation to the CIBERSORT portal and ran the
LM22 signature, which contains 547 genes distinguishing 22 human immune cell types,
and 1,000 permutations. Final results were normalized to sum up to one and could be
assessed straightforwardly as cell fractions for contrast (Table S1).

Development and validation of a CIMP-related prognostic signature
Using theDESeq2 package, 1,072 DEGs were calculated between the CIMP-H and CIMP-L
samples (Table S2), which were defined by relative methylation level. We then performed
Cox regression to assess the prognostic significance of the DEGs. A suitable prognostic
model is assumed to identify a smaller number of genes favorable for clinical practice.
We therefore used the least absolute shrinkage and selection operator (LASSO) in
combination to diminish the number of CIMP-related prognostic genes (Gui & Li, 2005).
The glmnet package was used to perform the penalized Cox regression model with the
LASSO penalty, and 1,000-times cross-validations were applied to determine the optimal
values of the penalty parameter lambda. We selected lambda.min to get six CIMP-related
prognostic genes. We then extracted the coefficients from multivariate Cox regression
to build a gene signature. We adopted the survminer package to determine the cut-off value
of the risk score. Then, the patients were divided into high-and low-risk subgroups
according to their risk score. We used Kaplan–Meier analysis to compare OS rates between
the high- and low-risk group. To identify whether the risk score was an independent factor,
we conducted univariate Cox regression and multivariate Cox regression analyses.
Statistical significance was inferred where p < 0.05.

Validation in GEO dataset
To confirm the performance of our prognostic signature, we applied it to two GEO
databases, GSE13861 (n = 65) and GSE62254 (n = 300). The mRNA expression data were
prepared using the limma package. Scale, a generic R function including centering
and scaling, was used to scale the GEO mRNA expression data to common range.
Next we used a developed prognostic signature to calculate the risk score of every sample
and divided patients by the cut-off value. Kaplan–Meier analysis was conducted
between the high- and low-risk groups for overall survival. In addition, we conducted
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receiver operating characteristic (ROC) curve analysis and calculated an AUC for every
database.

Functional enrichment analysis
We applied the clusterProfiler package for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis between different risk score-related subgroups
(Yu et al., 2012). Then we adopted the GOplot package to illustrate our GO and KEGG
results (Tables S3 and S4). Protein–protein interaction analysis was carried out based on
the DEGs of high-and low-risk subgroups using the STRING portal (https://string-db.org)
and Cytoscape software (Shannon et al., 2003). Functional annotation of genes in the
module was perform by DAVID database (Huang et al., 2007).

RESULTS
Methylation landscape of GC sample
In this study, we utilized DNA methylation profiles from TCGA database to perform a
comprehensive analysis of DNA methylation in GC. We adopted 2,082 methylation sites
with high variability as our CIMP signature for downstream analysis. Unsupervised
hierarchical clustering analysis of 395 GC samples based on our specific CIMP signature
was performed and all the patients were separated into three subgroups as CIMP-L,
CIMP-M and CIMP-H (Figs. 1A and 1B; Table S5). The CIMP-L subgroup had the lowest
methylation level, while the CIMP-H subgroup had broad hypermethylation across these
sites. In addition, we plotted the Delta area and consensus CDF to verify our clustering
pattern (Figs. S1A and S1B). To assess the performance of our classification based on
CIMP signature, we reclassified GC samples according to a previous DNA methylation
clustering analysis (Cancer Genome Atlas Research, 2014). A strong concordance was
exhibited between these two classification systems (Fig. 1C). The C1 cluster, representing
an EBV-associated DNA methylation signature with extreme hypermethylation, consisted
primarily of CIMP-H samples, while the C4 cluster, representing a hypomethylated
subgroup, consisted mainly of CIMP-L. Importantly, to evaluate the correlation between
CIMP and prognosis, the overall survival of each subgroup was assessed by the
Kaplan–Meier method. The result indicated a significant difference in prognosis among
the different CIMP-related subgroups, with the CIMP-H group showing better prognosis
and the CIMP-L group showing worse prognosis (Fig. 1D). In addition, we investigated
the relationship between CIMP and progression-free survival (PFS). However, we
found no significant differences in PFS existed among the CIMP-related subgroups
(Fig. S1C).

The clinical characteristics of patients with different CIMP statuses were summarized
(Table 1). Clinical features, including lymph node metastasis, MSI status and EBV
infection, had significant differences between CIMP-related subgroups. No significant
difference was found in aspects of age, gender, pathologic tumor classification, Lauren
classification, grade or Helicobacter pylori infection. Specifically, within the CIMP-H
subgroup more patients suffered MSI gastric adenocarcinoma and EBV infection, and less
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Figure 1 The landscape of CpG island methylator phenotype in gastric cancer. (A) Unsupervised hierarchical clustering of GC samples. The rows
represent 2082 CpG methylation sites for clustering. Green, blue, and red cluster represents CIMP-Low (CIMP-L) subgroup, CIMP-Medium
(CIMP-M) subgroup and CIMP-High (CIMP-H) subgroup respectively. The CIMP-L subgroup had the lowest methylation level. Clinical infor-
mation is marked with different colors, andmissing information is marked with gray. (B) Clustering result of K-means algorithm by ConsensusClusterPlus.
(C) Comparison of CMIP-related subgroups with TCGAmethylation cluster. (D) Kaplan-Meier survival curves of CIMP-related subgroups. The CIMP-H
subgroup had a better OS than other subgroups. Full-size DOI: 10.7717/peerj.9624/fig-1
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Table 1 Clinical and demographic characteristics of GC patients in CIMP-related subgroups.

CIMP-L CIMP-M CIMP-H p-Value

Number of patients 179 128 88

Age (Mean (SD)) 64.3 (10.5) 65.6 (10.5) 66.4 (11.3) 0.191

Gender 0.194

Female 70 (39.1%) 38 (29.7%) 28 (31.8%)

Male 109 (60.9%) 90 (70.3%) 60 (68.2%)

Pathologic_T 0.724

T1 7 (3.9%) 7 (5.5%) 7 (8.0%)

T2 39 (21.8%) 24 (18.8%) 15 (17.0%)

T3 85 (47.5%) 63 (49.2%) 38 (43.2%)

T4 48 (26.8%) 34 (26.6%) 28 (31.8%)

Pathologic_N 0.044

N0 51 (28.5%) 36 (28.1%) 37 (42.6%)

N1 49 (27.4%) 31 (24.2%) 22 (25.3%)

N2 36 (20.1%) 34 (26.6%) 9 (10.3%)

N3 38 (21.2%) 27 (21.1%) 18 (20.7%)

NX 5 (2.8%) 0 (0%) 1 (1.1%)

Pathologic_M 0.115

M0 155 (86.6%) 115 (89.8%) 83 (94.3%)

M1 11 (6.1%) 10 (7.8%) 2 (2.3%)

MX 13 (7.3%) 3 (2.3%) 3 (3.4%)

Pathologic_Stage 0.225

Stage I 23 (12.8%) 14 (10.9%) 16 (18.2%)

Stage II 58 (32.4%) 42 (32.8%) 32 (36.4%)

Stage III 78 (43.6%) 59 (46.1%) 38 (43.2%)

Stage IV 20 (11.2%) 13 (10.2%) 2 (2.3%)

Lauren.Class 0.112

Diffuse 49 (27.4%) 36 (28.1%) 18 (20.5%)

Intestinal 115 (64.2%) 71 (55.5%) 61 (69.3%)

Mixed 15 (8.4%) 21 (16.4%) 9 (10.2%)

Grade 0.264

G1 4 (2.2%) 3 (2.3%) 2 (2.3%)

G2 76 (42.5%) 41 (32.0%) 25 (28.4%)

G3 94 (52.5%) 81 (63.3%) 60 (68.2%)

GX 5 (2.8%) 3 (2.3%) 1 (1.1%)

H. pylori infection 0.779

No 79 (87.8%) 56 (90.3%) 33 (91.7%)

Yes 11 (12.2%) 6 (9.7%) 3 (8.3%)

MSI.status <0.001

MSI-H 4 (4.0%) 11 (14.4%) 34 (47.9%)

MSI-L 11 (10.9%) 18 (23.7%) 8 (11.3%)

MSS 86 (85.1%) 47 (61.9%) 29 (40.8%)

EBV.positive <0.001

Negative 101 (100%) 76 (100%) 46 (64.8%)

Positive 0 (0%) 0 (0%) 25 (35.2%)
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had lymph node metastasis. In addition, we found that in the CIMP-H subgroup, patients
with EBV could be well distinguished from patients with MSI (Fig. S1D).

Gene set enrichment analysis in different CIMP-related subgroups
To identify the biological processes or pathways potentially regulated by the CpG island
methylation signature, we applied the GSEA analysis between different CIMP-related
subgroups based on RNA-seq profiles. We found that the gene signatures of “Rickman
metastasis up”, “Vesicle localization”, “Insulin receptor signaling pathway”, “Regulation of
glucose transmembrane transport”, “Serotonin receptor signaling pathway”, “G-protein
coupled amine receptor activity” were enriched in CIMP-L subgroup (Figs. 2A–2F).
Importantly, all the pathways have been linked to GC progression.
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Full-size DOI: 10.7717/peerj.9624/fig-2
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Tumor-infiltrating immune cells in different CIMP-related subgroups
We assessed the presence of tumor-infiltrating immune cells (TIICs) in CIMP-related
subgroups by using CIBERSORT (Fig. 3). Obviously, immune cells showed differential
infiltration pattern between CIMP-related subgroups. The proportions of B cells, plasma
cells, T cells CD4 memory resting, regulatory T cells and resting mast cells were
significantly higher in the in the CIMP-L subgroup. Meanwhile, CD8+ T cells, T cells CD4
memory activated, T follicular helper cells, M1 macrophages, and Dendritic cells resting
were higher in the CIMP-H subgroup. Other immune cells, including NK cells and
monocytes, didn’t show significant differences. In addition, we found in most samples no
apparent T cells CD4 naïve, T cells gamma delta and Eosinophils were infiltrated. These
results indicated that CIMP-L subgroup have a distinct immune phenotype, which is
considered to impair and suppress antitumor immunity.

Analysis of DNA somatic mutations in patients with distinct CIMP
status
A distinct set of genetic aberrations between CIMP-related subgroups was evident in our
study. We found 350 samples with mutations in a total of 391samples (89.51%), with
TTN and TP53 ranking as the most common mutation gene (Fig. 4A). Mutation of the
TP53 gene was found enriched in the CIMP-L subgroup. At the same time, mutations of
TTN and MUC16 were higher in the CIMP-H subgroup. The most common mutations
in GC samples were missense mutations, comprising the majority of SNPs, the main
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Figure 3 The comparison of fractions of tumor-infiltrating immune cells between CIMP-related
subgroups in GC. (Kruskal–Wallis test was used, � represents for p < 0.05, �� represents for p < 0.01,
��� represents for p < 0.001). Full-size DOI: 10.7717/peerj.9624/fig-3
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SNV classification was C > T transition, and the number of altered bases in each sample
was counted (Figs. 4B–4E). We then showed the top 10 mutated genes in GC with ranked
percentages, including TTN (53%), MUC16 (31%), TP53 (46%), LRP1B (27%), SYNE1
(26%), ARID1A (24%), CSMD3 (23%), FAT4 (19%), FLG (20%), HMCN1 (19%), and
summarized the mutation types in GC (Figs. 4F and 4G). We then calculated the tumor
mutation burden (TMB), which is considered to correlate with enhanced clinical
response to immunotherapy and superior OS. We found TMB was higher in the CIMP-H
subgroup (Fig. 4H).

Establishment of a CIMP-related prognostic gene signature
To screen differentially expressed genes (DEGs) in CIMP subgroups, we downloaded
RNA-seq data for 208 samples defined as CIMP-H or CIMP-L subgroups from the TCGA
database and analyzed the data by using the DEseq2 package. We identified 1,072 DEGs,
which we narrowed down to 147 genes highly associated with OS using univariate Cox
regression. To obtain the genes with the highest potential prognostic values, we used least
absolute selection and shrinkage operator (LASSO) regression analysis. A prognostic
signature comprising six genes, including cystatin E/M (CST6), solute carrier family 7
member 2 (SLC7A2), RAB3B, member RAS oncogene family (RAB3B), insulin like growth
factor binding protein 1 (IGFBP1), V-set and transmembrane domain containing 2 like
(VSTM2L) and even-skipped homeobox 2 (EVX2), was developed (Figs. 5, 1A and 1B;
Table 2). The risk score was calculated as follows: risk score = (0.230 × the normalized
expression of CST6) + (0.257 × the normalized expression of SLC7A2) + (0.156 × the
normalized expression of RAB3B) + (0.114 × the normalized expression of IGFBP1) +
(0.024 × the normalized expression of VSTM2L) + (0.187 × the normalized expression of
EVX2). The cutoff value (0.235) was counted by the survminer package (Fig. 5C).
The patients were then divided into high- and low-risk subgroups according to their risk
score. We found high-risk patients had more deaths and higher expression levels of
CIMP-related prognostic genes (Figs. 5D and 5E). We then found those in the high-risk
had a worse OS than those in the low-risk group (Fig. 5F). To access the performance of the
prognostic signature, time-dependent ROC curves and AUC were printed and counted
(Fig. 5G). The AUC was 0.664 at 1 year, 0.704 at 3 years and 0.667 at 5 years.
The univariate and multivariate Cox regression analyses indicated that the predictive value
of risk score for overall survival was independent of CIMP status (Figs. 5H and 5I).

Validation and evaluation of the CIMP-related signature in the GEO
cohort
To further verify the robustness of the six-genes prognostic signature in GC, two verified
microarrays with matched clinical information from the GEO GC database were analyzed.
In every dataset, patients were stratified into high-or low-risk group according to the
cutoff point calculated following the prognostic signature. Consistent with the results from
the TCGA cohort, the high-risk group had a worse survival outcome in two datasets
(Figs. 6A and 6B). Indicating favorable performance of our prognostic signature, the AUC
of the GSE13861 dataset was 0.638 at 1 year, 0.777 at 3 years, 0.745 at 5 years (Figs. 6C).
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Figure 5 Prognostic analysis of the CIMP-related prognostic gene signature in TCGA cohort. (A) LASSO coefficient profiles of candidate genes.
Each curve indicated one gene. (B) Cross-validation in the LASSO model. (C) The distribution of risk score. (D) The distribution of survival status.
(E) The distribution of expression levels of the six genes in TCGA cohort. (F) The Kaplan–Meier curve for patients divided into high-and low-risk
based on CIMP-related prognostic gene signature. (G) Receiver operating characteristic curve of CIMP-related prognostic signature at different
years. (H) and (I) Univariate and multivariate regression analysis of the CIMP status and risk score calculated based on CIMP-related prognostic
signature. Full-size DOI: 10.7717/peerj.9624/fig-5
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Table 2 The CIMP-related prognostic gene signature based on six genes in TCGA cohort.HR: hazard
ratio, CI: confidential interval.

Univariate Cox regression

Symbol Multivariate Cox regression coefficient HR 95%CI p-Value z score

CST6 0.230 1.327 [1.139–1.547] 2.80E−04 3.633

SLC7A2 0.257 1.405 [1.192–1.656] 5.01E−05 4.055

RAB3B 0.156 1.361 [1.152–1.607] 2.76E−04 3.637

IGFBP1 0.114 1.244 [1.070–1.448] 4.63E−03 2.832

VSTM2L 0.024 1.233 [1.053–1.444] 9.44E−03 2.596

EVX2 0.187 1.221 [1.084–1.376] 1.02E−03 3.284

Log rank: p = 0.0031

0.00

0.25

0.50

0.75

1.00

0 6 12 18 24 30 36 42 48 54 60
Time in months

O
ve

ra
ll 

S
u

rv
iv

al
 R

at
e

+ +Highrisk Lowrisk

GSE13861 Cohort

25 24 23 20 18 15 13 12 12 11 9

40 38 37 37 34 34 34 31 30 30 29

Number at risk

+ +++ +

+++++ +++++++++++++++++++

Log rank: p = 0.0096

0.00

0.25

0.50

0.75

1.00

0 6 12 18 24 30 36 42 48 54 60
Time in months

O
ve

ra
ll 

S
u

rv
iv

al
 R

at
e

+ +Highrisk Lowrisk

GSE62254 Cohort

83 76 61 52 47 42 41 40 39 38 30

217 210 191 172 160 147 139 135 127 123 110

Number at risk

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.0

T

A
A r
A r

GSE62254 Cohort

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.0

T

A
A r
A r

GSE13861 Cohort

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

T
A
A r
A r

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

T

A
A r
A r

A

B

C

D

E

F

Figure 6 Validation of the CIMP-related prognostic gene signature in independent cohorts. The Kaplan–Meier curve for patients divided into
high-and low-risk based on CIMP-related prognostic gene signature in (A) GSE13861 (n = 65) and (B) GSE62254 (n = 300) cohorts. Receiver
operating characteristic curve of CIMP-related prognostic signature at different years in (C) GSE13861 (n = 65) and (D) GSE62254 (n = 300)
cohorts. (E) and (F) Receiver operating characteristic curves of the other signatures reported in previous studies in the prediction of OS for TCGA
cohort. Full-size DOI: 10.7717/peerj.9624/fig-6
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The AUC of GSE62254 dataset was 0.674 at 1 year, 0.627 at 3 years and 0.615 at
5 years (Fig. 6D). We then compared our CIMP-related prognostic signature with
two prognostic signatures published previously. We extracted formulae from each study,
and the results of ROC curve analysis implied that the CIMP-related prognostic
signature was comparable or better at predicting the prognosis in the TCGA cohort
(Figs. 6E and 6F). Taken together, the prognostic signature based on CIMP was a reliable
prognostic marker in GC.

The risk score developed from the six genes signature as an inde-
pendent prognostic factor
We contrasted the prognostic value of the risk score was contrasted with clinical
parameters by univariate and multivariate analyses. Clinical parameters included
diagnostic age, gender, pathologic TNM, pathologic stage, pathologic grade, Lauren
classification, status of H. pylori and EB virus infection and MSI status. We found that risk
score acted as an independent prognostic factor and had significant effects in both the
univariate analysis and the multivariate analysis, with p values < 0.05 (Fig. 7A).
Furthermore, the risk score had robust prognostic value (with HR = 3.364, 95% CI
[1.906–5.937]). We then used the risk score as a nomogram to predict patients’ outcome
(Fig. 7B). The Calibration plot indicated that predicted OS and the actual OS rates at 1,3
and 5 years were similar (Figs. 7C–7E). To verify the role of methylation in the expression
of prognostic signature gene, we used Pearson correlation to evaluate the relationship
between the methylation levels of the CST6, SLC7A2, RAB3B, IGFBP1, VSTM2L and EVX2
promoters and their expression levels. Consistent results were found among these six genes
(Figs. 8A–8F). Moreover, the expression of signature genes was consistent among the
CIMP-related subgroups. Expression levels of the signature genes were higher in the
CIMP-L subgroup than those in the other subgroups (Figs. 8G–8L).

Distinct biological processes in risk score stratified subgroups
We identified 382 DEGs between the high-risk and low-risk subgroups in GC samples.
Then, we carried out GO and KEGG analyses to identify the molecular mechanisms
associated with these DEGs. For GO analysis, the top five enriched terms were
“cornification”, “keratinocyte differentiation”, “epidermis development”, “keratinization”
and “epidermal cell differentiation” (Fig. 9A). In KEGG analysis four pathways were
enriched, including “neuroactive ligand-receptor interaction”, “complement and
coagulation cascades”, “staphylococcus aureus infection” and “cholesterol metabolism”.
The “neuroactive ligand-receptor interaction” was shown to be the main associated
pathway with 14 genes involved (Fig. 9B). In addition, STRING was used to draw 382
DEGs into a PPI network complex, which contained 366 nodes and 1,176 interactions
(Fig. S3). Then, Cytoscape was used to identify the most significant module in the PPI
network. The most significant module (score = 17.2) recognized by MCODE, a plug-in of
Cytoscape, contained 38 nodes and 318 interactions (Fig. 9C). Consistent with the results
of GO analysis, the genes in the module were found to be related to “keratinocyte
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differentiation”, “keratinization”, “peptide cross-linking” and “epidermis development”
(Table 3).

DISCUSSION
In the field of cancer research, increasing attention has focused on DNA methylation.
Patterns of DNA methylation can predict prognosis and survival of human cancers
(Hao et al., 2017). CIMP refers to promoter CpG island hypermethylation and is well
characterized in colorectal cancers. In contrast, the relationships between CIMP and
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clinicopathological features are controversial in GC. Previous studies on CIMP used
different methods to measure methylation, like measuring across several CpG sites of a
gene or across several genes. Conflicting conclusions may be drawn, due to variation
among studies in methodologies of DNA methylation analysis and CIMP marker panels,
which brought the bias of chosen marker panels (An et al., 2005; Oue et al., 2003; Park
et al., 2010; Powell et al., 2018). In the present study, we used the methylation data
measured by the Illumina HumanMethylation450K platform to assess the DNA
methylation status of 40,8376 CpG sites including CpG sites located at the promoter
regions of protein-coding genes in multiple samples simultaneously. We adopted
methylation sites with high variability as our CIMP signature for unsupervised hierarchical
clustering to comprehensively assess CIMP status in GC. In addition, our study included
more patients with methylation data from the same platform than previous study (Cancer
Genome Atlas Research, 2014). We firstly used this methodology to divide GC samples into
three distinct subgroups according to their levels of methylation at selected methylation
sites and describe the positive relation between CIMP and prognosis at the global
methylation level, in contrast to analyses using chosen markers. Consistent with this, our
CIMP-H subgroup showed more favorable clinical characteristics including less lymph
node metastasis and lower metastasis status. Promoter hypermethylation is a prominent
feature of EBV-associated GC, and we found that samples with EBV infection were
enriched in the CIMP-H subgroup in this study (Kang et al., 2002). Previous studies
indicated that GC patients with MSI show a significant longer overall survival compared
with those who have MSS and assumed that MSI GC has a better prognosis because of its
earlier stage at diagnosis, less lymph node metastasis and intestinal histological type
(Mathiak et al., 2017; Polom et al., 2018). Consistent with these researches, samples with
MSI were enriched in the CIMP-H subgroup which showed a better prognosis in our
study. We then plotted the Kaplan–Meier survival curves according to previous DNA
methylation clustering. However, we found no significant differences in this clustering
(Fig. S2A). We believed that it was caused by too few cases in the C1 group, which was
corresponding to our CIMP-H group. Therefore, we combined C2 and C3 groups, and
plotted Kaplan-Meier survival curves between C2 + C3 and C4 groups. We found that the
difference in survival was still not statistically significant, but we could see the difference in
survival between these two groups (Fig. S2B). We believed it was due to the fact that the
previous DNA methylation clustering was based on the merger of two methylation

Table 3 The enriched GO terms of genes in the most significant module.

ID Term Count p-Value

GO:0030216 keratinocyte differentiation 15 5.49E−25

GO:0031424 keratinization 13 3.49E−23

GO:0018149 peptide cross-linking 13 6.06E−23

GO:0008544 epidermis development 11 7.52E−16

GO:0002576 platelet degranulation 8 1.25E−09
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platforms, and that the number of samples included was not as large as ours. In our study,
we found that there was no significant relationship between CIMP and PFS in GC.
However, considering that some patients lack PFS information, we need to include more
patients with complete PFS information to clarify the role of CIMP in PFS of GC in future
research.

Our study provided insight into the landscapes of molecular features in patients with
distinct CIMP statuses. Based on the gene set enrichment analysis, we identified
cancer-related oncogenic pathways enriched in the CIMP-L subgroup, including
metastasis, vesicle transfer, G-protein coupled receptor, energy transfer. Cancer
cell-derived vesicles serve as intercellular communication vehicles and carry pathogenic
components, such as proteins, mRNA, miRNA, DNA, lipids and transcriptional factors,
that can mediate paracrine signaling in the tumor microenvironment (Fujita, Yoshioka &
Ochiya, 2016). Vesicles mediate the formation of pre-metastatic niches to promote
metastasis in tumors, including GC (Deng et al., 2017; Jung et al., 2009; Peinado et al.,
2012). Li et al. (2011) reported that Insulin-like growth factor-I (IGF1) regulated the
expression of the VEGF ligand to facilitate angiogenesis and lymphangiogenesis in GC cell
lines, and blocking IGF1 could enhance the effectiveness of bevacizumab. High glucose
conditions were shown to promote GC cell proliferation and reduce susceptibility to
chemotherapy (Zhao et al., 2015). In addition, serotonin-induced signaling pathways
promoted tumor progression (Sarrouilhe & Mesnil, 2019). This suggests these pathways
could have potential as novel drug targets.

Immunotherapy is becoming a routine cancer treatment option, and disparate
tumor-infiltrating immune cells profiles were observed among CIMP-related subgroups.
CD8+ (cytotoxic) T cells are very important for immune defense and tumor surveillance,
and are known to correlate with more favorable outcome in GC (He et al., 2017).
In GC, tumor-associated plasma cells are polarized to produce IgG4 and associated with
tumor progression and poor prognosis (Miyatani et al., 2016). Regulatory T cells
(Tregs) are T cells which have a role in regulating or suppressing other cells in the immune
system, leading to limiting excessive immune responses. Tregs suppress activation,
proliferation and cytokine production of CD4+ T cells and CD8+ T cells. Tregs are thought
to suppress B cells and dendritic cells. Liu et al. (2019) revealed that Tregs promoted
Lgr5 expression in GC cells via TGF-β1 signaling pathway and was negatively associated
with survival. Differences in the levels of the M1 macrophages were also observed. M1
macrophages are an integral cellular component of the immune system, and play a critical
role in protection against intracellular pathogens and cancer cells (Yin et al., 2017).
M1 macrophages have been reported to inhibit tumor growth in GC (Liu et al., 2013).

Recently, TMB has been increasingly accepted as a biomarker of response to
immunotherapy. High TMB contributes to the synthesis of aberrant and potentially
immunogenic mutation-associated neoantigens by the cancer cells, which attract CD8+
CTLs and activated Th1 cells to the tumor microenvironment. In this study, we found
higher TMB in the CMIP-H subgroup, potentially indicating a better response to
immunotherapy in this group. Consistent with the distribution of TMB, more MSI
samples, especially MSI-H, were detected in the CIMP-H subgroup. The prevalence of MSI
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in GC is relatively high, and as MSI-H GCs are strongly associated with PD-L1 positivity,
they could be applicable targets of anti-PD-1 therapies (Kim et al., 2018). The mutations of
TTN and MUC16 were announced to be correlated with better survival result in lung and
GCs (Cheng et al., 2019; Li et al., 2018a).

Recent researches have indicated that clinicopathological parameters such as tumor
depth, lymph node metastasis, margin status, and metastatic condition are unsatisfactory
for accurately predicting patient prognosis. Outcome varies tremendously among patients
with comparable clinicopathological features. Therefore, with the advantage of
high-throughput sequencing technologies, mRNAs have been used as molecular
biomarkers of the cancer diagnosis and prognosis and shown their critical clinical
application potential. For examples, Zhao et al. (2019) investigated genes relevant to the
cell cycle from the TCGA database and described a set of five genes (MARCKS, CCNF,
MAPK14, INCENP and CHAF1A), which were significantly associated with OS. They used
this signature to stratify GC patients into two groups with significantly different survival
outcomes. Distinct clinical features were also demonstrated between the two groups.
In another research, the predictive value of DNA methylation gene for prognosis was
determined in GC, and different pathways and biological processes associated with
tumorigenesis were found in groups with distinct gene methylation levels (Hu et al., 2019).

In our study, a gene signature including CST6, SLC7A2, RAB3B, IGFBP1, VSTM2L and
EVX2, was developed based on CIMP. CST6 has been reported to play a role in the
progression of triple-negative breast cancer (TNBC) and may act as a tumor-promoter
gene. High CST6 expression was also associated with a higher rate of lymph node
metastasis (Li et al., 2018b). SLC7A2 is essential for transport of L-arginine, lysine and
ornithine and genetic polymorphisms in the SLC7A2 gene are associated with colorectal
cancer progression (Sun et al., 2017). SLC7A2 has also been found to play a role in
radio-resistance of non-small cell lung cancer. RAB3B, a member of RAS oncogene family,
is shown to be a target of miR-200b, which is supposed to be tumor suppressor in GC
(Tang et al., 2013; Ye et al., 2014). RAB3B, has been shown to be overexpressed in prostate
cancer patients and promote prostate cancer cell survival (Tan et al., 2012). IGFBP1, an
insulin-like growth factor binding protein, is revealed to be associated with hematogenous
metastasis and poor survival in GC. And the expression of IGFBP1 is positively associated
with tumor invasion, lymph node metastasis and vascular invasion (Sato et al., 2019).
VSTM2L is reported to be downregulated in the H. pylori-positive GC samples (Hu et al.,
2018). However, the role of VSTM2L in tumors is rarely reported, and its role requires
further studies. EVX2 is recently revealed to be regulated by methylation and serve as a
methylation biomarker for lung cancer (Rauch et al., 2012). In our study, the expression of
EVX2 was higher in CIMP-L subgroup consistent with its mechanism of epigenetic
regulation. Our six-genes risk signature was an independent prognostic biomarker of GC,
with patients in high-risk groups showing significantly worse prognosis than those in
low-risk groups. Our results support the notion that gene risk signature might have more
predictive power than traditional prognostic parameters. The prognostic performance
of our signature was validated in the TCGA dataset, and the external datasets GSE13861
and GSE62254. Further, it compared favorably to two other gene-based signatures
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(Deng et al., 2018; Zhao et al., 2019), based on ROC and AUC analyses predicting 1-, 3- and
5-year overall survival. In our study, distinct biological analyses in risk score stratified
subgroups indicated that keratinization and keratinization-related processes may
play an important role in GC progression. At present, there is no research about the
role of keratinization in GC and it needs further studies. In addition, the neuroactive
ligand-receptor interaction was shown to be the most significant pathway in stratified
subgroups and revealed to be involved in apoptosis and cell proliferation (Zan & Li, 2019).

CONCLUSION
In summary, we first identified an accurate and comprehensive association between CIMP
and clinical prognosis in GC, where high CIMP indicated better patient prognosis.
We then developed and validated a six-genes prognostic signature related to CIMP that
can predict the survival of patients with GC, where higher risk score indicated worse
patient prognosis. This signature could be an effective tool in clinical practice as a
supplement to traditional staging system to indicate progression and predict overall
survival of GC. However, our study has some limitations. Firstly, it was based on a
retrospective design, so the numbers of patients with the same clinical features in CIMP
subgroups were not comparable. Also, the number of datasets used to validate the clinical
prognostic signature is not large, and further validation by future prospective studies is
desirable. Knowledge of the signature genes in GC development is currently scarce and
further experiments are needed to verify their potential molecular mechanisms.
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