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Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues
globally. Recent research indicates that intestinal microbiota play roles in metabolic
disorders. Though there are numerous studies focusing on gut microbiota of health and
obesity states, those are primarily focused on western countries. Comparatively only a few
investigations exist on gut microbiota of people from Asian countries. In this study, the
fecal microbiota of 30 adult volunteers living in Chiang Rai Province, Thailand were
examined using next-generation sequencing (NGS) in association with blood profiles and
dietary habits. Subjects were categorized by body mass index (BMI) and health status as
follows; lean (L) = 8, overweight (OV) = 8, obese (OB) =7 and diagnosed T2DM = 7.
Members of T2DM group showed differences in dietary consumption and fasting glucose
level compared to BMI groups. A low level of high-density cholesterol (HDL) was observed
in the OB group. Principal coordinate analysis (PCoA) revealed that microbial communities
of T2DM subjects were clearly distinct from those of OB. An analogous pattern was
additionally illustrated by multiple factor analysis (MFA) based on dietary habits, blood
profiles, and fecal gut microbiota in BMI and T2DM groups. In all four groups, Bacteroidetes
and Firmicutes were the predominant phyla. Abundance of Faecalibacterium prausnitzii, a
butyrate-producing bacterium, was significantly higher in OB than that in other groups.
This study is the first to examine the gut microbiota of adult Thais in association with
dietary intake and blood profiles and will provide the platform for future investigations.
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18 Abstract

19 Obesity and type 2 diabetes mellitus (T2DM) have become major public health issues globally. 

20 Recent research indicates that intestinal microbiota play roles in metabolic disorders. Though 

21 there are numerous studies focusing on gut microbiota of health and obesity states, those are 

22 primarily focused on western countries. Comparatively only a few investigations exist on gut 

23 microbiota of people from Asian countries. In this study, the fecal microbiota of 30 adult 

24 volunteers living in Chiang Rai Province, Thailand were examined using next-generation 

25 sequencing (NGS) in association with blood profiles and dietary habits. Subjects were 

26 categorized by body mass index (BMI) and health status as follows; lean (L) = 8, overweight 

27 (OV) = 8, obese (OB) =7 and diagnosed T2DM = 7. Members of T2DM group showed 

28 differences in dietary consumption and fasting glucose level compared to BMI groups. A low 

29 level of high-density cholesterol (HDL) was observed in the OB group. Principal coordinate 

30 analysis (PCoA) revealed that microbial communities of T2DM subjects were clearly distinct 
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31 from those of OB. An analogous pattern was additionally illustrated by multiple factor analysis 

32 (MFA) based on dietary habits, blood profiles, and fecal gut microbiota in BMI and T2DM 

33 groups. In all four groups, Bacteroidetes and Firmicutes were the predominant phyla. Abundance 

34 of Faecalibacterium prausnitzii, a butyrate-producing bacterium, was significantly higher in OB 

35 than that in other groups. This study is the first to examine the gut microbiota of adult Thais in 

36 association with dietary intake and blood profiles and will provide the platform for future 

37 investigations. 

38

39 Introduction

40 Over the past decades, obesity has been recognized as a global epidemic that threatens quality 

41 and length of life. Obesity has also been recognized as a risk factor for developing non-

42 communicable diseases (NCDs) including cardiovascular diseases, cancers, diabetes and lung 

43 diseases (Caballero, 2007; Misra & Khurana, 2011; Webber et al., 2012). The prevalence of 

44 obesity is increasing globally in populations living in both developed and developing countries. 

45 However, the trends in obesity vary across continents with respect to economic progress (from 

46 high- to low-income countries) (Jaacks et al., 2019). Inequitable income reflecting an 

47 individual’s socioeconomic status seems to be one of the major factors that drive disparities in 

48 lifestyle-related health, particularly dietary behavior. In high-income countries (e.g. Western 

49 Europe and the United States), fresh foods are less affordable compared to processed foods 

50 among people with lower wages, which is a contributing factor to the increased prevalence of 

51 obesity (Drewnowski, 2009; Harrison & Taren, 2018). The inverse correlation pattern between 

52 obesity and rate of income have been reported repeatedly in low-income and middle-income 

53 countries (Wang, 2001; Swinburn et al., 2011; Pampel, Denney & Krueger, 2012; Harrison & 

54 Taren, 2018). A dietary habit has been shifted among middle-income countries at a brisk pace. 

55 Traditional diet is rapidly being replaced by consumption of processed foods in parallel with 

56 increasing urbanization. Exposure to high-fat diets in relation to socioeconomic status revealed 

57 that urban children tended to become more obese than children living in rural environments 

58 (Kisuse et al., 2018b), an observation matched in urban workers (Xanthos, 2015). These patterns 

59 of dietary transition regarding convergence to obesogenic diets, which are energy-dense lead to 

PeerJ reviewing PDF | (2020:03:46544:1:0:NEW 7 Jun 2020)

Manuscript to be reviewed



60 obesity-related complications. The association of urbanization with obesity may thereby increase 

61 the burden of NCDs among populations (Low, 2016).

62 Body mass index (BMI) is widely used to assess health status based on weight and height. In 

63 general, higher BMI (overweight and/or obesity) is an indicator of increased risk of developing a 

64 range of conditions, including metabolic disorders, such as type 2 diabetes mellitus (T2DM) 

65 (Bays, Chapman & Grandy, 2007; Han & Boyko, 2018). Weight fluctuation is commonly 

66 associated with dietary consumption, and increasing food intake overtime, can lead to gaining 

67 weight. Westernized diets, which have high content of fats, sugars, and sodium, but are deficient 

68 in fibre, increase risk of obesity along with its comorbidities including T2DM, heart disease, and 

69 cancer (Mozaffarian et al., 2011; Manzel et al., 2014; Kopp, 2019). A strong relationship 

70 between BMI and T2DM has also been reported; the chance of developing T2DM increases in 

71 parallel with increasing BMI (Bays, Chapman & Grandy, 2007; Ganz et al., 2014; Al-Goblan, 

72 Al-Alfi & Khan, 2014; Gray et al., 2015). Currently, the interplay between BMI and microbes is 

73 a primary focus of research in determining host health traits.

74 The human gut harbors a large population of microorganisms, the gut microbiota, which 

75 exert a notable influence on the host in modulating energy balance (host metabolism and energy 

76 uptake). Numerous studies have suggested that bacteria residing within the human digestive tract 

77 are associated with health and disease states, and accordingly, they are involved in various host 

78 functions such as metabolism and immune system (Macpherson & Harris, 2004; Sekirov et al., 

79 2010; Tremaroli & Bäckhed, 2012; Nicholson et al., 2012; Bull & Plummer, 2014; Leung et al., 

80 2016; Tang & Hazen, 2016). Despite being abundant, an imbalance or disruption of the human 

81 gut flora can have a significant impact on disease susceptibility or occurrence (Manichanh et al., 

82 2006; Clemente et al., 2012; Carding et al., 2015; Zhang et al., 2015b; Belizário & Faintuch, 

83 2018). Among the commonly and consistently reported findings, the genera of Bifidobacterium, 

84 Bacteroides, Faecalibacterium, Akkermansia and Roseburia have been negatively associated 

85 with T2DM, while the genera of Ruminococcus, Fusobacterium, and Blautia were positively 

86 associated with T2DM (Gurung et al., 2020). Several studies have also demonstrated the crucial 

87 role of dysbiosis of intestinal microbiota in correlation with NCDs. Recent evidence suggests 

88 that alteration of the gut microbial composition may predispose the host to obesity and diabetes 

89 (Bäckhed et al., 2005; Hur & Lee, 2015; Serino et al., 2017). Evidence from mice and human 

90 studies have suggested that dysbiosis increases energy extraction from diet and enhances host 
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91 energy harvest. Dysbiosis also induces obesity-associated inflammation in the host. The 

92 complexity of bacterial communities is significantly reduced in obese individuals (Le Chatelier 

93 et al., 2013). Restoring the lost complexity has been found to reduce metabolic disorders in 

94 animals (Yin et al., 2010; Gauffin Cano et al., 2012; Everard et al., 2013; Bubnov et al., 2017), 

95 which diets are considered as one of the major factors that contribute to the gut microbial 

96 community (Rinninella et al., 2019).

97 Diet is one of the most prominent external factors that does not only affect composition and 

98 abundance of gut microbiota, but also overall health. A relationship between diet and gut 

99 microbiota composition has been previously documented, whereby changes in gut microbial 

100 communities are influenced by variations in dietary components (Flint et al., 2012; David et al., 

101 2014; Xu & Knight, 2015). Thus, the response of microbiome to diet potentially contributes to 

102 health status (Riaz Rajoka et al., 2017; Hughes et al., 2019). Thailand is used to be seen as a 

103 "lean nation". During the last decade, the diet of Thai people has been changing and becoming 

104 more westernized due to economic development (upgraded to a developing upper-middle-income 

105 country (The World Bank, 2011), higher income and globalization. These foods have a high 

106 calorie but low nutritional content and their excessive consumption has been linked to obesity. 

107 The contemporary prevalence of overweight and obesity in Thai adults is 40.9% (Jitnarin et al., 

108 2011). Moreover, NCDs cause 71% of total deaths in Thailand (WHO, 2011). Although the 

109 microbiota patterns of obese adult Asian populations from some Asian countries such as China, 

110 India, and Japan (Kasai et al., 2015; Zhang et al., 2015a; Ahmad et al., 2019) are available, 

111 similar information on Thai gut microbiota is still limited. Given the unique culture and 

112 gastronomical lifestyle of Thailand, the present study aimed to (1) establish gut microbiota 

113 baselines of lean, overweight, obese, and T2DM in Thai populations and (2) explore associations 

114 of specific components of the gut microbiota with dietary habits and blood profiles in these 

115 populations.

116 Materials & Methods

117 Ethics Statement

118 This study was approved by the Ethics Committee of Mae Fah Luang University (Ethics license: 

119 REH60075). The subjects were informed about the scope of the research project a day before 
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120 participation using Thai-version information sheets. Written informed consents were obtained 

121 from all participants before sample and questionnaire collections.

122 Study subjects

123 The study included 30 subjects from Chiang Rai province located in Northern Thailand, which 

124 were considered to be representative of Thai population. Subject recruitment was conducted by 

125 voluntary participation through community clinics in the province and was carried out in July 

126 2017. Subjects were divided into two major groups including diabetics (T2DM) and non-

127 diabetics. Of these, seven subjects were placed in the T2DM group based on their morning 

128 fasting blood sugar level (cutoff level of > 126 mg/dL) (Reinauer H et al., 2003) and irrespective 

129 of BMI. Twenty-three (non-diabetic) subjects were classified according to BMI using the criteria 

130 set by the World Health Organization Western Pacific Region (WHO, 2004), as follows: 

131 underweight (BMI < 18.5), normal or lean (18.5 ≤ BMI < 24.9), overweight (25.0 ≤ BMI < 

132 29.9), and obese (BMI ≥ 30). Voluntary samples were taken from each group to meet a quota as 

133 follows: seven for T2DM (female (n=6), male (n=1)); eight for lean (female (n=6), male (n=1)), 

134 for overweight 8 (female (n=6), male (n=1)) for overweight, and seven for obese (female (n=3), 

135 male (n=4) and 4 men). Subjects that reported use of antibiotics (a duration of six months) and/or 

136 experienced diarrhea (a duration of one month) were excluded from the study. Average 

137 characteristics of the subjects that participated in this study are shown in Table 1. Statistical 

138 significance of each characteristic between groups (except gender) were assessed by One-way 

139 ANOVA test, followed by a post-hoc test for unequal sample size (Tukey-kramer at a confidence 

140 interval of 0.95). The Fisher’s exact test was applied for a gender variable. The statistical 

141 analysis was performed using an R software package (stat) version 3.6.1 which Benjamini-

142 Hochberg procedure was applied for multiple-test correction using multcomp package (version 

143 1.4-10). Blood profiles, high-density lipoprotein (HDL) cholesterol and fasting glucose levels 

144 were also selected for further multivariate analysis.

145 Food frequency questionnaire

146 Dietary intake variables were collected using food frequency questionnaire (FFQ). The 

147 questionnaire contained 25 items of different food types including rice vermicelli, a traditional 

148 food of northern Thailand (La-ongkham et al., 2015). Records of frequency of consumption of 
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149 yogurt/ cheese/ fermented milk, and fruits were missing for one subject (lean group). 

150 Frequencies were categorized into the following six levels: every day, 5-6 days a week, 3-4 days 

151 a week, 1-2 days a week, less than once a week, and never. The statistical significance of 

152 differences in the mean ranks among groups was determined using Kruskal-Wallis rank sum test 

153 with post-hoc analysis (Dunn’s test of multiple comparisons, p-value adjusted with the 

154 Benjamini-Hochberg method (hereafter referred to as q-value)). The frequencies of dietary 

155 consumption of each group are summarized in Table S1. 

156 Fecal sample collection and DNA extraction

157 Fecal samples of all volunteers were collected in a sterilized container and immediately stored at 

158 -20oC until further use. Total genomic DNA from fecal samples was extracted using the 

159 innuPREP Stool DNA Kit (Analytik Jena Biometra, Germany) following the manufacturer's 

160 guidelines. Concentration and purity of DNA were evaluated on 1% agarose gels.  

161 Spectrophotometry was applied to determine the DNA concentration (ng/µl) by the Take 3 

162 Micro-Volume Plate (Biotek, USA). Total DNA per gram of fecal wet weight was calculated and 

163 recorded.

164 Amplicon generation, library preparation and sequencing

165 The hypervariable region V3-V4 of the 16S rRNA gene was amplified using specific primers 

166 (16S V3-V4: 341F: 5′-CCTAYGGGRBGCASCAG-3′, 806R: 5′-

167 GGACTACNNGGGTATCTAAT-3′) (Klindworth et al., 2013) with the barcode. All PCR 

168 reactions were carried out using Phusion® High-Fidelity PCR Master Mix (New England 

169 Biolabs). PCR products were run using electrophoresis on a 2% agarose gel for detection. 

170 Samples that showed a band between 400-450bp were chosen for further experiments. PCR 

171 products were mixed in equidensity ratios. Then, mixture PCR products were purified with 

172 Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing libraries were generated using 

173 NEBNext ® Ultra DNA Library Pre Kit for Illumina, following manufacturer 's 

174 recommendations and index codes were added. Library quality was assessed using Qubit@ 2.0 

175 Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100 system. Libraries were 

176 sequenced on the Miseq platform (Illumina, San Diego, California, United States of America) at 

177 Novogene (Beijing, China) during September 2017 and 250 bp paired-end reads were generated. 
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178 Further downstream steps included data analysis using Qiime (version 1.7.0), OTU clustering 

179 and taxa annotation, alpha and beta diversity analysis.

180 Data analysis

181 Paired-end reads were assigned to samples based on their unique barcode and truncated by 

182 cutting off the barcode and primer sequence. Paired-end reads were merged using FLASH 

183 (V1.2.7, http://ccb.jhu.edu /software/FLASH/) (Magoč & Salzberg, 2011). Splicing sequences 

184 were called raw tags. Quality filtering on the raw tags was performed under specific filtering 

185 conditions to obtain high-quality clean tags (Bokulich et al., 2013) according to the QIIME 

186 (version 1.7.0, http://qiime.org/index.html) (Caporaso et al., 2012) quality-controlled process. 

187 Tags were compared with the reference database (Gold database, 

188 http://drive5.com/uchime/uchime_ download.html) using UCHIME algorithm (UCHIME 

189 Algorithm, http://www.drive5.com /usearch/manual/uchime_algo.html) (Edgar et al., 2011) to 

190 detect chimera sequences, all of which were removed (Haas et al., 2011). The raw sequence data 

191 is available at NCBI SRA with BioProject accession number PRJNA610672 (BioSample 

192 accession numbers SAMN14309526 to SAMN14309555).

193 OTU cluster and species annotation

194 Sequence analysis was performed using Uparse software (Uparse version 1.0.1001, 

195 http://drive5.com/uparse/) (Edgar, 2013). Sequences with ≥97% similarity were assigned to the 

196 same OTU. A representative sequence for each OTU was screened for further annotation. 

197 Sequences were queried against the Greengenes Database version gg.13.5 

198 (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) (DeSantis et al., 2006; Wang et al., 2007) to 

199 obtain taxonomic information. Newly generated OTUs were aligned using MUSCLE software 

200 (Version 3.8.31, http://www. drive5.com/muscle/) (Edgar, 2004) and phylogenetic trees were 

201 generated. The OTU annotation tree was visualized using a custom R package (developed by 

202 Novogene Co., Ltd.). OTU abundance information was obtained by normalizing the sequence 

203 number corresponding to the sample with the least sequences (OTU counts rarefied to 103744 

204 reads per sample). Subsequent analysis of alpha diversity and beta diversity were all performed 

205 basing on this output normalized data.  The relative abundance of gut bacteria between sample 

206 groups was compared by the unpaired two-samples Wilcoxon test and multiple comparisons 
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207 were adjusted with Benjamini–Hochberg method (q < 0.05) using R software package (stats) 

208 version 3.6.1. 

209 Alpha diversity

210 Alpha diversity was applied to analyze complexity of species diversity for each sample using the 

211 following indices: ACE, Chao1, observed-species, Shannon, Simpson, and Good’s coverage. The 

212 unpaired two-samples Wilcoxon test with Benjamini–Hochberg procedure (q < 0.05) was used to 

213 compare alpha diversity indices between groups for statistical differences. Comparisons were 

214 visualized as a box plot by ggplot2 (Wickham H, 2009) in R software (version 3.6.1).

215 Beta diversity analysis

216 Beta diversity analysis was used to evaluate differences of fecal samples in bacterial community 

217 structure between BMI and T2DM groups. Beta diversity was calculated using both weighted 

218 and unweighted unifrac. Principal Coordinate Analysis (PCoA) was performed to get principal 

219 coordinates and visualize from complex, multidimensional data. PCoA analysis was displayed by 

220 WGCNA package, stat package and ggplot2 package (Wickham H, 2009) in R software (version 

221 2.15.3). Multi–response permutation procedure (MRPP) was used to determine dissimilarities of 

222 microbial community structure between groups implemented in the R package vegan (version 

223 2.5–6) (Mielke & Berry, 2001). Unweighted Pair-group Method with Arithmetic Means 

224 (UPGMA) Clustering was performed as a type of hierarchical clustering method to interpret the 

225 distance matrix using average linkage. The relative abundance of OTUs that most likely explain 

226 the differences between groups was evaluated by LEfSe (linear discriminant analysis (LDA) 

227 Effect Size) analysis (Segata et al., 2011).

228 Firmicutes/Bacteroidetes ratios

229 The non-parametric Wilcoxon rank–sum test was performed to compare 

230 Firmicutes/Bacteroidetes ratios between groups (L, OV, OB, and T2DM) (p < 0.05). The 

231 comparisons were visualized as a boxplot by ggplot2 (Wickham H, 2009).

232 Multivariate statistical analysis
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233 In order to gain a deeper insight into the dietary consumption profile of individuals in the 

234 different groups, we used multiple factor analysis (MFA) in FactorMineR version 1.42 (R 

235 software, version 3.6.1) (Lê, Josse & Husson, 2008). MFA is beneficial for simplifying and 

236 structuring variables into groups on the components (PCA-based eigenvalues). The MFA of dietary 

237 consumption in different BMI and T2DM groups included 25 variables (frequency of intake) that 

238 belonged to 4 variable groups (protein (8 variables), carbohydrate (6 variables), fibre (5 

239 variables), and beverage (6 variables)). For evaluating the association between dietary habits, 

240 blood profiles, and fecal gut bacteria in BMI and T2DM groups, 37 variables were included in 

241 the MFA, which the analysis of multidimensional distance between subjects was based on 25 

242 variables pattern of food consumption (frequency of intake), 2 variables described blood profiles 

243 (HDL cholesterol and fasting glucose levels), and 10 variables belonged to relative abundance of 

244 fecal gut microbiota at genus level. An integration of confounding factors (gender and age) with 

245 other concerned variables (blood profiles, dietary habits, and fecal gut microbiota) also 

246 implemented in the MFA analysis. The age variable was categorized into six groups (20-29, 30-

247 39, 40-49, 50-59, 60-69, and over 70) according to Png et al. (2016). Therefore, the variations 

248 were revealed by the influence of each variable on the principle components. Results of 

249 multivariate data analyses were extracted and visualized by Factoextra version 1.0.5. We used 

250 the mixOmics R package version 6.10.2 (Rohart et al., 2017) to determine associations between 

251 microbial communities, dietary consumption, and blood profiles in the different groups. We 

252 applied sparse Partial Least Square (sPLS) analysis to explore relationships between these 

253 variables in each study group (L, OV, OB, and T2DM). The sPLS ‘canonical mode’ was used to 

254 specify the microbial OTU that most correlated with diets and/or blood profiles (Lê Cao et al., 

255 2008, 2009). The high-dimensional data sets were visualized with clustered image maps  

256 (González I et al., 2013).

257 Results

258 Dietary consumption in different BMI groups and T2DM subjects

259 Dietary habits of the different groups were determined to enquire whether the observed data 

260 could support the gut microbial profile. Based on the frequency of consumption records, none of 

261 the subjects in any of the groups differed in the intake of dietary protein, carbohydrate, fibre and 
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262 beverage with some exceptions: significant differences were noted regarding consumption of 

263 chicken (OB-T2DM comparison, q < 0.01), rice vermicelli (L-T2DM comparison, q < 0.05) and 

264 fermented fruits or vegetables (L-OV and L-T2DM comparisons, p < 0.05 for both).

265 The results of MFA revealed that individuals with T2DM displayed a notable variation on 

266 frequency of food consumption from the rest of the groups. This was discernible on the factor 

267 map indicating the first two dimensions accounting for 31.6% of variance (Fig. S1). The ellipse 

268 of L, OV, and OB groups had a strong overlap compared to the ellipse representing T2DM group 

269 with 95 % confidence. These results indicate a lower variability of dietary consumption among 

270 the different BMI groups when compared to the T2DM group (coordinate = −1.42, p < 0.001). 

271 The frequency of fermented fruit/vegetable consumption significantly described the first 

272 dimension (r = 0.60, p < 0.001), and that variation in food consumption among groups supported 

273 the reduction of this particular type of dietary fiber intake in subjects having type 2 diabetes.

274 Blood profiles in BMI and T2DM groups

275 Information regarding subject status of the study is shown in Table 1. There were statistical 

276 differences between the average age, BMI, weight, HDL cholesterol, and fasting glucose in four 

277 study groups assessed by Tukey-kramer post-hoc test (q < 0.05). HDL cholesterol was 

278 significantly lower in the OB groups compared to L (q < 0.001), OV and T2DM groups (q < 

279 0.05), and was also significantly lower in OV versus L groups (q < 0.05). Unsurprisingly, fasting 

280 glucose level increased with increasing BMI with highest level in T2DM group (q < 0.05).

281 Composition of prokaryotic fecal microbiota in BMI and T2DM groups

282 A total of 3,408,383 reads were obtained from 16S rRNA amplicon sequencing with an average 

283 of 113,613 reads per sample for a total of 30 samples. Using 97% identity criterion for 

284 determining OTUs, we obtained 504.33 ±33.15 OTUs per sample (range 454-579 OTUs). Gut 

285 microbiota of all samples was classified into 995 OTUs, 145 genera, 82 families, 53 orders, 31 

286 classes and 18 phyla. Shared and unique OTUs among different groups are shown in Venn 

287 diagram (Fig. 1). The total number of OTUs presented in the L, OV, OB, and T2DM groups 

288 were 832, 811, 753, 852, respectively. The number of shared OTUs in all groups was 588; 729 

289 OTUs (22.44%) were shared between L and OV groups, 752 OTUs (23.15%) between L and 
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290 T2DM groups, 671 (20.65%) between L and OB groups, 730 (22.48%) between OV and T2DM 

291 groups, 657 (20.22%) between OV and OB groups, and 629 (19.37%) between T2DM and OB 

292 groups (Fig. 1A). Regarding the number of non-shared OTUs, non-diabetic subjects (merging 

293 OTUs of L, OV, and OB groups) had four times more than diabetic subjects (T2DM). 

294 Specifically, 139 non-shared OTUs (17%) were associated with the non-diabetic group, whereas 

295 33 OTUs (4%) were uniquely present in T2DM subjects (Fig. 1B). The rarefaction curves of 

296 microbial diversity estimators for thirty samples reached plateau phase, indicating that most 

297 microbial species had been detected in all samples (Figs. S2A−2C).

298 Fecal microbiome community diversity (richness and evenness) in the four groups was 

299 characterized using ACE, Chao1, observe-species, Shannon, Simpson, and Good’s coverage. 

300 Sequencing data and alpha diversity indices in each sample are presented in Table S2 and S3. 

301 Significant differences of overall bacterial community structure across the four groups were 

302 found in the ACE, Chao1, and observe-species indices (Fig. 2). Specifically, microbial 

303 communities of L and T2DM groups had significantly greater species richness as compared to 

304 those in OB. No significant differences in the diversity of communities (species richness and 

305 evenness) were found across the four groups by Shannon and Simpson indices, suggesting a 

306 similar pattern of the community composition in all groups. Nevertheless, microbial 

307 communities of all four groups had high species-level diversity as indicated by Simpson index, 

308 the value of which approached 1. This implies that as species richness and evenness increased, 

309 diversity also increased.

310 The top ten phyla of microbial communities across the four groups were Bacteroidetes, 

311 Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, Verrucomicrobia, Cyanobacteria, 

312 Tenericutes, Elusimicrobia, and TM7. No significant differences were detected among groups (p 

313 < 0.05) (Figs. S3A, 3B). Top ten of bacterial genera with high relative abundance were used to 

314 construct phylogenetic relationships (Fig. S3C). Based on the similarity threshold, some bacterial 

315 species related to Prevotella genus were clustered in [Prevotella] as their discrete lineages 

316 distinct from other known species within this genus. The representative OTUs assembled in 

317 [Prevotella] consist of Prevotella tannerae (1 OTU), Uncultured bacterium (7 OTUs) and 

318 Prevotellamassilia timonensis (2 OTUs). The latter is a newly identified bacterial species in the 

319 human gut (Ndongo et al., 2016)
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320 We further compared the median differences of the Firmicutes:Bacteroidetes ratios between 

321 groups with 95% confidence interval at phylum level (Fig. S3D). No statistically significant 

322 difference was noted among any of the groups. Among the top ten dominant genera, Prevotella 

323 and Bacteroides accounted for the largest proportion in all sample groups (Figs. 3A, 3B). Several 

324 significant differences among the dominant taxa were also found without the Benjamini–

325 Hochberg method. Faecalibacterium showed significant differences in OV-OB (p = 0.044) and 

326 OB-T2DM (p = 0.011) comparisons (Fig. 3C), while [Prevotella] differed in L and OV 

327 comparison (p = 0.034) (Fig. 3D). Gut microbial alterations at species levels in four groups of 

328 samples (Fig. S4A, 4B) present significant differences of butyrate-producing bacteria 

329 (Faecalibacterium prausnitzii) in OV-OB (p = 0.044) and OB-T2DM (p = 0.011) comparisons 

330 (Fig. S4C), whereas there was a statistically significant difference between OV and T2DM group 

331 (p = 0.026) with respect to the relative abundance of Prevotella copri (Fig. S4D). Bacteroides 

332 coprophilus was also significantly different in OV-OB (p = 0.026) and OV-T2DM comparisons 

333 (p = 0.015). Analysis of statistical differences of microbial species abundance among groups by 

334 LEfSe showed marked differences between subject groups (Fig. 4). In the histogram, the colors 

335 represent taxa that were found to be more abundant in OB group compared to the other groups 

336 (both for the positive (green/blue) and the negative score (red)). In this regard, there were six 

337 taxa (Veillonellaceae, Prevotella, Dialister, Megamonas, Faecalibacterium, and 

338 Faecalibacterium prausnitzii), two genera (Clostridium and Prevotella) and one species 

339 (Bacteroides coprophilus) enriched in OB, T2DM and OV groups, respectively, while no 

340 enrichment of species was noted in the L group.

341 Beta diversity analysis of fecal microbiota in BMI and T2DM groups

342 Qualitative (unweighted UniFrac) and quantitative beta (quantitative measure) diversity 

343 measures yielded substantially different perspectives on the factors (BMI groups and/or the 

344 disease) that may be involved in structuring bacterial diversity. Unweighted UniFrac showed less 

345 distance of samples than Weighted UniFrac (Fig. S5B). PCoA based on Unweighted UniFrac 

346 revealed clearer patterns of microbial variation (Fig. 5B). Gut microbial communities in OB 

347 group were significantly different from those of the T2DM group (p < 0.05), whereas no 

348 dissimilarity was observed in comparison with other groups. Furthermore, more similar 

349 community composition was observed in OB and OV groups with some overlaps also identified 
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350 by UPGMA (Fig. S5B). Clustering analysis suggested association of BMI and/or a disease with 

351 the variations in bacterial community compositions among subjects. Conversely, PCoA and 

352 weighted UniFrac did not clearly discriminate microbial communities among groups implying 

353 that there was no strong association with BMI and/or T2DM in this population (Fig. 5A). When 

354 taking the relative abundance of each type of OTUs into account, the results displayed 

355 similarities in bacterial composition, suggesting that indistinguishable communities may result 

356 from the number of organisms collected in the dominant phylum (Firmicutes, Bacteroidetes and 

357 Proteobacteria) (Fig. S5A).

358 Associations between dietary habits, blood profiles, and fecal gut microbiota in BMI and 

359 T2DM groups

360 MFA revealed the variables that mostly contributed in explaining the variations regarding dietary 

361 habits, blood profiles, and the relative abundance of gut microbiota of subjects in different BMI 

362 groups as well as the T2DM group. The factor map of the MFA generated by data integration of 

363 all variables showed the significance of Dim 1 and 2 that explained 14.3% and 12.8 of observed 

364 variability, respectively (Fig. 6). The distinct or similar profile of individuals, indicated by the 

365 ellipses on both axes of the MFA, mainly resulted from the variation in the blood profiles: HDL 

366 cholesterol levels were lower in the OB group than those observed in the other groups 

367 (coordinate = −1.20, p < 0.05) and higher fasting glucose levels were firmly correlated with 

368 T2DM (coordinate = −1.54, p < 0.001) in comparison with the BMI groups. In addition to the 

369 blood profiles, the genera of bacteria that associated with Dim 1 included Fusobacterium (r = 

370 0.55, p < 0.01), Bacteroides (r = 0.52, p < 0.01), Prevotella (r = −0.54, p < 0.01), and 

371 Faecalibacterium (r = −0.47, p < 0.01). Fusobacterium was associated with Dim 2 (r = 0.47, p < 

372 0.01). For dietary consumption, dairy products and mixed rice variables were negatively 

373 correlated with Dim 1 (r = −0.63, p < 0.001) and Dim 2 (r = −0.64, p < 0.001), respectively. The 

374 second dimension was described by a beef variable with a correlation coefficient of 0.53 (p < 

375 0.01). The relationships of the relative abundance of gut bacteria and the frequency of food 

376 intake were nevertheless interpreted as moderate correlation to both dimensions (moderate 

377 variance). Concerning the contribution of all variables to describe the differences between 

378 individuals, the current analysis suggested that blood profiles seemed to have most influence on 

379 the variability of 30 subjects with different BMIs or with T2DM. Furthermore, the association 
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380 between dietary intake, blood profiles, and microbial OTUs at the genus level from sPLS 

381 analysis are additionally summarized in Table 2.

382 Gender and age highly contributed to the variations of subjects in different BMI groups and 

383 T2DM group (Fig. S6). Integration of five variables (gender, age, blood profiles, dietary 

384 consumption, and the relative abundance of gut microbiota) by the MFA revealed that gender 

385 and age were the top two variables that highly explained individual variation in terms of blood 

386 profiles, dietary consumption, and the relative abundance of gut microbiota. The opposed pattern 

387 of T2DM females (coordinate = −3.12, p < 0.001) at age levels of four (50-59) and five (60-69) 

388 to Dim 1 was explained by the consumption of fish (r = −0.82, p < 0.001), whereas the 

389 consumption of fermented fruits or vegetables (r = 0.52, p < 0.01) and dairy products (r = 0.51, p 

390 < 0.01) as well as the abundance of Faecalibacterium (r = 0.49, p < 0.01) tended to be prevalent 

391 in OB females (coordinate = 1.92, p < 0.05). HDL cholesterol levels were negatively correlated 

392 to Dim 2 (−0.78), particularly among L females (coordinate = −3.0, p < 0.001) at the age level of 

393 three (40-49) (coordinate = −2.58, p < 0.001) that displayed higher HDL profile than OB and 

394 T2DM. In Dim 3, Escherichia was moderately correlated to the dimension (r = 0.51, p < 0.01) 

395 and was predominant in OB male at the age of 71 (coordinate = 3.25, p < 0.01). The distinct 

396 pattern of T2DM females marked in Dim 4 (coordinate = 1.52, p < 0.05) resulted from high 

397 fasting glucose levels with the correlation dimension of (r = 0.51, p < 0.01). 

398 When all blood tests were taken into account, several important variables were maintained 

399 (Fig. S7), however, their variations were described by different dimensions as compared to the 

400 MFA in Fig S6. Different profiles between OB females and T2DM females were illustrated in 

401 Dim 1, where the consumption of chicken (r = 0.70, p < 0.001), dairy products (r = 0.59, p < 

402 0.001), and the abundance of Faecalibacterium (r = 0.53, p < 0.01) were less prevalent among 

403 T2DM females (coordinate = −2.99, p < 0.001) in comparison with OB females (coordinate = 

404 2.21, p < 0.01). A distinct cluster of L females observed in Dim 2 (coordinate = −2.65, p < 

405 0.001) was mostly described by HDL cholesterol levels (r = −0.72, p < 0.001) as being 

406 analogous to Dim 2 of Fig. S6. A moderate correlation of Escherichia dimension (r = 0.42, p < 

407 0.05) also displayed in Dim 2 in parallel with OB male at the age of 71 (coordinate = 3.22, p < 

408 0.01). Faecalibacterium (r = 0.44, p < 0.05) and FBS (r = 0.37, p < 0.05), however consistently 

409 presented in Dim 3, was predominant in OB females (coordinate = 1.90, p < 0.05). Interestingly, 

410 most OV individuals were negatively correlated with Dim 2 as resulted from LDL cholesterol 
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411 levels (r = −0.45, p < 0.05) that tended to be higher in both OV male (coordinate = −2.92, p < 

412 0.05) and females (coordinate = −1.51, p < 0.001), especially at the age level of two (30-39) 

413 (coordinate = −2.10, p < 0.001). 

414 Exclusion of gender and age variables showed a strong overlap of non-diabetic (BMIs) and 

415 diabetic (T2DM) subjects, though no specific group was defined in relation to the variations of 

416 blood profiles and gut microbiota, indicating dispersal of variables across BMI and T2DM 

417 groups (Fig. S8). In Dim 1, the distribution of subjects on the MFA map was mainly influenced 

418 by the abundance of three major genera including Bacteroides (r = 0.68, p < 0.001), Prevotella (r 

419 = −0.65, p < 0.001), and Faecalibacterium (r = −0.65, p < 0.001). Cholesterol (r = 0.49, p < 

420 0.01), triglyceride (r = 0.43, p < 0.05), and diastolic blood pressure (r = 0.43, p < 0.05) levels 

421 moderately correlated with the dimension. Furthermore, systolic blood pressure (r = 0.68, p < 

422 0.001) and HDL cholesterol (r = −0.54, p < 0.01) levels mainly described the individual variance 

423 in the second dimension. 

424 Discussion

425 Our study provides the first evaluation of bacterial gut microbiota composition in adult Thai 

426 subjects of various BMI and T2DM. Microbial diversity across four groups was examined using 

427 six indices based on richness and evenness. The BMI between OB-L and OB-T2DM, OB group 

428 was associated with a significant decrease in bacterial diversity across three indices (ACE, 

429 Chao1, and observed species), whereas a change of diversity was maintained in L and T2DM 

430 groups. This is in agreement with the previous study of Chinese subjects with different glucose 

431 intolerance statuses (normal glucose tolerance, prediabetes, T2DM) (Zhang et al., 2013). The 

432 observed reduced-bacterial diversity in OB groups is consistent with previous findings, in that 

433 obese subjects exhibited lower alpha diversity, when compared with non-obese subjects 

434 (Turnbaugh et al., 2009; Le Chatelier et al., 2013). Accordingly, obese individuals in a Korean 

435 population displayed lower gut bacterial diversity (phylogenetic diversity index) than normal 

436 weight and overweight individuals (Yun et al., 2017). Yet this was not consistently the case in 

437 terms of BMI categories. An investigation of fecal microbiome in a large Chinese cohort 

438 displayed no dissimilarity of alpha diversity among BMI groups (Gao et al., 2018). Similar 

439 results were also obtained in two studies that assessed the upper digestive tract microbiome (Lin 
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440 et al., 2015; Angelakis et al., 2015). Neither of these studies revealed an association between 

441 microbial diversity and BMI. These inconsistent findings with respect to bacterial diversity and 

442 its association with BMI, might not only be due to the small sample size used in our study, but 

443 also other parameters such as age, gender, and dietary consumption. Despite the above-

444 mentioned bacterial richness estimators, OTU-level alpha diversity calculations by Shannon and 

445 Simpson indices yielded no significant difference in gut microbe diversity and richness, 

446 indicating low among-group (BMIs and T2DM) dissimilarities, which may suggest that a change 

447 of gut microbial composition might be affected by BMI or T2DM at the low taxonomic level.

448 Similar to previous studies (Duncan et al., 2008; Yun et al., 2017; Peters et al., 2018), there 

449 was no significant difference of the Firmicutes:Bacteroidetes ratio between BMI groups. 

450 Previous studies have yielded contradictory results with regard to a link between the ratio of 

451 Firmicutes:Bacteroidetes and obesity (Gomes, Hoffmann & Mota, 2018; Tseng CH & Wu CY, 

452 2019). For example, higher Firmicutes:Bacteroidetes ratios were found in obese compared with 

453 non-obese Japanese subjects, and both in overweight and obese Ukrainians, respectively (Kasai 

454 et al., 2015; Koliada et al., 2017). In contrast, Schwiertz et al. (2010) found a lower proportion 

455 of Firmicutes compared to Bacteroidetes in overweight and obese volunteers. Besides these two 

456 predominant phyla, Prevotella and Bacteroides, were enriched in OB and T2DM, and in OV, 

457 respectively Enrichment of these taxa indicates enterotypes and these are likely the result of 

458 individual dietary characteristics. The presence of enterotypes in Thais has been previously 

459 shown and attributed to different diet types like vegetarians and non-vegetarians 

460 (Ruengsomwong et al., 2016). With regard to dominant gut microbiota variations, such as 

461 Firmicutes (high-fiber and carbohydrate foods) and Bacteroidetes (high-calorie foods, such as 

462 animal proteins and foods rich in fats), inconsistent results across studies could be explained by a 

463 variety of dietary components (Western or Asian diet) that may influence dynamics of gut 

464 microbiome. Therefore, detailed dietary data should be included in future research for a more 

465 comprehensive understanding of the links between dietary patterns and gut microbiota profiles.

466 Although we found similar profiles of the major gut bacterial phyla across the four groups, 

467 this was not the case in all taxonomic ranks. For example, F. prausnitzii, butyrate-producing 

468 bacteria, was more abundant in the OB subjects as compared to T2DM. Alteration of the gut 

469 microbiome marked by an increase of F. prausnitzii in obese or a decrease of this bacterial 

470 species in T2DM subjects has been demonstrated in several studies. Our finding is in parallel to 

PeerJ reviewing PDF | (2020:03:46544:1:0:NEW 7 Jun 2020)

Manuscript to be reviewed



471 an increase of F. prausnitzii in obese Indian and Mexican children (Balamurugan et al., 2010; 

472 Murugesan et al., 2015). A lower prevalence of this bacterium was also observed in T2DM 

473 Chinese patients in comparison with that of non-diabetic subjects (Qin et al., 2012). High 

474 accumulation of this butyrate producer in OB group may reflect the energy expenditure of the 

475 host with regard to the mechanism of its major metabolite (butyrate) in engaging host 

476 metabolism. The proof of concept for such interaction has been immensely demonstrated in an 

477 animal model (De Vadder et al., 2014; Den Besten et al., 2015) as well as in humans (Turnbaugh 

478 et al., 2006; den Besten et al., 2013). Although the pros and cons of butyrate towards obesity has 

479 been reviewed, the capability of butyrate in influencing lipid biosynthesis could contribute to 

480 obesity (Liu et al., 2018). Collectively, these evidence highlight that the butyrate-producing 

481 species might be an indicator of host physiology. 

482 Trends in associations between gut microbiota with some food groups and blood parameters 

483 were observed in the dominant taxa, particularly with members of Firmicutes and Bacteroidetes 

484 phyla. Prevotella and [Prevotella] were correlated with carbohydrate-rich and fibre-rich diets in 

485 OB and T2DM subjects, while their links with plant-based foods have been previously described 

486 (Kovatcheva-Datchary P et al., 2015; Ruengsomwong et al., 2016; Kisuse et al., 2018a). 

487 Moreover, Prevotella enterotype is generally dominant in Asian countries, where traditional high 

488 fibre diets are preferable, in contrast to Western countries, where food consumption is more 

489 homogenous (except Mediterranean diet) and mainly relies on high fat and protein content 

490 (Senghor et al., 2018). The differences in gut microbiota have been previously reported in 

491 representative Indian and Chinese subjects, as well as, Japanese populations. Variability in diets 

492 across Asia along with its geographically unique pattern contributes substantially to differences 

493 in the composition of gut bacteria communities observed in diverse Asian populations and/or 

494 ethnicities (Senghor et al., 2018; Jain, Li & Chen, 2018; Pareek et al., 2019). Notably, 

495 consumption of some types of foods (chicken, rice vermicelli, and fermented fruits or 

496 vegetables) was considerably lower in T2DM subjects than in any of the BMI groups. This is 

497 consistent with diabetic subjects being more concerned about food consumption (high 

498 cholesterol, carbohydrate, and sodium) and increased risk of complications of diabetes 

499 (Yannakoulia, 2006; Valensi & Picard, 2011; Provenzano et al., 2014; Sami et al., 2017). 

500 Although Bacteroidetes is well known to be associated with protein/fat diets (Wu et al., 2011), a 

501 positive correlation with brown rice was found in OB subjects. Whilst we did not specifically 
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502 identify the species, there is evidence suggesting that an increase in abundance of some 

503 Bacteroides strains results from competition with other members for fibre-derived nutrients 

504 (Hindson, 2019). With respect to small numbers of subjects used in our study, the positive 

505 relationship of abundances of butyrate-producing bacteria (Roseburia and Faecalibacterium) 

506 with fasting glucose levels of different groups (L, OV, and T2DM) may not sufficiently explain 

507 the association between these bacteria and the presence of glucose. The low abundance of these 

508 genera in T2DM patients has been previously reported (Qin et al., 2012; Karlsson et al., 2013). 

509 Recent studies based on sequencing technology have examined the impact of gender and 

510 BMI on the status of gut microbiota (Dominianni et al., 2015; Haro et al., 2016; Borgo et al., 

511 2018) including an aging-related decrease in gut bacteria (Shen et al., 2018; Takagi et al., 2019; 

512 Xu, Zhu & Qiu, 2019). However, our study is limited by gender-disproportionate recruitment, the 

513 age range of subjects, the variations of BMI in T2DM groups as well as, the sample size. Thus, 

514 the observed variations among different BMI groups and T2DM subjects were apparently 

515 influenced by several variables associated with female subjects. According to the MFA factor 

516 map for individuals, inclusion of confounding variables (gender, age, and diets) together with 

517 blood profiles and the relative abundance of gut microbiota showed a contrary pattern between 

518 OB and T2DM. The consumption of fermented fruits or vegetables, chicken, dairy products 

519 along with the relative abundance of Faecalibacterium prevailed among OB females (made up of 

520 three women with the average age of 34), whereas a diminishing trend was displayed in older 

521 T2DM females (made up of six women with the average age of 60) with a high fasting glucose 

522 level. The worldwide trend in diabetes prevalence, including Thailand, has increased in adults 

523 over the age of 50 (Wild et al., 2004; Aekplakorn et al., 2018). Based on the average age of these 

524 two groups, OB and T2DM females seemed to differ considerably in terms of age-related 

525 changes in hormone levels. Some evidence has shown that the alteration of gut microbiota 

526 composition may be driven by the postmenopausal loss of estrogen (Vieira et al., 2017). In this 

527 study, all T2DM female subjects are postmenopausal, which the condition naturally relies on 

528 age(Agostini et al., 2018), our study suggests that a menstrual condition according to the age of 

529 the subjects should be further considered when investigating the gut microbiota profiles. In 

530 addition to other concerned factors including blood profiles, diets, BMI levels, and T2DM, the 

531 study itself may not support such a clear conclusion on the difference in the relative abundance 

532 of Faecalibacterium derived from the age differences in subjects. A possible aspect that could be 
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533 drawn from such differences marked in OB and T2DM may be the specificity of metabolic 

534 diseases in gut bacteria associations (Festi et al., 2014; Gurung et al., 2020). Considering all 

535 blood profiles in association with fecal gut microbiota (irrespective of gender and age), neither 

536 the blood profiles nor the gut microbiome influenced on a specific group of subjects. Besides, the 

537 individual differences shown on the MFA were resulted from some bacterial genera 

538 (Bacteroides, Prevotella, and Faecalibacterium) and blood profiles (total cholesterol, 

539 triglyceride, and diastolic blood pressure, systolic blood pressure, and HDL cholesterol) that only 

540 contributed to the variation of subjects. Evidence for the involvement of gut microbiome in 

541 metabolic disorders that posed either a detriment (Dabke, Hendrick & Devkota, 2019; Gildner, 

542 2020) or a benefit to host health (He & Shi, 2017) encourage further study to increase the sample 

543 size as our conclusion might not be applicable for the study with a large population. Therefore, 

544 this adjustment may help to facilitate explaining the explanation of associations between blood 

545 profiles and the gut bacteria.

546

547 Conclusions

548 Our study has provided a preliminary overview of prokaryotic communities in the gut of adult 

549 Thais, regardless of the small sample size. Associations between dietary intake, blood profiles, 

550 and fecal gut microbiome in different BMI and T2DM subjects were also examined. A range of 

551 multivariate data analysis (MFA and sPLS) enabled us to capture the profiles of individuals in 

552 each study group. Subjects with obesity and/or diabetes might be associated with different 

553 bacterial populations when linking with dietary consumption and blood profiles. However, a 

554 larger sample size is mandatory to advance an understanding of the interplay of BMI or T2DM to 

555 changes of microbiota composition, together with metabolomics data. Validation of abundance 

556 of considered taxa related to BMIs by qPCR should be additionally included in future research.

557
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Table 1(on next page)

Characteristics of the subjects that participated in this study.

One-way ANOVA test (p < 0.05) was used to compute the difference of mean for each
characteristic across groups. Superscript letters indicate statistical comparison between the
means of groups at a confidence interval of 0.95.
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1

Characteristic Total (n=30) Lean (n=8) OV (n=8) OB (n=7) T2DM (n=7) p-value i

Age (years) 48.37 ± 13.36 49.13 ± 7.66 40.43 ± 9.69e 42.00 ± 17.82g 60.29 ± 4.83 e, g
0.0299

Gender (male/female) 7/23 1/7 1/7 4/3 1/6 0.2259j

BMI (kg/m2) 27.33 ± 4.11 23.70 ± 1.30a, b 27.52 ± 1.15b, d 33.28 ± 2.15a, d, h 25.55 ± 3.25h
p < 0.000 

      Weight (kg) 69.18 ± 15.06 58.75 ± 6.51a 67.36 ± 8.92d 90.86 ± 12.56a, h 62.14 ± 5.77 h
p < 0.000 

      Height (cm) 158.53 ± 9.10 157.25 ± 6.78 156.14 ± 9.22 164.86 ± 9.66 156.43 ± 8.45 0.233 

Blood pressure (BP)

      Systolic BP 

(mmHg)
138.23 ± 15.84 136.50 ± 16.78 135.29 ± 10.05 138.29 ± 19.25 139.71 ± 13.67

0.986

      Diastolic BP 

(mmHg)
87.50 ± 9.14 87.50 ± 9.75 89.71 ± 11.50 84.57 ± 7.72 87.00 ± 5.81

0.693

Total cholesterol 

(mg/dL)
206.90 ± 38.21 214.50 ± 43.24 225.57 ± 40.44 194.57 ± 35.18 192.57 ± 21.74

0.366

LDL cholesterol 

(mg/dL)
115.23 ± 36.39 112.63 ± 36.42 138.86 ± 37.67 114.00 ± 32.19 97.57 ± 28.36

0.296

HDL cholesterol 

(mg/dL)
60.63 ± 17.08 75.63 ± 14.70 f 60.14 ± 14.53 42.57 ± 6.37 f 67.71 ± 12.89

p < 0.000

Triglyceride (mg/dL) 154.37 ± 79.61 131.13 ± 71.71 132.14 ± 41.92 188.57 ± 100.74 165.71 ± 78.87 0.518

Fasting glucose 

(mg/dL)
111.60 ± 34.60 96.13 ± 12.94 c 97.00 ± 8.09 e 110.14 ± 32.19 146.29 ± 50.37 c,e 0.0142

2 aLean < OB, bLean < OV, cLean < T2DM, dOV < OB, eOV < T2DM, fOB < Lean, gOB < T2DM, hT2DM < OB. ione-

3 way ANOVA test. jFor gender, the statistical significance was assessed by post-hoc pairwise Fisher’s exact test. 

4 a,b,c,d,e,f,g,hStatistically significant differences were observed (Tukey-kramer post-hoc test,  p value adjusted < 0.05). 

5
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Table 2(on next page)

sPLS analysis. The association of taxonomic composition at the level of genus with
dietary consumption and blood profiles in different BMI groups and T2DM group.
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Bacterial 

phyla

Bacterial taxa (OTU 

at genus level)

Associated food 

groups/blood profiles
Association Study group (s)

Pea/ nut/ bean Negativea OB

Fish Negativea OB

Chicken Negativea OB

Brown rice Positiveb OV

Green vegetable Negativea OB

Fruits Negativea OB

Fasting glucose Negativec OB

[Ruminococcus]

HDL cholesterol Negativec T2DM

Pork Negativea OV

Chicken Negativea OV

Brown rice Positiveb L, OV

Specified vegetables Negativea L

Specified vegetables Positiveb T2DM

Grain Positiveb T2DM

Carbonate soft drink Negativea OB

Juice Positivea T2DM

Fasting glucose Positived L, OV, T2DM

Roseburia

HDL cholesterol Negativec T2DM

Pork Negativea T2DM

Brown rice Positiveb L

Specified vegetables Negativea L

Grain Negativea OV

Juice Positiveb T2DM

Faecalibacterium

Fasting glucose Positived L, OV, T2DM

HDL cholesterol Negativec OV

Firmicutes

Oscillospira
HDL cholesterol Positived OB, T2DM

Pea/ nut/ bean Positiveb OB

Beef Positiveb OB

Sticky rice Positiveb OB

Specified vegetables Positiveb L, OB

Grain Positiveb OB

Juice Positiveb OB

Fasting glucose Negativec L, OV

[Prevotella]

Fasting glucose Positived OB

Pork Negativea T2DM

Sticky rice Positiveb OB

Bread Positiveb T2DM

Grain Negativea L

Fermented fruits/vegetable Positiveb T2DM

Green vegetable Negativea T2DM

Coffee Positiveb OV

Alcohol Negativea OV

Carbonate soft drink Positiveb T2DM

Fasting glucose Positived L, OB

Prevotella

HDL cholesterol Negativec OV

Brown rice Positiveb OB

Bread Negativea T2DM

Grain Positiveb L

Specified vegetables Positiveb L

Fruits Negativea T2DM

Fasting glucose Negativec L

Bacteroidetes

Bacteroides

HDL cholesterol Positived OV, OB, T2DM

1

Bacterial 

phyla

Bacterial taxa (OTU 

at genus level)

Associated food 

groups/blood profiles
Association Study group (s)

Pork Positiveb L, T2DM
Fusobacteria Fusobacterium

Fish Positiveb L
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Dairy products Positiveb T2DM

Beef Positiveb T2DM

Rice vermicelli Positiveb T2DM

Green vegetable Negativea OB

Fruits Negativea OB

Alcohol Positiveb L

Coffee Negativea OV

Carbonate soft drink Positiveb OB

HDL cholesterol Positived L, OV

HDL cholesterol Negativec OB, T2DM

Fasting glucose Negativec OV

Brown rice Positiveb OV

Juice Positiveb T2DM

Fasting glucose Positived OV, T2DM
Escherichia

HDL cholesterol Negativec T2DM

Coffee Negativea L

Juice Negativea T2DM

HDL cholesterol Positived L, T2DM

HDL cholesterol Negativec OB

Fasting glucose Negativec OV, T2DM

Proteobacteria

Sutterella

Fasting glucose Positived OB

2 a Negative correlation: correlation coefficient < −0.7 for dietary consumption. 

3 b Positive correlation: correlation coefficient > 0.7 for dietary consumption.

4 c Negative correlation: correlation coefficient < −0.5 for blood profiles. 

5 dPositive correlation: correlation coefficient > 0.5 for blood profiles.
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Figure 1
Venn diagram showing the number of microbial compositions according to OTU
classification.

(A) Fecal microbiome OTUs in four groups (L, OV, OB, and T2DM). (B) OTU distribution in non-
diabetic (L, OV, and OB) and diabetic subjects (T2DM).
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Figure 2
Boxplots of alpha diversity indices in each group (L, OV, OB, and T2DM).

The paired comparisons were determined using Wilcoxon rank–sum test adjusted for multiple
testing with Benjamini–Hochberg method (asterisks indicate q < 0.05).
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Figure 3
Gut microbial community abundance at the genus level.

(A) Bar plot of the relative abundance of top ten fecal gut microbiome at genus level
presented in each subject. (B) Bar plot of the relative abundance of top ten fecal gut
microbiome at genus level presented in each group. (C) Boxplot of relative abundance of
Faecalibacterium across four groups. (D) Boxplot of relative abundance of [Prevotella] across
four groups. Asterisks indicate p < 0.05, Wilcoxon rank–sum test without
Benjamini–Hochberg method.
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Figure 4
LEfSe analysis of fecal microbiota in BMI groups and T2DM group.

Histogram of LDA scores showing taxa with significant differences among groups (LEfSe bar
at species level, p < 0.05, LDA value > 4). Species whose LDA scores (the effect size) are
larger than 4 were presented as bars in different colors (blue, red, and green).
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Figure 5
Beta diversity analysis of the OTUs at phylum level.

(A) PCoA based on Weighted UniFrac distance. (B) PCoA based on Unweighted UniFrac
distance. Subjects from L, OV, OB and T2DM groups are labeled in red, green, black, and blue
color, respectively.
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Figure 6
MFA analysis of dietary consumption, blood profiles, and fecal gut microbiota of subjects
in different BMI groups and T2DM group.

The factor map presents the integration of dietary consumption, blood profiles (HDL
cholesterol and fasting glucose level), and fecal gut microbiota (at genus level) of subjects in
different BMI groups and T2DM group based on the MFA. The coordinates of the individuals
are indicated by the 95% confidence ellipses including orange (L), blue (OV), green (OB), and
purple (T2DM).
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