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ABSTRACT
Tropical marine ecosystems, such as coral reefs, face several threats to their health
and resilience, including poor water quality. Previous studies on the risks posed by
pesticides have focused on five priority herbicides; however, as the number of
pesticides applied in coastal agriculture increases, a suite of ‘alternative’ pesticides is
being detected in tropical nearshore waters. To improve our understanding of the
risks posed by alternative pesticides to tropical marine organisms, the effects of three
insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil,
propiconazole) were tested on larval metamorphosis of the coral Acropora tenuis.
A. tenuis larvae were affected by all five pesticides and the reference toxicant copper.
The no effect concentration (NEC) and the 10% and 50% effect concentrations
(EC10 and EC50, respectively) for larval metamorphosis were estimated from
concentration-response curves after 48 h exposure. The NEC, EC10 and EC50

(in µg L−1), respectively, of each pesticide were as follows: chlorothalonil (2.4, 2.8,
6.0); fipronil (12.3, 13.9, 29.1); diazinon (38.0, 40.8, 54.7); imidacloprid (263, 273,
347); and propiconazole (269, 330, 1008). These toxicity thresholds are higher than
reported concentrations in monitoring programs; however, these data will contribute
to improving water quality guideline values, which inform the total risk assessments
posed by complex contaminant mixtures to which these pesticides contribute.

Subjects Ecology, Marine Biology, Ecotoxicology, Natural Resource Management,
Environmental Impacts
Keywords Great Barrier Reef, Coral, Insecticide, Fungicide, Toxicity

INTRODUCTION
Pesticides in tropical marine waters
Tropical marine ecosystems are under intense pressure from global climate change
(Hughes et al., 2018), compounded by local pressures, including poor water quality from
coastal development (Heery et al., 2018; Waterhouse et al., 2012). In Singapore, for
example, the average water visibility has decreased from 10 m to 2 m due to sediment input
from land reclamation and coastal development (Heery et al., 2018). Intensive coastal
agriculture also poses a growing threat to tropical marine ecosystems worldwide, with
models predicting that by 2050 about 1 billion ha of additional land would need to be
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converted into agriculture to meet global demands (Laurance, Sayer & Cassman, 2014).
Tropical marine habitats off the coast of Nicaragua are severely degraded due to land
clearing of coastal forest cover leading to increased sedimentation and degrading water
quality (Jameson et al., 2019). Likewise, the coastal ecosystems of Malaysia are under
continued threat by land reclamation and domestic and industrial waste pollution (Sany
et al., 2019). In Australia more than 80% of the Great Barrier Reef (GBR) catchment area
supports some form of agriculture (Gilbert & Brodie, 2001), which is dominated by
sugarcane cultivation near the coast (Lewis et al., 2009; Waterhouse et al., 2012).
Wet-season runoff from agricultural and urban development activities has reduced the
water quality of the GBR over successive decades (Furnas, 2003; Waterhouse et al., 2012).
Along with elevated sediment and nutrients, pesticides (herbicides, insecticides and
fungicides) from agricultural industries represent ongoing hazards to ecosystems of the
nearshore GBR lagoon (O’Brien et al., 2016; RWQIP, 2018). The GBR represents one
of the most comprehensively monitored tropical marine systems with respect to
pesticides, and it has been estimated that over 17,000 kg of the six most widely applied
Photosystem II (PSII) herbicides (ametryn, atrazine, diuron, hexazinone, simazine and
tebuthiuron) enter the GBR annually (Brodie et al., 2017). A recent study by Warne,
Smith & Turner (2020) analysed over 2,600 water samples from 15 waterways that enter
the GBR lagoon and found 99.8% of the samples had detectable concentrations of
pesticides and pesticide mixtures.

Alternative pesticides in the GBR
Successive Australian government programs have aimed to reduce the loads of pesticides
entering waters of the GBR and its catchments (Brodie et al., 2017; RWQIP, 2018).
At the same time, there have been changes in regulations and registrations for pesticide
application in coastal agriculture (Davis et al., 2014), leading to shifts in usage patterns and
to at least 44 ‘alternative’ pesticides being detected in the GBR catchments and lagoon
(King, Alexander & Brodie, 2013; O’Brien et al., 2016). For example, the insecticides
chlorothalonil, fipronil and propiconazole have been detected in the catchments while
imidacloprid and diazinon have been found in both the catchments and GBR lagoon
(Devlin et al., 2015; O’Brien et al., 2014). More specifically, imidacloprid is the most
frequently detected insecticide in the GBR lagoon, being present in over half of the samples
(50.3%) that were analysed for this insecticide between 2011 and 2015 (Warne, Smith &
Turner, 2020). Currently, fipronil is not included in the pesticide analytical suite for
marine samples by the Great Barrier Reef Marine Park Authority Marine Monitoring
Program (GBRMPA MMP) (Gallen et al., 2019); however, it is used in the catchments
and should be included in future monitoring of marine samples. With the continued
improvement of detection methods, it is likely that additional pesticides will be detected in
tropical marine waters in the future (Devlin et al., 2015).

Guidelines for alternative pesticides
Monitoring and reporting concentrations of pesticides in tropical marine waters represents
an important contribution to effectively manage long-term reductions in pesticide
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concentrations and loads (Brodie et al., 2017). However, to successfully assess the risks to
tropical marine ecosystems we also need to understand the toxicity threshold for each
pesticide to both the individual species (especially key habitat builders, such as corals) and
to marine communities. In Australia, the preferred method to establish water quality
guidelines for assessing risk involves the development of species sensitivity distributions
(SSDs) from individual toxicity thresholds for multiple species representing a community
(Belanger et al., 2016). The criteria for developing the guidelines have recently been
updated in the Australian context and are comprehensively described in Warne et al.
(2018). However, many of the alternative pesticides have not been provided Default
Guideline Values in the current Australian and New Zealand water quality guidelines
(ANZG, 2018). To address this, new guideline updates were proposed for 27 GBR-relevant
pesticides based on all recent available data (King et al., 2017a, 2017b; Warne, King &
Smith, 2018); however, many of these values are of low reliability due to lack of toxicity
data. Furthermore, the vast majority of data used in the derivation of water quality
guidelines have been sourced from tests using temperate and freshwater species (ANZG,
2018; King et al., 2017a, 2017b). Clearly, more toxicity data are needed for relevant tropical
species to inform the development of water quality guidelines and risk assessments for
pesticides that have been detected in sensitive tropical marine habitats.

Effects of pesticides on corals
Corals represent the key habitat-forming species of tropical coral reefs and can be found
adjacent to coastal agriculture in the GBR (Gilbert & Brodie, 2001; Thorburn, Wilkinson &
Silburn, 2013) and globally (Donner & Potere, 2007; Salvat, 1992). The effects of PSII
herbicides on corals primarily impact the photosynthetic capacity of coral symbionts,
leading to the breakdown of this symbiosis (bleaching) (Jones, 2005; Jones & Kerswell, 2003;
Negri et al., 2011a; Owen et al., 2002). This breakdown can have flow-on effects, such as
reduced reproductive output (Cantin, Negri & Willis, 2007). The effects of insecticides
and fungicides on corals are far less studied and are more likely to affect the animal host
directly, including the sensitive early life transitions and stages, such as fertilisation,
attachment and metamorphosis of planulae larvae into sessile polyps (van Dam et al.,
2011). Markey et al. (2007) examined the effects of insecticides and a fungicide on coral
fertilisation and larval metamorphosis. The fungicide MEMC inhibited fertilisation and
metamorphosis success at concentrations as low as one µg L−1. While fertilisation was not
affected by any of the insecticides (chlorpyrifos, profenofos, endosulfan and permethrin) at
concentrations up to 30 µg L−1, metamorphosis was more sensitive to the insecticides,
which was inhibited at insecticide concentrations as low as three µg L−1. Acevedo (1991)
reported mortality in Pocillopora damicornis larvae exposed to chlorpyrifos and carbaryl at
much higher concentrations (one and 100 mg L−1, respectively) but did not test effects on
larval function (i.e. attachment and metamorphosis). The organophosphate insecticide
naled (Dibrom) reduced the survival of larvae of Porites astreoides at three µg L−1

while permethrin had no effect on larval survival or metamorphosis at up to six µg L−1

(Ross et al., 2015). The tissues of juvenile A. tenuis became partially detached when
exposed to the organophosphate dichlorvos at concentrations of 1,000 µg L−1
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(Watanabe, Yuyama & Yasumura, 2006), a response similar to ‘polyp bailout’, previously
reported as a stress response of stony corals to escape distressing and unfavourable
conditions (Sammarco, 1982). Only three studies have tested the effects of insecticides on
adult corals. The first used a commercial formulation of chlorpyrifos and reported coral
mortality at six µg L−1 of the active ingredient (Te, 1998). Negri et al. (2009) found no
effects of the biological insecticide Bacillus thuringiensis on adult and larval corals and
sponges at 5,000 µg L−1. A recent study from Wecker et al. (2018) reported that the
organochlorine insecticide chlordecone caused adult Pocillopora damicornis branchlets to
release their polyps after 96 h exposure to 30 µg L−1 (again similar to ‘polyp bailout’).

In total, the toxicity of eight insecticides and one fungicide have been assessed on
coral larvae but, few of these toxicity data meet the experimental criteria required for
inclusion into national water quality guidelines ((Warne et al., 2018) e.g. did not use
pure compounds, did not measure dissolved pesticide concentrations, etc.). In order to
improve water quality guidelines and subsequent risk assessments for pesticides in tropical
marine ecosystems, the aim of this current study was to identify the toxicity thresholds of
three insecticides (diazinon, fipronil, imidacloprid) and two fungicides (chlorothalonil
and propiconazole), which have been detected in the GBR lagoon or catchments, on larval
metamorphosis of the common reef-building coral Acropora tenuis larvae following 48 h
exposures.

MATERIALS AND METHODS
Sample collection and larval culture
Gravid colonies (25–40 cm diameter) of the coral A. tenuis (Dana, 1846) were collected
from 4–8 m depth on two occasions: in November 2016 from Trunk Reef (18�18.2′ S,
146�52.2′ E) and in November 2017 from Falcon Island (18�46′ S, 146�32′ E), GBR under
GBRMPA Permit G12/35236.1. Colonies were transported to the National Sea Simulator
(SeaSim) at the Australian Institute of Marine Science (AIMS) in Townsville and
maintained in 1700 L flow-through holding tanks until spawning. Temperatures were held
at 26–27 �C, which was equivalent to the water temperature at the collection sites.
Gametes, on both occasions, were collected from eight parental colonies, fertilised and
symbiont-free larvae were cultured at approximately 500 larvae L−1 in 500 L flow-through
tanks (Negri & Heyward, 2001; Nordborg et al., 2018). Larvae (each 800–1000 µm in
length) were competent to undergo attachment and metamorphosis after 5 days and
we applied 10-day-old A. tenuis larvae on the first occasion and 7-day-old larvae on the
second occasion in pesticide exposure experiments. Metamorphosis was defined here
as the change in life stage from free swimming or casually attached sausage-shaped
larvae (Fig. 1A) to squat, firmly attached, disc-shaped structures with pronounced
flattening of the oral–aboral axis and with septal mesenteries radiating from the central
mouth region (Fig. 1B) (Heyward & Negri, 1999). All pesticides were included in the first
experiment; however, minimal inhibition was observed at the highest propiconazole
concentration tested. Therefore, a second experiment was run the following year with
higher propiconazole concentrations, reference copper and seawater and solvent controls.

Flores et al. (2020), PeerJ, DOI 10.7717/peerj.9615 4/26

http://dx.doi.org/10.7717/peerj.9615
https://peerj.com/


Pesticides
The five pesticides in this study represent three chemical classes of insecticides and two
classes of fungicides (See Table 1). All pesticides were analytical grade (> 98% purity)
and purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Stock solutions
(five mg L−1) of all pesticides were dissolved in dimethyl sulfoxide (DMSO, 0.01% v/v)
and prepared in milli-Q� water. A. tenuis larvae were exposed to measured concentrations
of diazinon (2.6–638 µg L−1), fipronil (1.1–1,144 µg L−1), imidacloprid (3.8–947 µg −1),
propiconazole (7.9–1,975 µg L−1) and chlorothalonil (0.5–507 µg L−1). A table with the
measured concentrations of each pesticide can be found in eAtlas (2020).

Metamorphosis assays
Static exposures were conducted in 20 mL clear glass scintillation vials containing 12–14
larvae made up to 10 mL filtered seawater (0.5 µm) with six to seven concentrations
(per pesticide) and six replicate vials per concentration. All tests included solvent controls
containing identical concentrations of DMSO carrier. Seawater and solvent carrier
controls were run in 12–18 replicate vials. Copper (CuCl2) was used as a reference toxicant
at six measured concentrations between 1.1–35 µg L−1 and six replicate vials per
concentration.

Figure 1 Photographs after 48 h exposure. (A) Planula larvae in control treatment; (B) attached
post-metamorphosis polyp in control treatment; (C) larvae exposed to 228 µg L−1 propiconazole showing
slightly abnormal shape but still moving and (D) larvae exposed to 56.3 µg L−1 chlorothalonil showing
rupturing of cells. Full-size DOI: 10.7717/peerj.9615/fig-1
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Glass vials were transferred in random positions within a refrigerated shaking incubator
(TLM-530; Thermoline Scientific, Wetherill Park, NSW, Australia) at 70 RPM to maintain
gentle water movement which prevented larvae from attaching and undergoing
metamorphosis in the containers (Negri et al., 2016). Larvae were exposed under a light
intensity of approximately 60 µmol photons m−2 s−1 (12:12 h light:dark cycle) and at a
temperature of 26.7 ± 0.3 �C (mean ± SE). Vials were re-randomised at 24 h. After 48 h
exposure larvae and corresponding treatment water were transferred in the same seawater
into untreated 6-well polystyrene culture plates (Nunc, Rochester, NY, USA) and
returned to the incubator for an additional 24 h but without water movement.
Metamorphosis was initiated by the addition of crustose coralline algae (CCA) extract
(10 µL) prepared from four g CCA Porolithon onkodes (Heyward & Negri, 1999; Negri
et al., 2005). Metamorphosis was assessed after a further 24 h and considered normal if
larvae had undergone irreversible attachment to the well plate and had undergone
metamorphosis into a polyp form as described above. All other larvae (swimming, casually
attached, dead and partially disintegrated) were classed as not metamorphosed. Average

Table 1 Pesticides used in present study.

Pesticide Type and class
of pesticide

Mode of action Target pests Water solubility
in mg L-1 (log
Kow at 25 �C)

Diazinon Insecticide -
Organophosphate

Inhibits acetylcholinesterase from breaking
down acetylcholine, which leads to
continual nerve stimulation (Cox, 2000;
Garber & Steeger, 2008)

Lice, buffalo fly, mange; ectoparasites
(APVMA, 2003; ANZECC & ARMCANZ,
2000)

40 (3.81)

Fipronil Insecticide -
Phenylpyrazole

Blocks the neurotransmitter
gamma-aminobutyric acid (GABA) and
glutamate-gated chloride channels, causing
hyperexcitation of the central nervous
system (Anadon & Gupta, 2012; APVMA,
2009; Gunasekara et al., 2007; Stenersen,
2004)

Locusts, grasshoppers (APVMA, 2012) 2 (4.0)

Imidacloprid Insecticide -
Neonicotinoid

Irreversibly binds to postsynaptic nicotinic
acetylcholine receptors disrupting normal
neural transmission (Abbink, 1991;Wismer,
2004; Stenersen, 2004)

Canegrub (Davis et al., 2008; Devlin et al.,
2015; King et al., 2017a)

610 (0.57)

Chlorothalonil Fungicide -
Organochlorine

Chemically reduces the antioxidant
glutathione; enzymes that are dependent on
glutathione, including enzymes important
in cellular function, become non-functional
(Cox, 1997; Raman, 2014)

Fungal diseases of cereals, fruits and
vegetables (e.g. wheat, stone fruit,
strawberries, potatoes) and other crops
(peanuts, tobacco) (King et al., 2017b)

0.81 (3.05)

Propiconazole Fungicide –
Triazole

Inhibits ergosterol biosynthesis critical to the
formation of cell walls of fungi, thus
inhibiting fungal growth (USEPA, 2006)

Rice blast fungus, pineapple sett rot, rust
fungi, fungal diseases of bananas, oats,
peanuts, perennial ryegrass, stone fruit,
sugar cane, wheat (Bhuiyan, Croft &
Tucker, 2014; Garland, Davies & Menary,
2004; Pak et al., 2017)

100 (3.72)

Note:
Pesticides used in this study, their class, mode of action and target pests in Australia. Water solubilities and log KOW values from PubChem Database (National Center for
Biotechnology Information, https://pubchem.ncbi.nlm.nih.gov/compound/ (accessed on Apr. 20, 2020)).
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metamorphosis success ≥ 70% in controls was considered indicative of a standard response
to metamorphosis inducers based on several previous studies using CCA or extracts of
CCA to initiate metamorphosis in coral larvae (Negri et al., 2016, 2011b; Negri & Heyward,
2000).

Chemical analysis and water quality
Analytical samples (two to three samples per pesticide including solvent control) were
measured at initiation and termination of experiment. Aliquots (one mL) were transferred
into 1.5 mL liquid chromatography amber glass vials and spiked with surrogate standards
(i.e. diazinon-d10, 13C4-fipronil, imidacloprid-d4, propiconazole-d5 (stock solution of
one mg mL−1)). The final concentration of the surrogate standard was 10 ng mL−1.
The measured concentrations for remaining treatments were calculated based on a linear
relationship between nominal and the time weighted average (time = 0 and 48 h) of
measured concentrations. All pesticide analyses (except for chlorothalonil) were
performed at the Queensland Alliance for Environmental Health Sciences (QAEHS),
The University of Queensland using HPLC-MS/MS (SCIEX Triple QuadTM 6500
QTRAP� mass spectrometer Shimadzu Nexera X2 uHPLC system) (Mercurio, 2016;
Mercurio et al., 2015). Queensland Health Forensic and Scientific Services (NATA
accreditation No. 41) measured chlorothalonil samples and an external calibration was
used for chlorothalonil, so no internal standard was used.

Physico-chemical parameters (pH, salinity and dissolved oxygen) were measured in
clear glass containers (60 mL) with approximately 60 larvae in 50 mL filtered seawater
using three to six concentrations per pesticide (including controls). Containers were
placed alongside experimental vials, and physico-chemical parameters were measured at
the start and 48 h post-exposure. Temperature was logged at 5 min intervals (HOBO
pendant 64K data logger, Onset Computer Corp, USA). Salinity and pH were measured via
a handheld meter (Horiba LAQUAact PC110; Hach, Loveland, CO, USA) and dissolved
oxygen concentration was determined with a handheld meter (HQ30d equipped with
Intellical LDO101 oxygen probe; Hach, Loveland, CO, USA). Physico-chemical
parameters (mean ± SE, n = 60) were met throughout the experimental period:
temperature (26.7 ± 0.3 �C), dissolved oxygen (> 98% mean saturation, 8.1 ± 0.03 mg L−1),
salinity (36 ± 0.2 psu) and pH (8.17 ± 0.01). All data can be found in eAtlas (2020).

Data analysis
No effect concentrations (NECs) and effect concentrations, i.e. concentrations of each
pesticide that inhibited 10% and 50% of A. tenuis larval metamorphosis relative to controls
(EC10 and EC50, respectively), were calculated from the proportion of metamorphosed
larvae as a function of log measured concentration of each pesticide. NECs are the
preferred statistical estimate of chronic toxicity for guideline value (GV) derivation
(Fox, 2010; Warne et al., 2018). Bayesian binomial segmented-regression models were
applied to the data using the package jagsNEC (Fisher, Ricardo & Fox, 2019) in R 3.5.3
(R Core Team, 2017), and the model fits were evaluated using trace plots and fitted vs.
residual plots. For diazinon, fipronil, chlorothalonil and copper, Bayesian beta
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segmented-regression models provided better fits and were applied. Models were run using
uninformative priors, with 10,000 Markov chain Monte Carlo iterations after an initial
‘burn-in’ period of 20,000 iterations for five separate chains. See Thomas et al. (2020) for
further details. Graphical outputs were generated in R.

RESULTS
Larval metamorphosis assays
Metamorphosis success for 7-day-old larvae in solvent control treatments was 72.2 ± 6.1%
(mean ± SE) and this was not statistically different from the 75.9 ± 4.8% achieved in
seawater controls (student’s t-test: p = 0.641). Ten-day-old larval metamorphosis success
was similar: 72.6 ±3.7% in solvent control treatments and 77.5 ± 3.6% in seawater controls
(student’s t-test: p = 0.366).

Larvae from most treatments exhibited normal swimming behaviour after 24 and
48 h (not quantified). However, some coral larvae exposed to 17.4 µg L−1 copper and
56.3 µg L−1 chlorothalonil (Fig. 1D) were not swimming after 24 and 48 h, respectively.
Larvae exposed to 34.9 µg L−1 copper and 169 µg L−1 chlorothalonil (and above)
disintegrated. Larvae exposed to all other contaminants remained intact and were moving.
All pesticides, and the reference toxicant copper, inhibited metamorphosis of A. tenuis
larvae as concentrations increased, enabling the fitting of concentration-response
relationships (Fig. 2). Chlorothalonil was the most potent pesticide towards A. tenuis
metamorphosis with an EC10 of 2.8 µg L−1 and a NEC of 2.4 µg L−1 while propiconazole
was the least toxic with an EC10 of 330 µg L

−1 and an NEC of 269 µg L−1 (Table 2; Fig. 1C).
The relative order of pesticide toxicity according to the calculated EC50s was:
chlorothalonil > fipronil > diazinon > imidacloprid > propiconazole (Table 2).

DISCUSSION
All pesticides negatively affected coral larval metamorphosis into a sessile polyp.
The success of this early life transition is a critical step in the recruitment process of corals
leading to population maintenance and recovery following disturbance (Harrison &
Wallace, 1990); therefore, inhibition of metamorphosis success is a key endpoint of
ecological relevance for assessing risk to coral reef communities. This study is among
the first to derive insecticide and fungicide toxicity thresholds for coral that are suitable for
national water quality guideline value (WQGV) derivation, revealing differences in toxicity
across two orders of magnitude among pesticides (NEC of 2.4 µg L−1 for the
broad-spectrum fungicide chlorothalonil to a NEC of 263 µg L−1 for the insecticide
imidacloprid). The specificity of the modes of action of these pesticides provide guidance
for assessing their potential to impact non-target species, such as corals. Insecticides
and fungicides are designed to affect insects or fungi; however, they can also become toxic
to non-target species (such as corals) in several ways including: (i) if coral shares the same
receptor/target that the pesticide is designed to affect; (ii) if other specific pathways or
cellular processes are inadvertently affected, or (iii) by non-specific narcosis, where
hydrophobic contaminants can accumulate in cell membranes and affect structure and
function (Verhaar, van Leeuwen & Hermens, 1992). The bioassays were applied on 7- and
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Figure 2 Concentration-response relationships. Concentration-response relationships for the toxicity
of five pesticides and the reference toxicant copper to A. tenuis coral larval metamorphosis. Beta seg-
mented-regression model fits (binomial segmented-regression model fits for imidacloprid and propi-
conazole) on the proportional decline of coral larval metamorphosis relative to the solvent control
treatment (solid black line) and 95% credible intervals (dashed black line) to derive no effect con-
centrations (red line) and 95% credible intervals (dashed red line) of (A) diazinon; (B) fipronil;
(C) imidacloprid; (D) chlorothalonil; (E) propiconazole; (F) copper.

Full-size DOI: 10.7717/peerj.9615/fig-2
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10-day-old coral larvae, which at this point in their development were motile (propelled
by cilia) and competent to settle (had developed all the cellular structures necessary to
detect a chemical cue that initiates metamorphosis into a sessile polyp) (Babcock &
Heyward, 1986; Heyward & Negri, 1999). It is possible that the pesticides which are
toxic at low concentrations may directly affect larval biochemistry, including the
cellular signalling and processes of metamorphosis. Even if the coral does not have a
pesticide-specific target, a hydrophobic pesticide may elicit narcotic toxicity at higher
concentrations, with more hydrophobic compounds (measured by the partitioning
coefficient between octanol and water, KOW) able to accumulate to a greater degree in lipid
membranes and cause greater narcotic toxicity (Di Toro, McGrath & Hansen, 2000).

The following sections compare the mechanisms of action of the pesticides tested
with cnidarian biochemistry and the sensitivity we found in the larval metamorphosis
assays. This allowed us to consider the possibility that larvae were affected by the primary
modes of action of each pesticide.

Diazinon
Diazinon affected metamorphosis success of A. tenuis coral larvae at relatively low
concentrations (NEC: 38.0 µg L−1; Table 2). Organophosphate pesticides, like diazinon,
inhibit acetylcholinesterase (AChE), an enzyme involved in the breakdown of the
chemical acetylcholine (ACh) (Cox, 2000; Garber & Steeger, 2008). Inhibition of AChE
leads to an accumulation of ACh, which results in hyperstimulation and disrupted
neurotransmission. Cnidarians, including Hydrozoa and Anthozoa such as corals, possess
ACh (Horiuchi et al., 2003; Kass-Simon & Pierobon, 2007; Talesa et al., 1992), representing
some of the first indications of a neural net in this primitive phylum. Several studies
have shown that ACh is involved in cnidarian neurotransmission; however, whether the
chemical acts as a neuromodulator or neurotransmitter is unclear (Faltine-Gonzalez &
Layden, 2019; Kass-Simon & Pierobon, 2007). Morgan & Snell (2002) demonstrated the
specific induction of esterase gene in the coral A. cervicornis when exposed to the
AChE inhibitor mosquitocide Dibrom. The toxicity of diazinon to coral larvae adds
to evidence that AChE inhibitors, including the organophosphate chlorpyrifos

Table 2 Toxicity estimates.

NEC EC10 EC50 Meta. (% ± SE)
in controls

Diazinon 38.0 (20.4–51.3) 40.8 (22.4–53.8) 54.7 (52.3–57.0) 72.6 ± 3.7

Fipronil 12.3 (7.1–19.1) 13.9 (8.5–21.1) 29.1 (20.2–41.6) 72.6 ± 3.7

Imidacloprid 263 (200–295) 273 (211–306) 347 (306–417) 72.6 ± 3.7

Chlorothalonil 2.42 (1.63–3.89) 2.76 (1.90–4.42) 5.95 (4.40–8.82) 72.6 ± 3.7

Propiconazole 269 (123 – 468) 330 (171–537) 1,008 (704–1689) 72.2 ± 6.1

Copper 7.41 (5.75–8.45) 7.79 (6.13–8.82) 10.2 (8.6–11.5) 72.6 ± 3.7

Note:
Modelled toxicity estimates for the inhibition of coral larval metamorphosis by diazinon, fipronil, imidacloprid,
chlorothalonil, propiconazole and copper to Acropora tenuis. No effect concentrations (NECs) and effect concentrations
(EC10 and EC50) were calculated from concentration-response curves (see Fig. 2). Meta. = mean larval metamorphosis
(%) of larvae in uncontaminated treatments (± SE). All concentrations are in µg L−1 (95% confidence intervals).
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(Acevedo, 1991; Markey et al., 2007) and Dibrom (Ross et al., 2015), are toxic to corals.
Chlorpyrifos has been shown to disrupt swimming behaviour of larval Pocillopora
damicornis at 100 µg L−1 and a 50–100% larval mortality at 1,000 µg L−1 (Acevedo, 1991)
while adult coral Pocillopora damicornis were sensitive to effluent water from soil treated
with chlorpyrifos with a 96-h LC50 of six µg L−1 (Te, 1998). Ross et al. (2015) found
that Dibrom as low as 2.96 µg L−1 inhibited larval metamorphosis of the coral Porites
astreoides. In this study, A. tenuis larvae exhibited a similar sensitivity to diazinon as the
shrimp Penaeus duorarum and sea urchin Paracentrotus lividus (21 µg L−1 LC50, 30 µg L

−1

LOEC, respectively; Table 3 (Pesando et al., 2003; Sunderam et al., 2000)). Diazinon
concentrations in the GBR catchments and coastal waters have been detected up to
0.7 ng L−1 (O’Brien et al., 2014) which exceeds the 99% species protection guideline value
of 0.03 ng L−1 in freshwater systems (Table 4). Due to very limited published marine
toxicity data for diazinon, there are no reliable GVs for diazinon in marine ecosystems.
Therefore, current WQGVs for diazinon in marine waters uses the freshwater guideline
protective concentrations, and these would be protective of coral larval metamorphosis.

Fipronil
Fipronil, belonging to the phenylpyrazole family, is a systemic insecticide which
blocks the gamma-aminobutyric acid (GABA)-regulated chloride channel in neurons,
particularly in insects (Anadon & Gupta, 2012; Gunasekara et al., 2007; Stenersen, 2004).
GABA itself has been found to be involved in cnidarian neurotransmission (Kass-Simon &
Pierobon, 2007) and several neurotransmitters have been shown to induce larval
metamorphosis (Moeller, Nietzer & Schupp, 2018). Crustaceans are one of the most highly
sensitive non-target groups to fipronil exposure, which is expected as they belong to the
same phylum as insects (Arthropoda). For example, fipronil has been shown to affect
survival (20% mortality) of adult female grass shrimp Palaemonetes pugio at
concentrations as low as 0.2 µg L−1 (see Table 3) (Volz et al., 2003). While A. tenuis larvae
were not as sensitive to fipronil (NEC10: 12.3 µg L−1) as grass shrimp, this was the
most toxic insecticide of the three insecticides tested to corals in the present study.
Interruption of neurotransmission (and motor control processes) by affecting coral larval
chloride channels is a plausible mode of action for fipronil that should be investigated
further. While fipronil is not usually included in the analysis suite for marine sample
monitoring (e.g. GBRMPA MMP), it has been detected at “‘very low’ concentrations in
GBR catchments (Gallen et al., 2019). However, due to the low frequency of detections
(and detected concentrations) in GBR catchments, it is unlikely at present that fipronil
substantially contributes to the overall pesticide toxicity risk in GBR marine waters.
The 99% species protection proposed guideline value (PGV) for fipronil in marine waters
is 0.0034 µg L−1 (Table 4) which is below the limit of reporting level of 0.02 µg L−1 by the
GBRMPA MMP and would protect coral larval metamorphosis.

Imidacloprid
Imidacloprid was the least toxic insecticide to A. tenuis larvae in the present study.
Imidacloprid is a neonicotinoid that irreversibly binds to postsynaptic nicotinic
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Table 3 Summary of single toxicity studies.

Phylum Species Life stage Test
duration
(in days)

Test endpoint(s) Effects
concentration
(µg L-1)

Reference

Diazinon

Cnidaria Acropora tenuis Larvae 2 Metamorphosis 38.0 (NEC) Present study

Arthropoda Mysidopsis bahia Not stated 4 Mortality 6 (LC50) Sunderam et al. (2000)

Arthropoda Penaeus duorarum Embryo 4 Mortality 21 (LC50) Sunderam et al. (2000)

Echinodermata Paracentrotus
lividus

Gamete 0.125 Fertilisation 30400 (LOEC) Pesando et al. (2003)

Echinodermata Paracentrotus
lividus

Larvae 1 AChE inhibition 30 (LOEC) Pesando et al. (2003)

Fipronil

Cnidaria Acropora tenuis Larvae 2 Metamorphosis 12.3 (NEC) Present study

Arthropoda Palaemonetes pugio Embryo 4 Mortality 32.0 (LOEC) Key et al. (2003)

Arthropoda Palaemonetes pugio Larvae 4 Mortality 0.50 (LOEC) Key et al. (2003)

Arthropoda Palaemonetes pugio Larvae 4 Mortality 0.68 (LC50) Key et al. (2007)

Arthropoda Palaemonetes pugio Adult 4 Mortality 0.13 (LOEC) Key et al. (2003)

Arthropoda Palaemonetes pugio Adult 45 Survival, weight, length 0.098 (chronic
NOEC)

Volz et al. (2003)

Arthropoda Amphiascus
tenuiremis

Adult 4 Mortality 6.8 (LC50) Chandler et al. (2004)

Arthropoda Amphiascus
tenuiremis

Nauplii 12–17 Mature to adult; egg
production

0.22 (LOEC) Chandler et al. (2004)

Arthropoda Amphiascus
tenuiremis

Adult (female/
male)

4 Mortality 6.07/3.86 (LC50) Bejarano, Chandler & Decho
(2005)

Arthropoda Americamysis bahia < 24 h 28 Mortality 0.0034 (chr. est.
NOEC)

USEPA (2015)

Arthropoda Farfantepenaeus
aztecus

Juvenile 29 Mortality 1.3 (96-h LC50) Al-Badran et al. (2018)

Rotifera Brachionus plicatilis Adult 1 Population growth 1000 (NOEC) Lee et al. (2018)

Imidacloprid

Cnidaria Acropora tenuis Larvae 2 Metamorphosis 263 (NEC) Present study

Arthropoda Palaemonetes pugio Larvae 4 Mortality 308.8 (LC50) Key et al. (2007)

Arthropoda Palaemonetes pugio Adult 4 Mortality 563.5 (LC50) Key et al. (2007)

Arthropoda Callinectes sapidus Megalopae 1 Mortality 10.04 (LC50) Osterberg et al. (2012)

Arthropoda Callinectes sapidus Juvenile 1 Mortality 1112 (LC50) Osterberg et al. (2012)

Arthropoda Americamysis bahia Juvenile 4 Mortality 37.7 (LC50) USEPA (2015)

Arthropoda Americamysis bahia Not stated 4 Mortality 38 (EC50) USEPA (2015)

Arthropoda Americamysis bahia Not stated 4 Mortality 159 (EC50) USEPA (2015)

Arthropoda Mysidopsis bahia Adult 4 Mortality 13.3 (NOEC) Ward (1990)

Arthropoda Artemia sp. Adult 2 Mortality 361000 (LC50) Song, Stark & Brown (1997)

Chordata Menidia beryllina Larval 7 Growth inhibition 34000 (LOEC) Environment Canada (2005)

Chlorothalonil

Cnidaria Acropora tenuis Larvae 2 Metamorphosis 2.42 (NEC) Present study

Chlorophyta Dunaliella
tertiolecta

Log growth
phase

4 Population growth 33 (NOEC) DeLorenzo & Serrano (2003)
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acetylcholine receptors (nAChRs), interfering with neural transmission (Abbink, 1991;
Wismer, 2004). More specifically, imidacloprid has a narrow specificity for a unique
binding subsite of insect nAChRs (Casida & Quistad, 2004; Tomizawa & Casida, 2005).

Table 3 (continued)

Phylum Species Life stage Test
duration
(in days)

Test endpoint(s) Effects
concentration
(µg L-1)

Reference

Arthropoda Amphiascus
tenuiremis

Adult (female/
male)

4 Mortality 53.1/26.7(LC50) Bejarano, Chandler & Decho
(2005)

Chordata Ciona intestinalis Embryo 2 Embryonic development 12 (EC10) Bellas (2006)

Mollusca Mytilus edulis Embryo 2 Embryonic development 4.5 (EC10) Bellas (2006)

Echinodermata Paracentrotus
lividus

Embryo 2 Embryonic development 4.3 (EC10) Bellas (2006)

Bacillariophyta Skeletonema
costatum

Not stated 14 Population growth 5.9 (chronic NOEL) USEPA (2015)

Arthropoda Americamysis bahia Early life stage 28 Mortality 0.83 (chronic
NOEL)

USEPA (2015)

Propiconazole

Cnidaria Acropora tenuis Larvae 2 Metamorphosis 269 (NEC) Present study

Mollusca Crassostrea
virginica

Spat 4 Cell density 170 USEPA (2015)

Arthropoda Americamysis bahia Not stated 4 Mortality 51 USEPA (2015)

Chlorophyta Dunaliella
tertiolecta

Log growth
phase

4 Population growth 375 (NOEC) Baird & DeLorenzo (2010)

Bacillariophyta Skeletonema
costatum

Not stated 11 Population growth 5.5 (chr. est. NOEC) USEPA (2015)

Chordata Cyprinodon
variegatus

Early life stage 100 Mortality 150 (NOEL) USEPA (2015)

Notes:
Summary of a selection of single toxicity studies (estuarine and marine) using diazinon, fipronil, imidacloprid, chlorothalonil and propiconazole. Adapted from King et al.
(2017a, 2017b).
NEC, no effect concentration; LOEC, lowest observed effect concentration; NOEC, no observed effect concentration; chr. est. NOEC, chronic estimated no observed effect
concentration; NOEL, no observable effect level.

Table 4 WQGV and PGV.

Pesticide WQGV PGV Guideline
reliability

NEC—this
study

PC99 PC95 PC90 PC80 PC99 PC95 PC90 PC80

Diazinon* 0.00003 0.01 0.2 2.0 Unknown 38.0

Fipronil** 0.0034 0.0089 0.016 0.033 Moderate 12.3

Imidacloprid*** 0.057 0.13 0.23 0.46 Moderate 263

Chlorothalonil 0.34 1.0 1.7 2.9 Moderate 2.42

Propiconazole 2.1 8.2 15 30 Low 269

Notes:
Australian water quality guideline values (from ANZG, 2018) for diazinon and Department of Environment and Science (DES) proposed guideline values for fipronil,
imidacloprid, chlorothalonil and propiconazole for 99%, 95%, 90% and 80% species protection in marine ecosystems (from King et al., 2017a, 2017b).
All concentrations are in µg L−1 (95% confidence intervals).
WQGV, water quality guideline value; PGV, proposed guideline value; NEC, no effect concentration.
* Diazinon WQGVs derived from freshwater data only as insufficient marine toxicity data to derive reliable guideline value.
** Fipronil PGVs includes toxicity data from six freshwater species. No toxicity data were found for fipronil to Australian and/or New Zealand marine species.
*** Imidacloprid PGVs were calculated from toxicity data from only arthropods due to bimodality in SSD. Data includes toxicity data from two freshwater species.

Flores et al. (2020), PeerJ, DOI 10.7717/peerj.9615 13/26

http://dx.doi.org/10.7717/peerj.9615
https://peerj.com/


Therefore, even though nAChRs have been well described in cnidarians (Anctil, 2009;
Chapman et al., 2010; Faltine-Gonzalez & Layden, 2019), imidacloprid’s selectivity for
insect nicotinic receptors suggests toxicity of imidacloprid to corals may instead be due
to general narcotic toxicity which increases with its ability to accumulate in lipid
membranes (Verhaar, van Leeuwen & Hermens, 1992). However, imidacloprid has a very
low log Kow (0.57) indicating low hydrophobicity and is unlikely to bioaccumulate in the
lipid membranes of animals. It is unclear whether narcotic toxicity contributed to the
effects on coral larvae at the high concentrations of imidacloprid observed here. While
there are limited toxicity data for marine species, the blue crab Callinectes sapidus
megalopae was more than an order of magnitude more sensitive to imidacloprid with an
LC50 of 10 µg L−1 compared to A. tenuis coral larvae with an EC10 of 263 µg L−1 (see
Table 3). In contrast, imidacloprid was found to be virtually non-toxic to Artemia sp.
with an LC50 of 361,000 µg L−1 (see Table 3). Several recent studies revealed sublethal
effects of low concentrations (five µg L−1) of imidacloprid on marine species, including
reduced lipid content and weight, in the shrimp Penaeus monodon over 21 days exposures
(Butcherine et al., 2020). Sublethal effects of 10 µg L−1 imidacloprid over 14 days exposures
also affected enzyme activity and fatty acid composition in the Sydney rock oysters
Saccostrea glomerata (Ewere, Reichelt-Brushett & Benkendorff, 2019). Imidacloprid has
been detected at concentrations as high as 1.5 µg L−1 in groundwater samples (Devlin et al.,
2015) and up to 0.09 µg L−1 in marine samples (O’Brien et al., 2015) which exceed the
PC99 guideline value (PGV) of 0.057 µg L−1 (Table 4). The PGVs for imidacloprid
(Table 4) would be protective for coral larval metamorphosis; however, these PGVs values
use a mixture of both marine and freshwater ecotoxicity data so more data are needed to
develop higher reliability WQGVs for marine organisms.

Chlorothalonil
Chlorothalonil was the most toxic of the five pesticides tested in this study to coral larvae
with a NEC of 2.42 µg L−1. Chlorothalonil is a non-systemic organochlorine that binds and
depletes the antioxidant glutathione (Cox, 1997; Raman, 2014; Tillman, Siegel & Long,
1973), which is found in animals, plants, fungi and some bacteria (Alanazi, Mostafa &
Al-Badr, 2015). Chlorothalonil (266 µg L−1) has been shown to reduce haemocyte
functionality (by altering morphology of phagocytes) and apoptosis of blood cells of
the tunicate Botryllus schlosseri (Cima, Bragain & Ballarin, 2008). Depletion of
antioxidants (e.g. glutathione) can lead to oxidative stress, subsequently causing cell
damage and death (Cima, Bragain & Ballarin, 2008; Palmer & Traylor-Knowles, 2018).
Therefore, it is plausible that a reduction in the antioxidant glutathione impeded larval
metamorphosis of A. tenuis by interfering with its cellular metabolism. We also observed
adverse swimming behaviour of the coral larvae at 56.3 µg L−1 chlorothalonil and
disintegration at ≥ 169 µg L−1. A similar negative effect was also recognised by Markey
et al. (2007), whereby the fungicide MEMC caused coral larvae to stop swimming at
concentrations ≥ 3 µg L−1. In addition, the breakdown product of chlorothalonil,
4-hydroxy-2,5,6-trichloroisophthalonitrile (not quantified in the present study), has the
potential to be more toxic than the parent compound (Cox, 1997). Chlorothalonil is
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considered a pesticide of interest due to its application within GBR catchments even
though chlorothalonil has been detected at only very low concentrations (Devlin et al.,
2015;Holligan et al., 2017). The PC99 PGV of chlorothalonil at 0.34 µg L−1 (Table 4) would
be protective of coral larval metamorphosis.

Propiconazole
Coral larvae were not as sensitive to the fungicide propiconazole, with a NEC of 269 µg L−1,
a concentration highly unlikely to be detected in tropical marine waters. Propiconazole
inhibits ergosterol synthesis (USEPA, 2006), which is a sterol found in fungi but
absent in animals, suggesting another mechanism by which propiconazole interferes with
coral larval metamorphosis at high concentrations. Studies have shown potential adverse
effects of conazoles on cytochrome P450-mediated process in non-target species.
For example, propiconazole has been found to interfere with the production of estrogen
(Iyer & Makris, 2010) and embryonic development in the crustacean Daphnia magna
(Kast-Hutcheson, Rider & LeBlanc, 2001). Long term exposure (≥ 20 days) to
propiconazole (≥ 50 µg L−1) has also been shown to cause oxidative stress in liver, gill and
muscle tissues of rainbow trout Oncorhynchus mykiss (Li et al., 2010). Li et al. (2010)
also reported an increase in lipid peroxidation in O. mykiss after exposure with
propiconazole. Coral planula larvae contain large quantities of lipid (Richmond, 1987)
and propiconazole may interfere with larval metamorphosis by attacking membrane
lipids. Narcotic toxicity is a more likely mechanism here than for imidacloprid as
propiconazole is relatively hydrophobic (log KOW of 3.72) suggesting that propiconazole
may accumulate in cell membranes affecting structure and function (Di Toro, McGrath &
Hansen, 2000). The toxicity of propiconazole is also relatively low for other aquatic
species but can be highly dependent on the duration of exposure. After 48 h exposure to
propiconazole, the LC50 of D. magna was 9000 µg L−1 but this dropped to 180 µg L−1

after 96 h exposure (Ochoa-Acuña et al., 2009). A study by Betancourt-Lozano et al.
(2006) found a 24-h LC50 of 1167 µg L−1 for juvenile Pacific white shrimp Litopenaeus
vannamei. Propiconazole has recently been detected in marine samples by the GBRMPA
MMP but at very low concentrations < 0.001 µg L−1 (Gallen et al., 2019), not exceeding the
PGVs (Table 4) which would be protective of coral larval metamorphosis.

Copper
The inhibition of A. tenuis larval metamorphosis success by the reference toxicant Cu (II)
after 48 h (EC50: 10.2 µg L−1) was similar to previous studies using the same species,
32 µg L−1 (EC50) after 24 h (Negri & Hoogenboom, 2011) and 35 µg L−1 (EC50) after
48 h (Reichelt-Brushett & Harrison, 2000), and to other coral species, including A. aspera
(EC10: 5.8 µg L−1) and Platygyra daedala (EC10: 16 µg L−1) (Gissi et al., 2017), validating
the sensitivity and suitability of the test. The NEC for Cu (II) in the present study was
7.4 µg L−1, which is between the P90 and P80 WQGVs for copper in marine waters
(ANZG, 2018), indicating the inhibition of larval metamorphosis in this species is relatively
sensitive in comparison with other taxa. Although copper is an essential element to
life at background concentrations, it has a wide range of toxic actions at higher
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concentrations, including blocking biological functional groups of proteins and enzymes,
displacing other essential metal ions and modifying the confirmation of biomolecules
(Eisler, 1998). The specific impacts of Cu (II) on larval metamorphosis are unknown
but may affect larval function, including mobility, as observed for coral Goniastrea aspera
by Reichelt-Brushett & Harrison (2004). More specifically, Cu (II) may affect signal
transduction pathways related to larval metamorphosis into sessile polyps (Negri &
Hoogenboom, 2011).

Environmental relevance and conclusions
All five pesticides investigated here are commonly applied in agriculture within
catchments of the GBR and were toxic to coral larval metamorphosis. While the toxicity
thresholds (NECs and EC10s) were higher than measured or expected concentrations in
tropical waters, these pesticides have the potential to contribute to overall risk posed
by pesticide mixtures which are commonly detected in the environment (Gallen et al.,
2019; Lewis et al., 2009; Warne, Smith & Turner, 2020). For instance, Key et al. (2007)
found greater than additive toxicity to grass shrimp Palaemonetes pugio larvae when
atrazine was added to a fipronil/imidacloprid mixture. The cumulative risks posed by
co-occurring pesticides should be assessed by combining the total risks of all pesticides
detected and this can be achieved by applying the multisubstance-Potentially Affected
Fraction (ms-PAF method) (Traas et al., 2002). The effects of pesticides on tropical species
can also increase with other pressures common to tropical ecosystems and the ms-PAF
method was recently extended to adjust WQGVs for pesticides to account for heatwave
conditions (Negri et al., 2020). ms-PAF has been applied in pesticide monitoring and
reporting in GBR waters and exceedances of WQGVs in GBR waters were more common
when the combined toxicity of multiple co-occurring herbicides was considered (Gallen
et al., 2019). However, high-reliability WQVGs that are necessary to predict ms-PAFs
are not available for all alternative pesticides. For example, diazinon is the only pesticide
tested in this study with a current Australian and New Zealand guideline (Table 4) and
this was derived from temperate freshwater species toxicity data. The proposed GVs
for the remaining four pesticides tested in this study (Table 4) include more recent data but
rely heavily on toxicity thresholds of temperate freshwater species. Further studies are
also needed on the toxicity of their metabolites and transformation products which are also
detected in the marine environment, and can be more toxic than the parent compound
(Mercurio et al., 2018; Sinclair & Boxall, 2003). In addition, understanding the toxicities
of commercial pesticide formulations need to be more thoroughly investigated as
formulations have been found to increase toxic responses in marine organisms
(Devlin et al., 2015; Kroon et al., 2015). For example, Stoughton (2006) found the
imidacloprid-formulations were more toxic to the fresh/brackish water midge Chironomus
tentans and the amphipod Hyalella azteca than the technical grade imidacloprid.
The present study contributes toxicity thresholds for coral that can improve SSDs by the
inclusion of this key reef-building taxa, and this will in turn improve the relevance of
WQGVs for tropical marine ecosystems of high ecological value.
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