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Abstract

Background. Biological invasion is one of the main threats to tropical biodiversity and ecosystem
functioning. Prosopis juliflora (Sw) DC. (Fabales: Fabaceae: Caesalpinioideae) was introduced in the
Caatinga dry forest at early 1940s as a food source for livestock and successfully spread across the
region by invading and forming monospecific stands, particularly across former agricultural lands along
river banks and flooding plains. As other invasive species, it may benefit from the soils and seed
dispersal by livestock but the ultimate forces permitting successful invasion of Caatinga dry forest by this
plant needs further studies. The objective was to understand how seed dispersal ecology and soil
conditions collectively affect seedling performance and consequently the P. juliflora invasive potential.

Methods. Seed germination and seedling performance of P. juliflora in 10 plots and its associated soil
attributes located across three habitats (floodplain, alluvial terrace and plateau) into a human-modified
landscape of the Caatinga dry forest were examined. Seeds of this plant were exposed to four seed
dispersal methods: deposition on the soil surface, burial in the soil, passed through cattle digestive tracts
and encasing them in cattle manure and passed through mule digestive tracts and mixed with mule
manure. The resulting seedlings were monitored through a year and their performance examined with
expectancy tables.

Results. Soils differed among habitats, particularly its nutrient availability, texture and water with finely-
textured and more fertile soils in the floodplain. Seedling survival rate of P. juliflora was highest in the
first 30 days and declined between 30 to 60 days with stabilization at 70 days after germination in all
seed treatments and habitats. Survival and life expectancy were higher in the floodplain at 75 days and
lower in the plateau. Prosopis juliflora seedling survival and life expectancy were higher when its seeds
were mixed with cattle manure.

Synthesis. Prosopis juliflora seedlings are sensitive to water stress and habitat desiccation. Therefore,
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they benefit from the humid soils often present across human-disturbed floodplains. This plant also
benefits from seed deposition/dispersal by domestic/exotic livestock in these landscapes, since animal
manure represents a nutrient-rich and humid substrate for both seeds and seedlings. The quality of the
seed dispersal service varies among livestock species, but this key mutualism between exotic species is
due to the arillate, hard-coated and palatable seeds. Prosopis juliflora traits allow this species to take
multiple benefits from human presence and thus operating as a human commensal.
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35 Abstract

36 Background. Biological invasion is one of the main threats to tropical biodiversity and 

37 ecosystem functioning. Prosopis juliflora (Sw) DC. (Fabales: Fabaceae: Caesalpinioideae) was 

38 introduced in the Caatinga dry forest at early 1940s as a food source for livestock and 

39 successfully spread across the region by invading and forming monospecific stands, particularly 

40 across former agricultural lands along river banks and flooding plains. As other invasive species, 

41 it may benefit from the soils and seed dispersal by livestock but the ultimate forces permitting 

42 successful invasion of Caatinga dry forest by this plant needs further studies. The objective was 

43 to understand how seed dispersal ecology and soil conditions collectively affect seedling 

44 performance and consequently the P. juliflora invasive potential.

45 Methods. Seed germination and seedling performance of P. juliflora in 10 plots and its 

46 associated soil attributes located across three habitats (floodplain, alluvial terrace and plateau) 

47 into a human-modified landscape of the Caatinga dry forest were examined. Seeds of this plant 

48 were exposed to four seed dispersal methods: deposition on the soil surface, burial in the soil, 

49 passed through cattle digestive tracts and encasing them in cattle manure and passed through 

50 mule digestive tracts and mixed with mule manure. The resulting seedlings were monitored 

51 through a year and their performance examined with expectancy tables.

52 Results. Soils differed among habitats, particularly its nutrient availability, texture and water 

53 with finely-textured and more fertile soils in the floodplain. Seedling survival rate of P. juliflora 

54 was highest in the first 30 days and declined between 30 to 60 days with stabilization at 70 days 

55 after germination in all seed treatments and habitats. Survival and life expectancy were higher in 

56 the floodplain at 75 days and lower in the plateau. Prosopis juliflora seedling survival and life 

57 expectancy were higher when its seeds were mixed with cattle manure.
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58 Synthesis. Prosopis juliflora seedlings are sensitive to water stress and habitat desiccation. 

59 Therefore, they benefit from the humid soils often present across human-disturbed floodplains. 

60 This plant also benefits from seed deposition/dispersal by domestic/exotic livestock in these 

61 landscapes, since animal manure represents a nutrient-rich and humid substrate for both seeds 

62 and seedlings. The quality of the seed dispersal service varies among livestock species, but this 

63 key mutualism between exotic species is due to the arillate, hard-coated and palatable seeds. 

64 Prosopis juliflora traits allow this species to take multiple benefits from human presence and 

65 thus operating as a human commensal.

66
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68 Introduction

69 Biological invasion is an important threat to tropical biodiversity and ecosystem 

70 functioning. Increased disturbance by ever-growing human populations will make terrestrial 

71 tropical biotas more vulnerable to invasions (Simberloff et al., 2013; Roy et al., 2014; McGeoch 

72 et al., 2016). This increased vulnerability is due to alien species benefiting from human 

73 disturbances, such as land cleaning and soil degradation by agriculture and livestock. Humans 

74 and their commensals, whether intentionally or not, favor alien species by creating altered or 

75 novel habitats (Almeida et al., 2015; Jauni et al., 2015; Bellard et al., 2016; Malavasi et al., 

76 2016).

77 The mechanisms driving successful invasion by alien species and those restricting them 

78 to particular habitats or conditions are key topics in invasion science (Blackburn et al., 2014; 

79 Catford and Jansson, 2014; Hulme, 2015). The life-history strategy or trait package exhibited by 

80 alien species affect their competitive performance or adaptability, while environmental 

81 conditions, disturbance regimes, habitat degradation and the structure of native communities 

82 (e.g. patterns of species richness and functional composition) are external forces controlling 

83 invasion success (Gilioli et al., 2014; Goia et al., 2014; Banerjee and Dewanji, 2017). The 

84 intrinsic and external factors collectively define the potential for successful invasion and delimit 

85 its ecological context, the geographic coverage and potential damage to native biodiversity. 

86 Successful invasions only occur when alien species can overcome external forces (Dalmazzone 

87 and Giaccaria, 2014; Li et al., 2014; Svenning et al., 2014). These factors explain why a small 

88 fraction of introduced alien species become invasive regardless of ecosystem type or habitat 

89 integrity (Kalusová et al., 2014; van Wilgen and Richardson, 2014; Novoa et al., 2015).
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90 Successful invasion of tropical plant species usually relies on the key life-history traits 

91 across all life-cycle stages (Chapple et al., 2012; Malíková et al., 2012; Mullah et al., 2014), such 

92 as vegetative reproduction, massive seed production, effective seed dispersal, high germination 

93 success in a wide range of environmental conditions, fast growth and high phenotypic plasticity 

94 (Moravcová et al., 2015; van Kleunen et al., 2015; Moran et al., 2017). The effective 

95 colonization of human-degraded habitats usually requires dealing with physical stress, 

96 particularly reduced soil nutrients and water availability (Boudiaf et al., 2013; Pérez et al., 2015; 

97 Rathore et al., 2015). The naturalization and long-term establishment of invasive species depend 

98 on integrating adaptive traits as functional strategies (Guo et al., 2018). However, the relative 

99 contribution of each trait or strategy vary from case to case (Hulme and Barrett, 2013; Perkins 

100 and Nowak, 2013; Rai, 2015).

101 The Caatinga of northeast Brazil is one of the largest blocks (nearly 1 million Km2) and 

102 the world most species-rich seasonally dry tropical forest (Silva et al., 2017). The regional 

103 vascular flora reaches 3,000 species with one third endemic, including a myriad of Cactaceae 

104 species—making this region the second diversity cactus species center globally (Silva and 

105 Souza, 2018; Apgaua et al., 2018; Terra et al., 2018). The Caatinga was inhabited by hunter-

106 gather people for thousands of years (Leal et al., 2005; Mamede and de Araújo, 2008; Silva et 

107 al., 2017). The Europeans arrived in the 16th century and the Caatinga dry forest has been 

108 converted into human-modified landscapes by a combination of extensive cattle ranching, small-

109 scale subsistence farming and exploitation of forest products such as firewood, fodder, timber, 

110 wood for charcoal, fruits and bushmeat (Silva et al., 2014; Leal et al., 2014; Ribeiro et al., 2015; 

111 Silva et al., 2017). Nearly 10 million m3 of firewood and charcoal are obtained per year from 

112 native species, while goat (i.e. the exotic Capra aegagrus subspecies hircus L., 1758; 
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113 Artiodactyla: Bovidae) herds feeding on native vegetation exceed 16 million heads (Ribeiro et 

114 al., 2015; Rito et al., 2017; Sfair et al., 2018). The Caatinga supports around 28 million people, 

115 making it one of the most populated semiarid regions and one of the most degraded/vulnerable 

116 Seasonally Dry Tropical Forests (SDTFs) globally (Oliveira et al., 2016; Moro et al., 2016; Rito 

117 et al., 2016; Schulz et al., 2017; Silva et al., 2017).

118 The alien flora inhabiting the Caatinga includes 205 species of 135 genera and 48 

119 families, including 61 Poaceae and 33 Fabaceae invasive species (Almeida et al., 2015). This 

120 diverse alien flora includes the evergreen tree Prosopsis juliflora (Sw) DC. (Fabales: Fabaceae: 

121 Caesalpinioideae), one of the world top 100 undesired species (Nascimento et al., 2014; Almeida 

122 et al., 2015). This species is native to the Caribbean, Central America and South America, but 

123 has been intentionally introduced worldwide for its economic value, utility to rural populations 

124 and ecological rusticity due to its fast growth, ability to fix nitrogen and tolerance to arid 

125 conditions and saline soils (Nascimento et al., 2014; Ilukor et al., 2016; Walkie et al., 2016).

126 Prosopis juliflora was introduced in the Caatinga at early 1940s as a food source for 

127 livestock and successfully spread across the region by invading and forming monospecific 

128 stands, particularly across former agricultural lands along river banks and flooding plains 

129 (Almeida et al., 2015; Santos and Diodato, 2015; Oliveira et al., 2017). Prosopis juliflora forms 

130 dense stands, apparently excluding or impelling the reestablishment of species-rich assemblages 

131 of tree and shrub species, particularly on river banks degraded by shifting cultivation and 

132 livestock overgrazing (Pegado et al., 2006; Andrade et al., 2009; Oliveira et al., 2012). Caatinga 

133 dry forests along river banks are structurally complex due the presence of large tree species [e.g., 

134 Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz, Piptadenia stipulacea (Benth.) Ducke (Fabales: 

135 Fabaceae) and Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S. Moore (Lamiales: 
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136 Bignoniaceae)] and support a diverse flora, including endemic species such as the cactus Cereus 

137 jamacaru DC. and Pilosocereus gounellei (F.A.C. Weber ex K. Schum.) Luetzelb. 

138 (Caryophyllales: Cactaceae). Prosopis juliflora, as other invasive species, may benefit from the 

139 soils and seed dispersal by livestock (Kebede and Coppock, 2015; Pasha et al., 2015; Alvarez et 

140 al., 2017) but the ultimate forces permitting successful invasion of Caatinga dry forest by this 

141 plant needs further studies (Shackleton et al., 2015; Abdulahi et al., 2017; Naudiyal et al., 2017).

142 The seed germination, seedling survival and life expectancy in P. juliflora across the 

143 three main habitats covered by Caatinga dry forest were studied to understand how soil 

144 conditions and seed dispersal ecology collectively affect seedling performance and consequently 

145 the invasive potential of P. juliflora. Seeds exposed to four seed dispersal treatments were 

146 deposited across a floodplain, alluvial terrace and plateau, with seed and seedling fate being 

147 monitored for a year. The potential mechanisms behind differential seedling performance, 

148 especially a positive synergism between human disturbance, key ecological services provided by 

149 livestock and the life-history traits exhibited by P. juliflora was studied.

150

151 Material & Methods

152 Study site. The study was carried out in 10 sites across a 3.5-Km2 human-modified Caatinga 

153 landscape (9°00’ S, 40°13’ W; 377 m altitude) covering three habitats: floodplain, alluvial 

154 terrace, and plateau (Supplementary materials 1 and 2). This landscape is typical of the Caatinga, 

155 with farming households devoted to livestock production with animals raised extensively and 

156 feeding on the Caatinga vegetation plus small patches devoted to subsistence agriculture and 

157 remnant patches of Caatinga dry forest; i.e. the traditional Caatinga land use (Sampaio and 

158 Costa, 2011). The landscape stretches over sedimentary basins, mountains, plateaus and ravines 

PeerJ reviewing PDF | (2018:11:32872:1:1:REVIEW 8 Jul 2019)

Manuscript to be reviewed



159 covered by cambisols, eutrophic podzols, lithosols, non-calcic brown soils and planosols along 

160 the São Francisco River valley (Razanamandranto et al., 2004). The river terrace has alluvial 

161 deposits from the valley slopes with sedimentary clay, sandy or silty material in stratified silt 

162 layers (Miranda et al., 2014). The floodplain, with slopes between 0 and 2° (Miranda et al., 

163 2011), consists of recent sediments from terraces (Babawi et al., 2016). The alluvial terrace, also 

164 called the slope, consists of flat areas or benches, usually situated above the river level, with 

165 gravel or thick sediment forming ancient terraces (Mukherjee et al., 2017). The plateau is a flat 

166 terrain covered by a sedimentary clay mantle, which spreads following the river terraces (Silva et 

167 al., 2008; Ferraz et al., 2013). The regional climate is hot semi-arid, with mean annual 

168 temperature of 26.3 °C and relative humidity of 61.7%. The 570 mm annual rainfall is 

169 concentrated between January and April (Ramos et al., 2011). The focal landscape was 

170 completely covered by Caatinga dry forest prior to European settlement (Silva et al., 2008). 

171 Regionally, Cactaceae, Euphorbiaceae and Fabaceae are the most species-rich plant families 

172 (Leal et al., 2005; Silva et al., 2008).

173 Soil attributes. Soil attributes were estimated based on 10 soil samples per habitat type 

174 (floodplain, alluvial terrace and plateau). Soil moisture was determined twice a week at 20 cm 

175 depth from March 2014 to February 2015 (Francesca et al., 2010). The soil samples were 

176 weighed to determine the wet mass (mw, g), dried in an oven at 105 °C for 24 hours and weighed 

177 again to determine their dry mass (md, g). Soil moisture was determined by H (g.g–1)= (md – 

178 mh) ÷ md or H (%)= (md – mh) ÷ md × 100. Physical (field capacity, sand, silt and clay content) 

179 and chemical soil attributes [soil organic matter, phosphorus, potassium, calcium, magnesium, 

180 sodium, aluminum and cation exchange capacity (CEC)] were also obtained via samples at 10 soil 

181 samples per habitat type, with samples at 0-20 cm depth (Lopes et al., 2013). Soil analyses were 
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182 performed in the Laboratory for Soil, Water and Plant Tissue Analysis at EMBRAPA Semi-Arid 

183 according to standard international protocols (Marques et al., 2007; Galindo et al., 2008).

184 Seed germination and seedling performance across habitats. Prosopis juliflora seeds were 

185 exposed to four seed dispersal treatments as follows: seeds with artificially broken dormancy 

186 deposited on the soil surface (T1); seeds with artificially broken dormancy buried in the soil to a 

187 depth of 1.0 cm (T2); seeds that passed through the digestive tract of cattle (Bos taurus 

188 subspecies indicus L., 1758; Artiodactyla: Bovidae) and mixed with cattle manure (hereafter 

189 cattle-dispersed seeds) (T3) and seeds that passed through the digestive tract of mules (mare, 

190 Equus ferus subspecies caballus L., 1758 × donkey, Equus africanus subspecies asinus L., 1758; 

191 Perissodactyla: Equidae) and mixed with mule manure (hereafter mule-dispersed seeds) (T4). 

192 These four seed dispersal treatments resemble natural seed dispersal modes and fates in the 

193 Caatinga, as ripe fruits can be (1) consumed by livestock and deposited on the soil surface 

194 immersed in manure; (2) remain intact on the ground and as the pod rots, seeds are deposited on 

195 the soil surface and (3) carried by runoff and deposited in soil sediments (dos Santos et al., 

196 2006). These fates need further studies, although ripe pods are consumed by livestock including 

197 cattle, goats, horses and mules (Nascimento et al., 2014). Seeds were manually collected from 

198 mature fruits from several trees collected on the ground throughout 2013. Seeds were used to 

199 feed livestock first and their manure collected.

200 Prosopis juliflora seeds were randomly sown on 120 1.4 m2-field plots across the three 

201 habitats (40 plots per habitat, Supplementary material 1). One hundred seeds were sown per 

202 treatment and habitat, totaling 12,000 seeds (four treatments × three habitats × 40 replicates= 25 

203 seeds per replicate). Seed dispersal treatments were set up in mid-March (i.e. rainy season) of 

204 2014. Seeds were collected from several trees and animal dungs in the year preceding sowing 
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205 experiments. Seed dormancy was broken artificially by making a small incision with blunt 

206 scissors on the opposite side of the micropylar region, while those that had passed through the 

207 animal digestive tract were extracted from dried dung (Nascimento et al., 2014). Seeds obtained 

208 from trees were sown at 10 × 10 cm spacing and those from the manure separated, counted, 

209 mixed with 500 mL of the respective animal dung and sown at 10 × 10 cm spacing. Seed 

210 germination and seedling survival were evaluated for each of the three habitats every five days 

211 during the first 30 days and every 15 days thereafter for one year. Prosopis juliflora germination 

212 is epigeal (Dube et al., 2010) and sprouted seeds (with cotyledons) were marked with toothpicks 

213 and protected with wire netting to prevent animal damage. Seeds with their first cotyledon open 

214 were classified as seedlings.

215 Life expectancy and survival tables. Life expectancy and survival tables of P. juliflora were 

216 calculated (Bogino and Jobbágy, 2011) for each dispersal treatment and habitat considering age 

217 classes of 15 days (x= 15). The number of P. juliflora survivors at the beginning of each age 

218 class (Lx) and at the germination and seedling phenological stages were estimated based on 

219 survival (lx) in these stages (Caswell, 1996) as follow: (a) number of dead individuals during the 

220 age class x (dx): dx= Lx - Lx+1; (b) mortality ratio for the age class x (qx): qx= dx ÷ Lx; (c) survival 

221 rate during age x (sx): sx= 1 - qx; (d) age structure (Ex) as the number of alive plants from each 

222 age class: Ex= (Lx + Lx+2) ÷ 2; (e) cumulative number of living individuals (Tx) by: Tx =



y

xj

xE

 

223 where j represents any age greater than or equal to that of class x; and (f) life expectancy for 

224 individuals of age class x (ex): ex= Tx ÷ Lx.

225 Data analysis. Differences in soil attributes were examined via analysis of variance and Tukey’s 

226 Honest Significant tests (p< 0.05) (Tukey, 1949). Non-normal (non-parametric) data obtained 
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227 from the three habitats were compared using the Kruskal-Wallis test statistic (p< 0.05) (Wallis, 

228 1952) using the BioEstat 5.0 program (Ayres et al., 2007).

229

230 Results

231 Soil physical attributes. Caatinga habitats differed greatly in terms of soil physical attributes. 

232 Field capacity was higher in the floodplain (F= 8.5454, df= 2, p= 0.0016; Fig. 1A), with the site 

233 and the terrace supporting higher soil moisture (H= 12.5507, df= 2, p= 0.0019) than the plateau 

234 (Fig. 1B). Soil clay content was higher in the floodplain followed by the plateau and the alluvial 

235 terrace (H= 9.0142, df= 2, p= 0.011). The silt score was highest in the floodplain than in the 

236 alluvial terrace and plateau (F= 6.6178, df= 2, p= 0.0048). The plateau and alluvial terrace had 

237 the highest sand fraction (F= 8.2452, df= 2, p= 0.0019; Fig. 2A).

238 Soil chemical attributes. Chemical soil attributes differed across habitats with only the sodium 

239 content being similar between them (H= 5.6227, df= 2, p= 0.0601). The phosphorus, calcium, 

240 magnesium, aluminum, potassium and CEC concentrations were similar in the foodplain and 

241 alluvial terrace and differed from those in the plateau (p< 0.05). The organic matter content in 

242 the floodplain and plateau was similar but lower than that in the alluvial terrace (H= 17.8655, df= 

243 2, p= 0.0001; Fig. 2B). Moreover, the soil organic matter content in the plateau was extremely 

244 variable.

245 Seedling survival and life expectancy. Prosopis juliflora seedling survival was higher in the 

246 first 30 days after germination, declined steeply from 30 to 60 days and tended to stabilize 70 

247 days after germination for all seed dispersal treatments and habitats (Figs. 3–5). This plant 

248 survival peaks in the floodplain were higher among seedlings from cattle-dispersed seeds, 

249 followed by mule-dispersed and those deposited in the soil surface. Life expectancy was highest 
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250 approximately 75 days after germination in all seed treatments. The life expectancy in this 

251 habitat reached 165 days among seeds deposited on the soil surface and cattle-dispersed ones, 

252 but with 210 days among those buried in the soil and those dispersed by mules. Moreover, 

253 seedling life expectancy exhibited peaks at 180, 195, 210 and 255 days with buried seeds, cattle-

254 dispersed, seeds on the soil surface and mule-dispersed seeds, respectively. Life expectancy of P. 

255 juliflora reached 345 days across all treatments (Fig. 3; Supplementary material 3).

256 The P. juliflora survival peak in the terrace was higher among seedlings from cattle-

257 dispersed seeds, followed by those dispersed by mules and with lowest peak by those from seeds 

258 buried in the soil. The longest life expectancy occurred within the first 15 days after sowing, 

259 without increase from this period onwards. The life expectancy in the alluvial terrace reached 

260 150 days for all seed treatments, except for those buried in the soil surface, which reached 165 

261 days (Fig. 4; Supplementary material 4).

262 The survival peak for P. juliflora seedlings in the plateau was highest for those that were 

263 cattle-dispersed followed by the mule-dispersed ones. Seedlings from soil surface seeds or buried 

264 ones exhibited no survival peaks. The life expectancy peak among seedlings from soil surface or 

265 buried was up to 15-day old, while this was up to 30- and 60-day among seedlings from mule- 

266 and cattle-dispersed seeds, respectively. Prosopis juliflora seedling life expectancy reached 45 

267 days among those deposited on the soil surface and dispersed by mules. However, it reached 120 

268 and 165 days among seeds buried and cattle-dispersed, respectively (Fig. 5; Supplementary 

269 material 5).

270

271 Discussion
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272 The main habitats covered by the Caatinga dry forest differ in soil attributes or conditions. 

273 Overall soils along floodplains and terraces have finer texture and are more humid and fertile 

274 than those on the plateau, which are sandy and xeric. The way P. juliflora seeds are dispersed 

275 and deposited (i.e. seed dispersal treatments) appears to respond to soil conditions and greatly 

276 influences seedling performance across the main Caatinga habitats. The chances of seedling 

277 survival when coated in manure and across floodplains are higher, while those deposited on the 

278 soil surface on the plateau have a lower survival probability. The seedling life span was longer 

279 from those originated with seeds immersed into cattle manure. Moreover, the benefit for seedling 

280 dispersal depends on animal species (cattle vs. mule) and the habitat. Interactions between soil 

281 attributes and seed dispersal by exotic species apparently define the P. juliflora potential as an 

282 invasive species across human-modified Caatinga landscapes. The dominant species Stipa 

283 breviflora Griseb. (Poales: Poaceae) expansion potential depends on climate changes in Chinese 

284 temperate grasslands (Lv and Zhou, 2018). Extreme climatic change in Mediterranean rivers is 

285 suggested to promote the disappearance of the pioneer and young succession stages of riparian 

286 woodlands (Rivaes et al., 2013), particularly evident in Europe (Rivaes et al., 2014).

287 Soil differs across habitats, through which P. juliflora has been documented to exhibit 

288 extreme variations in establishment and stand density in the Caatinga dry forest (Bailis and 

289 McCarthy, 2011). Prosopis juliflora stands have been reported with densities as high as 140.39 

290 stems per ha across floodplains and alluvial deposits at the Keoladeo National Park in Rajasthan, 

291 India (Mukherjee et al., 2017) and in Tamil Nadu, India (Gandhi and Pandian, 2014). Such dense 

292 monospecific stands suggest soil conditions and seedling ecology as potential key drivers for this 

293 invasive species as previously documented for other regions in which Prosopsis species are 

294 invasive (Ansley et al., 2018). Prosopis species largely benefit from seed dispersal by domestic 
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295 animals via dung pellets, improving seed germination and seedling performance and leading to 

296 higher life expectancy (Miranda et al., 2011, 214; Razanamandranto et al., 2014). Seeds 

297 deposited on the soil surface without manure had the worse seedling performance and survival in 

298 our focal landscape; similar to that documented across a variety of habitats and biotas (Babawi et 

299 al., 2016; Mukherjee et al., 2017).

300 Prosopis juliflora as an invasive plant species benefiting from dispersal services offered 

301 by exotic animals is far from novel, with a number of examples for species of this genus (Abbas 

302 et al., 2018). Ingestion and deposition by livestock is not required for Prosopsis seeds to 

303 germinate, but it improved seedling performance and long-distance seed dispersal of this plant as 

304 it has a patchy distribution and no native vertebrate species have been found to disperse P. 

305 juliflora seeds in the Caatinga region. Seed dispersal by native ungulates [(i.e. dears, Mazama 

306 americana Erxleben, 1777 and Mazama gouazoubira Fischer, 1814 (Artiodactyla: Cervidae)] is 

307 theoretically possible but large vertebrates have been intensively extirpated in the Caatinga 

308 region (Bragagnolo et al., 2019; de Oliveira et al., 2019). Caatinga supports nearly 30 million 

309 cattle, goats and mules (Sampaio and Costa, 2011; Santos et al., 2017) as a large number of 

310 active seed dispersers which spread through diverse habitat types, from old-growth forest stands 

311 to degraded areas (Sampaio and Costa, 2011). Livestock frequently access humid habitats such 

312 as river banks on their daily search for fresh water and native forage (Dias et al., 2019; Lopes et 

313 al., 2019). Moreover, fodder availability is seasonal and scarce (Costa et al., 2016), while P. 

314 juliflora fruits and foliage represent a permanent and appreciable food source for livestock, likely 

315 stimulating its fruit consumption.

316 Prosopis has relatively hard pods and its sweet-arillate seeds probably evolved as a 

317 response to consumption by native ungulates [e.g. cattle, goats, horses, mules and sheep Ovis 
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318 aries L., 1758 (Artiodactyla: Bovidae)], as an adaptation for contemporary consumption and 

319 seed dispersal by domestic livestock (Nascimento et al., 2014; Almeida et al., 2015). Although a 

320 substantial seed portion may be damaged or digested when consumed by livestock, the benefits 

321 from dispersal outweigh this drawback. This may be particularly true in the Caatinga as the 

322 native flora (mostly abiotically-dispersed) does not benefit from the dispersal services offered by 

323 livestock.

324 Higher nutrient and water content in both floodplain soils and livestock manure may 

325 enhance seedling performance of Prosopsis species. This was suggested for Prosopis africana 

326 (Guill. & Perr.) Taub. seeds in sheep and zebu manure in the Sudanian savanna 

327 (Razanamandranto et al., 2014) and P. juliflora in animal manure in the Caatinga in northeast 

328 Brazil (Miranda et al., 2011, 2014). Causal mechanisms responsible for differential seedling 

329 performance of that plant across seed dispersal modes and habitats were not explicitly examined 

330 in our focal landscape. Seeds deposited on the soil surface rarely germinate due to dehydration as 

331 observed for Prosopis ferox Griseback and Prosopis flexuosa DC. across semiarid regions of 

332 Argentina and Sudan (Campos et al., 2011; Morandini et al., 2013; Yoda et al., 2015). High 

333 Prosopis caldenia Burkart seed mortality has also been related to soil water availability 

334 reduction across semiarid rangelands of Central Argentina (de Villalobos et al., 2005; de 

335 Villalobos and Peláez, 2015; Risio et al., 2016).

336 Fine-textured soils with greater silt and clay quantities, as observed in the floodplain, are 

337 expected to increase water retention and storage capacity, and thus may increase plant survival. 

338 A similar phenomenon was observed for P. caldenia and P. glandulosa since allometric growth 

339 and survival was directly proportional to the water availability along a topographic gradient in 

340 the Chihuahuan Desert, Mexico, in the semiarid rangelands of Central Argentina and in the arid 
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341 and semiarid ecosystems of the United States of America (USA), respectively (Martínez and 

342 López-Portillo, 2003; de Villalobos et al., 2005; Maestre and Reynolds, 2006). Water storage 

343 capacity (Arcone et al., 2008) and organic matter, phosphorus and calcium accumulation are 

344 usually higher in fine-textured soils with greater silt and clay quantities, found mainly in gallery 

345 forests (Jiménez et al., 2008), which gives these soils a greater CEC (Shiferaw et al., 2004; Silva 

346 et al., 2008). In synthesis, P. juliflora seeds and seedlings are sensitive to water stress and habitat 

347 desiccation.

348 The higher nutrient availability in the floodplain and terrace, along with the low 

349 aluminum content in the floodplain, may also be important because excess of this element in the 

350 soil can impair the calcium, magnesium, phosphorous and potassium absorption by Prosopis 

351 plants, as reported for P. juliflora in the Caatinga (Jiménez et al., 2008; Oliveira et al., 2017). 

352 However, calcium and magnesium counteract this detrimental effect as observed for Prosopis 

353 alba Griseb., Prosopis pubescens Benth. and Prosopis ruscifolia G. in the central and western 

354 Gran Chaco phytogeographical region, Argentina, and in El Paso, Texas, USA, respectively 

355 (Velarde et al., 2005; Meloni et al., 2012; Zapala et al. 2014). The soil nutrient availability 

356 improved plant vigor, making them less vulnerable to drought stress in our focal landscape is 

357 similar to that reported for Prosopis cineraria (L.) Druce (Ghaff) in United Arab Emirates (Gil 

358 and Al-Shankiti, 2015; Song et al., 2017). Nutrient-rich soils increase the P. juliflora seedling 

359 establishment, allowing its embryos to grow quickly (Nasr et al., 2012; Patil and Karadge, 2012; 

360 El-Keblawy and Abdelfatah, 2014).

361 The high nutrient and water availability in animal manure also apparently creates suitable 

362 microhabitats for seeds and seedlings. This substrate is favorable during the critical germination 

363 and emergence periods, especially considering the spatially erratic rainfall in the Caatinga even 
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364 in the rainy season (Sampaio and Costa, 2011). Such services provided by livestock manure 

365 benefit the Prosopis seeds of different species from South America to the Middle East and Africa 

366 (Majd et al., 2013; Westphal et al., 2015; Araujo et al., 2017). On the other hand, the rapid 

367 dehydration and hardening of animal manure reduced seed germination of P. glandulosa in the 

368 arid and semiarid regions of northeastern Mexico and in the drylands of Japan (Garza et al., 

369 2013; Abdalla et al., 2017). The lower soil moisture in the plateau of the Caatinga accelerated the 

370 drying and hardening process of cattle and mule manure (CE de SN, personal observation). This 

371 adversely affected the P. juliflora germination and emergence and contributed to its lower 

372 survival and life expectancy compared to the floodplain and terrace habitats.

373 The higher survival rate and life expectancy of P. juliflora seedlings germinated from 

374 seeds mixed with cattle manure compared to those mixed with mule manure in the plateau can be 

375 attributed to differences in the composition of these animal dungs (Campos et al., 2008; 

376 Nascimento et al., 2014). Mule manure has a lower water content and higher fibrous sheath 

377 content encasing seeds (Gonçalves et al., 2013). The fibrous sheath covering the seeds probably 

378 reduces seed imbibition due to the fact that these animals are not ruminants like cattle 

379 (Gonçalves et al., 2013). Both exotic and native ungulates can favor invasive plant species by (1) 

380 creating disturbed habitats via feeding, trampling and movement, (2) controlling or eliminating 

381 palatable native species and (3) dispersing seeds via endozoochory and epizoochory (Vavra et 

382 al., 2007). The colonization and direct seed dispersal services provided by domestic ungulate 

383 livestock was confirmed, and evidences for improved germination and seedling performance 

384 associated with fruit consumption and the seed dispersal, coated in protective manure, to suitable 

385 habitats was also confirmed.
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386 Caatinga dry forest has been converted to small-scale farming for the agriculture and 

387 livestock subsistence, as found in other dry forests and savannas globally (Miccolis et al., 2017; 

388 Pérez-Marin et al., 2017). Farming has a continuous demand for the intentional introduction of 

389 useful alien species such as cattle, goats and the multiple-use shrub P. juliflora, which has now 

390 established throughout the Caatinga (Nascimento et al., 2014; Almeida et al., 2015; Ilukor et al., 

391 2016; Walkie et al., 2016). Seed and seedling sensitivity to water stress and desiccation limits the 

392 P. juliflora proliferation and restricts its establishment to humid/more fertile soils even when its 

393 seeds are coated in livestock manure. Prosopis juliflora has spread throughout the Caatinga 

394 region establishing monospecific stands across floodplains, river banks and sedimentary deposits 

395 despite such a life-history limitation. This invasion relies on a close mutualism between human 

396 populations and their commensals as agriculture provided degraded habitats, affect soil 

397 conditions across river banks via deposition of fine material, while livestock provide seed 

398 dispersal services due to the presence of arillated and hard-coated seeds; i.e. a high-quality seed 

399 dispersal service that is not available for the native flora in the Caatinga, thereby conferring an 

400 adaptive advantage to Prosopsis species. Prosopis juliflora is expected to spread in the Caatinga 

401 with dense populations locally because the rural populations continue to convert Caatinga dry 

402 forest into degraded habitats (Sfair et al., 2018). The mutualism with human populations favors 

403 P. juliflora, as found for other invasive Prosopis species across semiarid rangelands globally 

404 (Busso et al., 2013). A general perspective on how some P. juliflora life-history traits confer 

405 invasive capacity has been defined, but other traits (e.g. resprouting capacity, seedling tolerance 

406 to herbivory and trampling, allelopathic abilities) enabling P. juliflora to become a human 

407 commensal deserves further investigation.

408
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409 Conclusions

410 The Prosopis juliflora invasion capacity promoted by its seedling survival and growth depend on 

411 habitat and seed dispersal mode in the Caatinga dry forest as this species benefits from human-

412 disturbed, humid soils and manure-involved seeds provided by livestock. This perspective 

413 highlights plant-animal interactions among exotic species as potential driver for successful 

414 invasion, proliferation and habitat distribution of invasive plants in human-modified landscapes 

415 or rangelands.

416
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Figure 1
Field capacity (A) and soil moisture (B) in floodplain, alluvial terrace and plateau
habitats, at 0-20 cm depth. Petrolina, Pernambuco State, Brazil.

Tukey’s Honest Significant (field capacity) and Kruskal-Wallis (soil moisture) tests. Columns
followed by the same letter are similar (p< 0.05). Error bars indicate standard deviation.
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Figure 2

Particle size (A) and organic matter (OM) (g.Kg–1), phosphorus (P) (mg.dm–3), potassium
(K) (cmolc.dm–3), calcium (Ca) (cmolc.dm–3), magnesium (Mg) (cmolc.dm–3), aluminum
(Al) (cmolc.dm–3) and ca

Tukey’s Honest Significant (sand and silt) and Kruskal-Wallis (clay, OM, P, K, Ca, Mg, Al and
CEC) tests. Columns followed by same letter are similar (p= 0.05). Error bars indicate
standard deviation.
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Figure 3
Survival (lx) and life expectancy (ex) of Prosopis juliflora sown on the soil surface (A),
buried (B) or mixed with cattle (C) or mule (D) manure in the floodplain habitat up to
345 days. Petrolina, Pernambuco State,
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Figure 4
Survival (lx) and life expectancy (ex) of Prosopis juliflora sown on the soil surface (A),
buried (B) or mixed with cattle (C) or mule (D) manure in the alluvial terrace habitat up
to 165 days. Petrolina, Pernambuco S
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Figure 5
Survival (lx) and life expectancy (ex) of Prosopis juliflora sown on the soil surface (A),
buried (B) or mixed with cattle (C) or mule (D) manure in the plateau habitat up to 165
days. Petrolina, Pernambuco State, Bra
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