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ABSTRACT
This study analyzed Imperata cylindrica litter to determine variation in bacterial
community composition and function along with enzyme activity as
phytoremediation progresses. We found significant differences in physical and
chemical properties of soil and litter in the different sub-dams investigated.
The Actinobacteria, Gammaproteobacteria and Alphaproteobacteria were the
dominant bacteria found in the litter of the different sub-dams. The alpha diversity
(a-diversity) of litter bacterial community increased over as phytoremediation
progressed, while total soil carbon and total litter carbon content were positively
correlated to bacterial a-diversity. Total litter carbon and total nitrogen were the key
factors that influenced bacterial community structure. Heavy metal can influence the
degradation of litters by altering the composition of the microbial community.
Furthermore, bacterial communities encoded with alpha-amylase (a-amylase)
dominated during the initial phytoremediation stage; however, bacterial
communities encoded with hemicellulase and peroxidase gradually dominated as
phytoremediation progressed. Findings from this study provide a basis for exploring
litter decomposition mechanisms in degraded ecosystems, which is critically
important to understand the circulation of substances in copper tailings dams.
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INTRODUCTION
Although mineral resources are the foundation of economic development, the long-term
exploitation of these resources have caused a series of ecological problems that have in
some cases led to the degradation of the ecological environment (Guo & Wang, 2013).
The Northern Copper Mine in the Zhongtiao Mountains of Yuanqu County, Shanxi
Province, is one of the seven largest copper mining regions in China (Jia et al., 2018b). This
copper mine produces over seven million tons of tailings each year. Long-term mining
activities in this region have destroyed its native vegetation (Jia et al., 2017) and have led to
severe soil erosion and a serious decline in soil fertility (Jia, Wang & Chai, 2019), which
in turn has critically degraded local ecosystems. However, previous studies have found
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that some plant species, such as Bothriochloa ischaemum and Imperata cylindrica (Jia et al.,
2018a), colonize copper tailing dams. Of these two species, I. cylindrica is dominant in the
study region, which produces a large amount of litter at the end of the growing season.
I. cylindrica is the perennial herb, and placed in the family Graminae and Genus Imperata.
Their blossom period is from April to June. It is a hardy species, tolerant to shade, high
salinity and drought. I. cylindrica is a vigorous, creeping perennial grass with long stolons
and rooting at nodes. This grass can adapt easily to a wide range of soils (Paz-Alberto et al.,
2007). Litter is the link between vegetation and soil interface, and it plays an important
role in the function of aboveground and belowground ecosystems (Bani et al., 2018;
Tan et al., 2020). Litter decomposition controls both the material and chemical cycles of
terrestrial ecosystems (Cotrufo et al., 2015; Xu et al., 2020). Therefore, exploring litter
decomposition characteristics and associated influencing factors in a copper tailing dam
will help provide new insight into understanding the crucial role that litter decomposition
plays in nutrient cycling in this region.

Litter decomposition in terrestrial ecosystems is mainly controlled by litter quality, soil
properties and biological factors at a local scale (Berg, 2014; Fissore et al., 2016; Keiluweit
et al., 2015; Santschi et al., 2018). Among these biological factors, microorganisms are
widely known to be the main driving force behind litter decomposition processes (Bani
et al., 2018; Zhao, Xing & Wu, 2017). Previous studies determined that fungi are the main
decomposers that produce lignin-modifying enzymes (LMEs) and cellulase (Boer et al.,
2005; Yu et al., 2017). Recent studies have also shown that soil bacteria can produce
cellulase, indicating that bacteria play an important role in litter decomposition processes
(Lopez-Mondejar et al., 2016). Additionally, Zhang et al. (2019) found that litter bacteria
encoded with beta-glucosidase (β-glucosidase) genes may improve the capacity of litter
decomposition in coniferous forests. Furthermore, many studies have shown that the
relative abundance of litter bacteria increases during later litter decomposition stages, and
these bacteria play a crucial role in litter decomposition (Berg, 2014). Therefore, it is
scientifically warranted to explore litter bacteria communities and the litter decomposition
characteristics, particularly in areas suffering from heavy metal pollution. However, most
previous relevant studies on litter were conducted in natural ecosystems. Accordingly,
very little is known about litter decomposition mechanisms in degraded copper tailings
dam ecosystems.

Microbial extracellular enzymatic activities have garnered much attention, and this is
due to the roles they play in litter decomposition (Schimel, Becerra & Blankinship,
2017; Wang et al., 2020). According to litter substrate properties, enzymes are generally
classified into cellulase, LMEs, protease and phosphatase (Nakamura et al., 2019; Wang
et al., 2006). Litter decomposition is a vital process in the global terrestrial carbon cycle
(Bani et al., 2018; Wang et al., 2017; Yan et al., 2018). Litter carbon storage is mainly
composed of cellulose and lignin. Therefore, both cellulolytic enzymes and ligninolytic
enzymes play a significant role in litter decomposition. Cellulolytic enzymes mainly
include endoglucanase, cellobiohydrolase and β-glucosidase (Fang et al., 2010).
Comparatively, the lignin component of litter is the slowest to degrade, whose
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decomposition mainly depends on ligninolytic enzymes. At present, most studies on
ligninolytic enzymes focus on peroxidase, laccase, polyphenol oxidase and catalase
(Johnsen & Jacobsen, 2008; Saiya-Cork, Sinsabaugh & Zak, 2002). Accordingly, our study
explored the relationship between bacterial communities and enzyme activities in litter,
which can help us to better understand litter degradation mechanisms.

In this study, we investigate bacterial community characteristics and enzyme activities
of I. cylindrica litter as phytoremediation progresses, while we elucidate on the main
influencing factors in a copper tailings dam. We use high-throughput sequencing and
chemical analysis to test the following questions: (1) whether there exist different bacterial
community structures as phytoremediation progresses; (2) whether soil and litter
properties affect extracellular enzymatic activities and bacterial community characteristics;
and (3) whether relevant key factors vary during different phytoremediation stages.

MATERIALS AND METHODS
Site description and soil sampling
Construction of the Eighteen River tailings of the Northern Copper Mine (35�15′~35�17′
N, 118�38′~111�39′E) in the southern region of the Zhongtiao Mountains started in 1969.
Liu Xinggang, who is chiefly responsible for Zhongtiao Mountains Non-ferrous Metal
Group Limited Department of Safety and Environmental Protection, gave us verbal
permission to access and sample the sub-dam near the Northern Copper Mine. This region
is under the influence of a continental monsoon climate. The average annual temperature
is 13.5 �C, while the annual precipitation is 631 mm (Liu et al., 2018b). Currently, the
Eighteen River tailings dam is composed of 16 sub-dams (Jia, Wang & Chai, 2019).
The main constituents of the dam comprise of copper tailings and artificial loess. The slope
ratio of the dam is 1:6.

In April 2019, we collected samples at S516, S536 and S560 sub-dam, and the age of
phytoremediation of these three sub-dams was 50, 22 and 5 years respectively. Litter on the
soil surface and topsoil samples were collected in the I. cylindrica distribution area of
each sub-dam, for which three replications were made for each sub-dam. A total of 18 litter
and soil samples were collected. Samples were sealed in self-sealing plastic bags, placed
inside boxes containing ice before being immediately transported to the lab. Litter samples
were then subdivided into two, one being stored at −20 �C for high-throughput sequencing
and the other being stored at 4 �C along with soil samples to determine physiochemical
properties. The sterile gloves should be worn throughout the sampling process to avoid
contamination of the samples.

Chemical properties and enzyme activities of samples
Soil water content (SWC) was determined by means of the drying method. An elemental
analyzer (vario EL/MACRO cube; Elementar, Hanau, Germany) was used to measure
total carbon and nitrogen content in soil (TC_Soil and TN_Soil) and litter (TC_Litter and
TN_Litter). Soil pH was measured by potentiometric method. Shaking in a soil-water
(1:2.5 w/v) suspension for 30 min and then rest. Soil particle size (PS) was measured
by using Mastersizer 3,000 laser diffraction particle size analysis instrument
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(Malvern Co. Ltd., Malvern, UK). Soil heavy metals, which include As, Cd, Cu, Pb and
Zn, were measured by Inductively Coupled Plasma-Atomic Emission Spectrometry (iCAP
6000; Thermo Fisher Scientific, Loughborough, UK). Potassium permanganate titration
was used to measure catalase. 3,5-Dinitrosalicylic acid colorimetry was used to measure
sucrase and cellulase, while phenol-sodium hypochlorite colorimetry was used to measure
urease. Finally, iodimetry was used to measure polyphenol oxidase (Guan, 1986).

Techniques used for DNA extraction, PCR amplification and Miseq
sequencing
We initially washed nine litter samples three times in a sterile phosphate buffer solution
(PBS: NaCl, KCl, Na2HPO4 and KH2PO4) before being filtered through a sterile membrane
filter (0.2 mm pore size) (Millipore, Jinteng, Tianjin, China). These membrane with
bacteria samples, used to extract microbial DNA, were sealed in sterile centrifuge tubes.
The E.Z.N.A.� Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) was employed for the
extraction of microbial plant and soil DNA under the manufacturer’s protocol.
The NanoDrop ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA) was used to quantify extracted DNA. Amplification of the V5–V7
hyper variable region of the 16S rRNA bacterial gene was conducted using primers 799F
(5′-AACMGGATTAGATACCCKG-3′) and 1193R (5′-ACGTCATCCCCACCTTCC-3′).
The PCR reactions were conducted using the following program: 3 min of denaturation at
95 �C, 27 cycles of 30 s at 95 �C, 30 s for annealing at 55 �C, and 45 s for elongation at 72 �C,
and a final extension at 72 �C for 10 min. PCR reactions were performed in triplicate
20 mL mixture containing 4 mL of 5 × FastPfu Buffer, 2 mL of 2.5 mM dNTPs, 0.8 mL of each
primer (5 mM), 0.4 mL of FastPfu Polymerase and 10 ng of template DNA. The resulted
PCR products were extracted from a 2% agarose gel and further purified using the AxyPrep
DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified
using QuantiFluorTM-ST (Promega, Madison, WI, USA) according to the manufacturer’s
protocol. We conducted sequencing at Shanghai Majorbio Bio-pharm Technology
(Shanghai, China), applying the MiSeq platform (Illumina, Inc., San Diego, CA, USA).

Processing of sequencing data
We selected QIIME software (Caporaso et al., 2010) to integrate the original sequencing
data of the FASTQ format. The chimeric sequences were examined and eliminated using
Usearch (vsesion 7.0, http://drive5.com/usearch/). The 97% sequence similarity was
identified as the operational taxonomic unit (OTU) partition threshold for the
classification results and was used to calculate bacterial community diversity and relative
abundance. After that, in order to obtain the classification information of the species
corresponding to each OTU, each OTU sequence (97% sequence similarity) was classified
and analyzed using the RDP classifier (http://rdp.cme). And the reliability threshold using
the silva132/16s_bacteria database is 70%. The bacterial sequences were banked in the
National Center for Biotechnology Information database under the Sequence Read
Archive accession: PRJNA611544.
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Statistical analysis
Differences in the chemical properties among soil and litter and enzyme activities of each
sub-dam were tested using the non-parametric test in SPSS Statistics version 24.0. Analysis
of microbial community structure was performed using SPSS Statistics version 24.0 and
SigmaPlot version 14.0. Pearson’s correlation coefficient was employed to analyze the
relationship among the environmental factors and microbial community diversity
correlation analysis, and Venn diagram were performed using R3.5.3. Non-metric
multidimensional scaling (NMDS) analysis was conducted on the bacterial community
structure based on Bray–Curtis Dissimilarity, and ANOSIM was used to analyze
inter-group differences. Additionally, variance inflation factor (VIF) analysis was used to
eliminate the high collinearity of environmental factors using the “vegan package” in
R 3.5.3. Following this, redundancy analysis (RDA) was carried out in Canoco 5.0
(Microcomputer Power, Ithaca, NY, USA). Finally, We used the interactive platform
Gephi to explore and visualize networks, and PICRUSt was used to predict bacterial
community functions based on the KEGG database.

RESULTS
Sample properties and enzyme activities in I. cylindrica litter and soil
Soil nutrient content (TC_Soil and TN_Soil) steadily increased as phytoremediation
progressed in the copper tailings dam (Table 1). The trend in SWC variation was
consistent with TC_Soil and TN_Soil. C/N_Soil was highest in the S536 sub-dam.
Significant differences in pH were observed between S516 and S560 sub-dams (P < 0.05).
The heavy metals As and Cd accumulated in S536. For litter, TN_Litter and TC_Litter

Table 1 The properties of soil and litters as phytoremediation processed.

Physical and chemical factors S516 S536 S560

Soil TC_Soil (%) 2.143 ± 0.788a 0.647 ± 0.193b 0.557 ± 0.207b

TN_Soil (%) 0.143 ± 0.0727a 0.024 ± 0.014b 0.022 ± 0.013b

C/N_Soil 16.346 ± 4.148b 30.198 ± 6.656a 28.382 ± 6.661a

SWC (%) 13.055 ± 7.513a 6.770 ± 2.630ab 5.547 ± 3.138b

pH 7.944 ± 0.252b 8.114 ± 0.103ab 8.218 ± 0.161a

PS (mm) 38.367 ± 6.030a 41.300 ± 10.916a 36.067 ± 7.170a

Heavy metals As (mg·kg−1) 11.937 ± 5.475ab 25.441 ± 9.495a 4.577 ± 1.299b

Cd (mg·kg−1) 5.967 ± 0.659b 7.580 ± 0.833a 3.193 ± 0.083c

Cu (mg·kg−1) 418.408 ± 123.080a 347.032 ± 18.937a 487.837 ± 51.097a

Pb (mg·kg−1) 265.647 ± 31.314a 173.073 ± 37.910a 185.807 ± 107.931a

Zn (mg·kg−1) 105.606 ± 10.795a 72.359 ± 10.873b 51.276 ± 15.019b

Litter TC_Litter (%) 43.649 ± 0.137A 43.115 ± 0.102AB 37.659 ± 0.134B

TN_Litter (%) 1.269 ± 0.041A 0.748 ± 0.238B 1.172 ± 0.072AB

C/N_Litter 34.442 ± 1.177B 62.567 ± 19.759A 32.240 ± 2.048B

Notes:
Abbreviations mean total nitrogen (TN), total carbon (TC), the ratio of carbon and nitrogen (C/N), soil water content
(SWC) and average particle size (PS).
Data are means ± standard deviation. Significant differences between sites (P < 0.05) are denoted with letters (Soil and
heavy metals: a > b; Litter: A > B).
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increased as phytoremediation progressed. The highest C/N_Litter value was observed in
the S536 sub-dam (Table 1).

We found significant differences in cellulose, catalase and polyphenol oxidase in the
litter of the three sub-dams (P < 0.05). Cellulase and catalase activities increased
significantly as phytoremediation progressed. The highest polyphenol oxidase value was
observed in the S536 sub-dam, while the lowest was observed in the S516 sub-dam.
Additionally, no significant differences were found in urease and sucrase in litter among
the three sub-dams (Table 2).

Litter bacterial community composition and diversity
The litter bacterial community structure differed over phytoremediation stages. OTU
numbers of the bacterial community were highest in the S516 sub-dam (i.e., 298 OTUs),
followed by the S536 (i.e., 198 OTUs) and the S560 (i.e., 163 OTUs) sub-dams. A total of
162 OTUs were shared in the bacterial community litter of the S516 and S536 sub-dams.
Additionally, the three sub-dams shared 119 common OTUs. Proteobacteria,
Actinobacteria and Bacteroidetes were the dominant bacterial phyla in the three sub-dams
(Fig. 1). Proteobacteria had the highest relative abundance of the three sub-dams, while
the relative abundance of the S560 sub-dam was significantly higher compared to the

Table 2 Enzyme activities of Imperata cylindrica litters over different years of phytoremediation.

Enzyme activities S516 S536 S560

Cellulase (mg·(g·72 h)−1) 0.849 ± 0.068a 0.774 ± 0.040a 0.458 ± 0.228b

Urease (mg·(g·24 h)−1) 3.330 ± 0.095a 3.520 ± 0.466a 3.087 ± 0.293a

Sucrase (mg·(g·24 h)−1) 2.998 ± 0.625a 2.638 ± 1.649a 2.482 ± 0.348a

Catalase (mg·(g·20 min)−1) 5.271 ± 0.701a 3.191 ± 0.193b 1.063 ± 0.351c

Polyphenol oxidase (mL·g−1) 3.200 ± 0.447b 5.300 ± 0.837a 3.800 ± 0.837b

Note:
Data are means ± standard deviation. The different case letters indicate that the means are significantly different among
different years of phytoremediation (P < 0.05).
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Figure 1 The relative abundances of litter bacterial community at the levels of class (A) and family
(B) with different years of phytoremediation. Full-size DOI: 10.7717/peerj.9612/fig-1
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other three sub-dams (P < 0.05). The dominant bacteria in the three sub-dams were
the classes Actinobacteria, Gammaproteobacteria and Alphaproteobacteria. The relative
abundance of Gammaproteobacteria was the highest in the S560 sub-dam, and the
relative abundance of Deltaproteobacteria gradually decreased with an increase in
phytoremediation (Fig. 1A). Moreover, Burkholderiaceae and Sphingomonadaceae were
the dominant bacterial families in the three sub-dams. Burkholderiaceae was the dominant
bacteria in the S560 sub-dam, while Geodermatophilaceae abundance was highest in the
S536 sub-dam (Fig. 1B).

Estimations using the Ace and Chao1 indexes showed bacterial communities gradually
increased as phytoremediation progressed, being highest in the S516 sub-dam. Variation
trends from the Shannon index were consistent with the richness indexes (i.e., Ace and
Chao1), revealing that there were significant differences among the three sub-dams
(P < 0.05). However, the Simpson index gradually decreased as phytoremediation
progressed (Fig. 2). NMDS analysis was performed on litter bacterial communities as
shown in Fig. 3. Given that the stress value was 0.018 in this study, NMDS analysis results
were considered well representative. Samples typically clustered together as
phytoremediation progressed, while ANOSIM showed significant differences in bacterial
community structure among the three sub-dams (P = 0.001).
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Figure 2 Diversity indices of litter bacterial community with different years of phytoremediation.
The bacterial diversity indices included Shannon-Wiener (A), Simpson (B) Ace index (C) and Chao1
(D). Different lowercase letters indicate significant differences, P < 0.05.

Full-size DOI: 10.7717/peerj.9612/fig-2
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Ecological factor effects on bacterial community litter
Correlation analysis showed a significant relationship between bacterial community litter
diversity and TC_Soil, TN_Soil and pH (Fig. 4A). TC_Soil was significantly positively
correlated to the Shannon-wiener index and bacterial richness indexes, but pH was
negatively correlated to bacterial diversity. However, only TC_Litter was positively
correlated to bacterial community diversity (Fig. 4B). Catalase was significantly positively
correlated to all diversity indexes, while cellulase activity was positively correlated to the
Shannon index (Fig. 4C). Zn was positively correlated to the litter community diversity
and richness indexes (Fig. 4D).

Although soil and litter factors affected bacterial community structure, the main
influencing factors varied in the different sub-dams (Fig. 5). We used VIF analysis to
screen and remove high collinearity of physicochemical factors. RDA analysis showed that
43.22% of bacterial community variation was explained by physicochemical properties in
soil. Moreover, axis 1 of the RDA plot explained nearly 26.24%, and axis 2 explained a
further 16.98%. The bacterial community structure was mainly influenced by TN_Soil and
SWC in the S516 sub-dam (Fig. 5A). This study also evaluated litter trait effects on
bacterial community structure (Fig. 5B). Results showed that 70.5% of bacterial
community variation in litter could be explained by litter traits. Both TC_Litter and
TN_Litter had a significant effect on bacterial community structure (Fig. 5B). For enzyme
activities, 76.65% of variation could be explained by extracellular enzyme activities
(Fig. 5C). Axis 1 explained nearly 58.74%, and axis 2 explained a further 17.91% (Fig. 5C).
Urease, cellulase and polyphenol oxidase activities all had a significant effect on bacterial
community structure (Fig. 5C). Additionally, dominant bacteria families, such as
Sphingomonadaceae, Geodermatophilaceae and Beijerinckiaceae, were positively
correlated to enzyme activities in the S516 and S536 sub-dams (Fig. 5C). Furthermore, Zn
and Cd respectively had a significant effect on bacterial community structure in S516
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Figure 3 Non-metric multidimensional scaling (NMDS) of litter samples at different years of
phytoremediation based on the relative abundance of bacterial OTU.

Full-size DOI: 10.7717/peerj.9612/fig-3
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and S536. The abundances of most bacteria classes were positively correlated with the
contents of Zn and Cd while negatively corrected with Cu and Pb (Fig. 5D). This indicated
that they could potentially play important roles in litter decomposition.
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Figure 4 The Pearson correlation between the environmental factors and litter bacterial diversitie. The environmental factors included soil
properties (A), litter properties (B), enzyme activities of litter (C) and heavy metals (D). The soil properties included total carbon (TC_Soil), total
nitrogen (TN_Soil), ration of carbon and nitrogen (C/N_Soil), pH and soil water content (SWC). The litter properties included total carbon
(TC_Litter), total nitrogen (TN_Litter) and ration of carbon and nitrogen (C/N_Litter) and the enzyme activities of litters included cellulase, urease,
sucrase, catalase and polyphenol oxidase. �Correlation is significant at the 0.05 level (2-tailed), ��correlation is significant at the 0.01 level
(2-tailed). Full-size DOI: 10.7717/peerj.9612/fig-4

Jia et al. (2020), PeerJ, DOI 10.7717/peerj.9612 9/20

http://dx.doi.org/10.7717/peerj.9612/fig-4
http://dx.doi.org/10.7717/peerj.9612
https://peerj.com/


Functional characteristics of litter bacterial communities
This study identified some keystone families by building a co-occurrence network from
litter bacterial communities (Fig. 6). Keystone microbes can be generally defined as those
species that have a disproportionate influence on ecosystems regardless of abundance,
and they are crucial in the maintenance of the stability and the function of ecosystems as
well as the resistance of system disturbances. Fimbriimonadaceae was the key bacterial
family in litter bacteria, and the genus Pseudokineococcus played critical roles in the

Figure 5 RDA analysis of bacterial community and environmental factors. The environmental factors included soil properties (A), litter
properties (B), enzyme activities of litter (C) and heavy metals (D), which were represented by red arrows. The black arrows represent the bacterial
which were in the top five at the family level. Full-size DOI: 10.7717/peerj.9612/fig-5
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bacterial community (Fig. 6). We also used PICRUSt to infer the functional genes of
bacteria associated with litter decomposition, which is based on the KEGG database.
The relative abundance of genes encoded with cellulase, hemicellulase and ligninolytic
enzymes notably differed among the three sub-dams (P < 0.05). The relative abundance of
genes encoded with endo-1,4-beta-xylanase, catalase, peroxidase, endo-1,5-alpha-L-
arabinosidase, alpha-glucuronidase and 1,4-beta-xylosidase were significantly higher in the
S536 sub-dam compared to the S516 and S560 sub-dams. Gene encoded β-glucosidase
increased as phytoremediation progressed. Additionally, only genes encoded with
alpha-amylase (a-amylase) were found in amylolytic enzymes, and their relative
abundance was lower (Fig. 7).

DISCUSSION
Imperata cylindrica litter and soil properties
In the study area, soil nutrient content increased as phytoremediation progressed, which is
consistent with a previous study (Jia, Wang & Chai, 2019). The ratio between total soil
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carbon and nitrogen content reflected both the soil quality and nutrient characteristics
(Wang & Yu, 2008), which is associated with the decomposition rate of soil organisms.
Our study found higher soil C/N during different phytoremediation stages, indicating that
soil TN was one of main limiting factors in the copper tailings dam. Moreover, litter C/N
had an effect on litter decomposition. It has been reported that the higher the carbon is,
the lower the decomposition rate will be (Bryant et al., 1998; Magill et al., 2000). In this
study, the S536 sub-dam had the highest soil C/N, which could speculate that the
decomposition rate of litter and soil organic carbon in this sub-dam was relatively slow
compared to the other two sub-dams. Furthermore, litter decomposition is influenced
by many factors. In this study, cellulase and catalase in I. cylindrica litter were lower
during the early remediation stage when heavy metal content in soil was higher.
Similarly, Xue et al. (2018) found that lead (Pb) inhibited cellulase and laccase activities in
Phyllostachys pubescens litter while also inhibiting the degradation of this species.
In previous studies, lead and cadmium (Cd) content seriously exceeded the copper tailings
dam standard (Jia et al., 2018a); thus, heavy metal content in the soil of our study site could
also influence litter properties.
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Figure 7 The relative abundance of functional genes related to litter degradation in litter bacterial
community with different years of phytoremediation. The alpha-amylase was related to the decom-
position of starch and other active substances. The endo-1,4-beta-xylanase, arabinan endo-1,5-alpha-
L-arabinosidase, alpha-glucuronidase and xylan 1,4-beta-xylosidase were the enzymes related to
hemicellulose decomposition. Endoglucanase and beta-glucosidase were involved in cellulose decom-
position, and catalase/peroxidas were the main ligninase. Different letters indicated significant differences
with years of phytoremediation, P < 0.05. The predicted functional analysis of the bacterial associated with
litter degradation by PICRUSt. Full-size DOI: 10.7717/peerj.9612/fig-7
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Bacterial community composition in I. cylindrica litter
Bacterial community diversity in litter gradually increased as phytoremediation
progressed, which is associated with an increase in nutrient content in soil and litter
(Lu et al., 2019). Proteobacteria and Actinobacteria were the dominant bacterial phyla
in litter in all three sub-dams (i.e., S516, S536 and S560). Many studies found that
Proteobacteria and Actinobacteria were the dominant bacterial phyla communities in
different soil and litter types (Bonanomi et al., 2019; Zhang et al., 2019), indicating that the
adaption ability of these two bacterial phyla communities to this type of environment
degradation is strong, subsequently playing a vital role in litter decomposition. Moreover,
Actinobacteria and Alphaproteobacteria were the dominant bacterial classes in litter in
all three sub-dams, and played a critical role in carbon and nitrogen cycling (Juhnke,
Mathre & Sands, 1988), which is essential in the decomposition of litter and the growth of
plants. The relative abundance of the class Gammaproteobacteria in this study was the
highest in the S560 sub-dam, which was due to the poor available nutrition during the early
stage of remediation. This class, however, was strongly adaptable in its ability to dissolve
phosphates in soil (Brabcova et al., 2016). At a family level, Sphingomonadaceae can
produce cellulase, while its facility in organic matter decomposition is wide ranging, even
including some complex organic matter (Boberg, Ihrmark & Lindahl, 2011). In our
study, Sphingomonadaceae was the dominant bacterial family in all three sub-dams,
indicating that its members play a critical role in litter decomposition in copper tailings
dams.

Relationships between litter bacterial communities and environmental
factors
Although litter properties have been widely shown to influence bacterial community
structure (He et al., 2019; Yan et al., 2018), the driving factors that affect bacterial litter
communities within different ecosystems remain inconsistent between studies (Wang
et al., 2019). Soil and litter properties affect activities associated with extracellular enzymes
and bacterial community characteristics (Petraglia et al., 2018; Yan et al., 2018). In our
study, total litter carbon and nitrogen significantly affected bacterial community structure.
Similarly, Xu et al. (2020) found that carbon, phosphorus and pH were the key factors
that influenced bacterial community litter and soil composition of Robinia pseudoacacia
on the Loess Plateau. Zhao, Xing & Wu (2017) also found that total litter carbon was
the main regulatory factor of bacterial community structure during litter decomposition
processes. Moreover, Zeng, Liu & An (2017) found that total carbon, nitrogen and
phosphorus in litter were critical factors that influenced bacterial community composition.
In this study, we combined bacterial community structure analysis with extracellular
enzyme activity analysis to explore the influence of environmental factors on microbial
community structure. We found that urease, cellulose and polyphenol oxidase in litter
were closely correlated to the bacterial community. However, critical factors varied among
the different phytoremediation stages. Additionally, the families Sphingomonadaceae,
Geodermatophilaceae and Beijerinckiaceae were positively correlated to a variety of
extracellular enzyme activities. This was because these bacterial families are able to
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produce a variety of enzymes that are used in organic matter degradation, thus playing an
important role in litter decomposition processes.

Heavy metals, such as the Cu, Zn, Fe and Mg, were essential for microbial growth and
participate in many important biological metabolic processed at low concentrations (Chen
et al., 2020; Zampieri et al., 2016). However, at high concentrations, they had significant
effect on the growth, morphology and metabolism of microorganisms, leading to a
decrease in microbial diversity (Chen et al., 2020; Zampieri et al., 2016). Many studies
showed that the heavy metals significantly affect the microbial abundance, diversity, the
abundance of the functional classes and gene families (Chen et al., 2018; Feng et al., 2018;
Liu et al., 2018a). In this study, the abundances of most bacteria classes were positively
correlated with the Zn and Cd, indicating that these microorganisms had high tolerance to
Zn and Cd. The dominant bacterial classes were positively correlated with enzyme
activities associated with litter degradation. This suggested that heavy metals might
influence enzyme identities and activities by altering the microbial communities
compositions, then affect the litter degradations.

Functional characteristics of litter bacterial communities
Using PICRUSt, genes encoded with cellulase, hemicellulase and LME were found in litter
bacterial communities, demonstrating the critical potential of bacterial communities in
litter decomposition. However, our results showed that the relative abundance of genes
encoded with cellulase and hemicellulase were significantly higher in the S536 sub-dam
compared to the other sub-dams (P < 0.05), which was inconsistent with our results on
cellulase and sucrase activities. Differences between the abundance of functional genes and
enzymatic activities was due to the role that other microorganisms play in litter
decomposition, such as fungi. Studies found the Basidiomycota produces a wide range of
LMEs and cellulase, while also controlling litter decomposition (Zhang et al., 2019).
Furthermore, our study found that the dominate litter bacterial community could encode
a-amylase at the early stage of phytoremediation (Bani et al., 2018). However, bacteria that
encode hemicellulase and peroxidase gradually became the dominant bacterial
communities as phytoremediation progressed. This could be due to the low nutrient
content within the environment during the initial stage of phytoremediation, and the fact
that bacteria can rapidly utilize substances in litter to meet their growth needs (Stirling
et al., 2019). It should be noted that functional gene distribution can only predict the
metabolic potential and ecological function of a bacterial community. In other words,
functional gene distribution does not reflect the real metabolic activities and ecological
functions of bacterial communities (Liang et al., 2019). Additionally, differences between
functional gene abundance and gene expression have also been reported in some studies
(Hollister et al., 2010; Ossola et al., 2017). Therefore, bacterial functional characteristics
in litter decomposition along with gene expression and associated regulations must be
further investigated in future studies.

This study suggested that bacterial community also play a crucial role in the degradation
of litters, and heavy metal influence the degradation of litters by altering the composition
of the microbial community. However, one limitation of this work was that we don’t
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cover the different stages of litter degradation. In the process of litter degradation, the
chemistry of the organic substrate continuously changes, which led to various microbial
community structures (Berg & Mcclaugherty, 2008)). In addition, the climate change
was also one of the main factors affecting litter degradation (Liang et al., 2019). Future
studies will take into account the changes in microbial community structure and
function at different degradation of the I. cylindrica litter. Such studies will further
strengthen our understanding of the relationship between the microbial community and
litter decomposition in pollution area, and is critically important to understand the
circulation of substances in copper tailings dams

CONCLUSIONS
This study found significant differences in physiochemical soil and litter properties
within different sub-dams. Total carbon, cellulase and catalase in I. cylindrica litter
increased as phytoremediation progressed. Actinobcteria, Gammaproteobacteria and
Alphaproteobacteria were the dominate litter bacteria in the different sub-dams.
Moreover, total litter carbon and nitrogen were the key influencing factors of bacterial
community structure. The a-diversity of the litter bacterial community increased as
phytoremediation progressed, and the total carbon soil content and the total litter carbon
content were positively correlated to bacterial a-diversity. Finally, bacterial communities
encoded with a-amylase were the dominant microbial communities during the initial
phytoremediation stage; however, bacterial communities encoded with hemicellulase and
peroxidase gradually became the dominant microbial communities as phytoremediation
progressed.
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