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ABSTRACT
Background. Analysis of species count data in ecology often requires normalization
to an identical sample size. Rarefying (random subsampling without replacement),
which is the current standard method for normalization, has been widely criticized
for its poor reproducibility and potential distortion of the community structure. In
the context of microbiome count data, researchers explicitly advised against the use
of rarefying. Here we introduce a normalization method for species count data called
scaling with ranked subsampling (SRS) and demonstrate its suitability for the analysis
of microbial communities.
Methods. SRS consists of two steps. In the scaling step, the counts for all species or
operational taxonomic units (OTUs) are divided by a scaling factor chosen in such a
way that the sum of scaled counts equals the selected total number of counts Cmin.
The relative frequencies of all OTUs remain unchanged. In the subsequent ranked
subsampling step, non-integer count values are converted into integers by an algorithm
that minimizes subsampling error with regard to the population structure (relative
frequencies of species or OTUs) while keeping the total number of counts equal Cmin.
SRS and rarefying were compared by normalizing a test library representing a soil
bacterial community. Common parameters of biodiversity and population structure
(Shannon index H’, species richness, species composition, and relative abundances of
OTUs) were determined for libraries normalized to different size by rarefying as well
as SRS with 10,000 replications each. An implementation of SRS in R is available for
download (https://doi.org/10.20387/BONARES-2657-1NP3).
Results. SRS showed greater reproducibility and preserved OTU frequencies and
alpha diversity better than rarefying. The variance in Shannon diversity increased with
the reduction of the library size after rarefying but remained zero for SRS. Relative
abundances of OTUs strongly varied among libraries generated by rarefying, whereas
libraries normalized by SRS showed only negligible variation. Bray–Curtis index of
dissimilarity among replicates of the same library normalized by rarefying revealed a
large variation in species composition, which reached complete dissimilarity (not a
single OTU shared) among some libraries rarefied to a small size. The dissimilarity
among replicated libraries normalized by SRS remained negligibly low at each library
size. The variance in dissimilarity increased with the decreasing library size after
rarefying, whereas it remained either zero or negligibly low after SRS.
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Conclusions. Normalization of OTU or species counts by scaling with ranked subsam-
pling preserves the original community structure by minimizing subsampling errors.
We therefore propose SRS for the normalization of biological count data.

Subjects Biodiversity, Bioinformatics, Microbiology, Statistics, Population Biology
Keywords Species count, Microbiome, Amplicon sequencing, Count data normalization, Scaling
with ranked subsampling (SRS), Rarefying, Alpha diversity, Beta diversity, Relative abundance

INTRODUCTION
Species counts are fundamental data in studies of ecology and biological diversity. A specific
kind of count data, used in studies of the microbiome using next generation sequencing
(NGS), are counts of nucleotide sequences that represent operational taxonomic units
(OTUs). The so-called amplicon sequencing by NGS became the key technique for the
exploration of microbial communities inhabiting diverse environments, such as deep-sea
sediments (e.g., Sogin et al., 2006), soils (e.g., Gilbert, Jansson & Knight, 2014), and the
human gut (e.g., Yatsunenko et al., 2012). Amplicon sequencing by NGS is also increasingly
popular in studies of invertebrate diversity (Hajibabaei et al., 2011; Carew et al., 2013;
Morinière et al., 2016; Vivien, Lejzerowicz & Pawlowski, 2016). Accumulation of these data
motivated the development of bioinformatic tools and pipelines for their processing.
Recently, it has been shown that the choice of bioinformatic tools can affect the results and,
in some cases, even lead to different interpretation of the results (Siegwald et al., 2019).
Therefore, the choice of analysis tools should be taken into account when comparing
microbiome studies (Allali et al., 2017).

In studies of microbial communities by NGS, samples are represented by libraries,
which consist of DNA fragments amplified by PCR and attached to adapters required for
the sequencing. Multiplex sequencing, which is sequencing pooled libraries, in a single
sequencing run, is widely used to lower sequencing costs. A disadvantage of multiplexing is
that the number of sequences obtained per library (sample) can span orders of magnitude
(McMurdie & Holmes, 2014). Comparative analysis requires identical sample size, therefore
microbiome count data are commonly normalized to the same total count per library. Over
half a century ago, Sanders (1968) proposed random subsampling without replacement,
designated ‘rarefying’, to this end. Since then, rarefying has been used for the normalization
of species count data in ecology as well as for NGS data in microbiology. For libraries with
counts above a selected threshold, a subsample from each library is generated by randomly
picking reads without replacement until the selected number of counts is reached. Although
rarefying has become the standard tool in microbiome data analysis (Weiss et al., 2017), its
disadvantages have been recognized (McMurdie & Holmes, 2014; Weiss et al., 2017; Willis,
2019). For example,McMurdie & Holmes (2014) demonstrated that rarefying is statistically
inadmissible and should not be used. More recently, Willis (2019) pointed at the strong
bias in alpha diversity estimates for unequal or rarefied microbiome count data. This is
because rare OTUs may be overrepresented or underrepresented in libraries normalized
to a small size by rarefying. The growing number of normalization methods indicates that
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the issue of normalization has not been conclusively solved yet. It is evident that any kind
of normalization leads to loss of information that should be avoided if possible. Most
diversity indices and statistical tests used in community analysis however do not account
for the effect of library size; therefore they require normalization of libraries to the same
size.

An alternative normalization to rarefying is scaling, which adjusts the size of all samples
to the same value bymultiplying the counts by a constant factor. Simple scaling preserves the
relative frequencies of OTUs but it also keeps the number of OTUs unchanged, preserving
the disparity between large and small libraries: a larger number of sampled individuals or
sequence reads likely contains a larger number of species or OTUs and thus possess higher
alpha diversity (e.g., species richness). Simple scaling does not compensate for the effect of
the sample size or library size on species richness. In the analysis of microbial communities,
differences in library size mainly originate from unequal pooling of PCR products prior
to sequencing. In order to pool PCR products from individual samples in equimolar
amounts (e.g., Kozich et al., 2013), DNA concentrations are commonly determined by UV
spectroscopy, fluorescence spectroscopy, real-time PCR or digital PCR (Nakayama et al.,
2016; Robin et al., 2016). Although some of these methods offer high accuracy (Robin et al.,
2016), identical library size across samples cannot be achieved. Therefore, normalization
of read counts will remain inevitable for comparative analyses requiring equal library size.
Here we introduce a normalization method for biological count data called scaling with
ranked subsampling (SRS).

METHODS
Normalization methods
Rarefying
Rarefying was conducted using the ‘rrarefy’-function in the ‘vegan’ R-package v2.5-6
(Oksanen et al., 2019). The function randomly subsamples OTU counts within each library
without replacement until the selected number of counts Cmin is achieved. Rarefying was
performed in the R environment v3.6.1 (R Core Team, 2017).

Scaling with ranked subsampling (SRS)
The normalization by SRS reduces the number of counts in each sample in such a way that
(i) the total count equals Cmin, (ii) each removed OTU is less or equally abundant than
any preserved OTU, and (iii) the relative frequencies of OTUs remaining in the sample
after normalization are as close as possible to the frequencies in the original sample. The
algorithm consists of two steps (Fig. 1). In the first step, the counts for all OTUs are divided
by a scaling factor chosen in such a way that the sum of the scaled counts (Cscaled with
integer or non-integer values) equals Cmin. The relative frequencies of all OTUs remain
unchanged. In the second step, the non-integer count values are converted into integers by
an algorithm that we dub ranked subsampling (Fig. 1). The scaled count Cscaled for each
OTU is split into the integer-part Cint by truncating the digits after the decimal separator
(Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled - Cint). Since 6Cint ≤

Cmin, additional 1C = Cmin - 6Cint counts have to be added to the library to reach the
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Figure 1 Workflow of scaling with ranked subsampling (SRS). SRS consists of two steps. In the first
step, the counts for all OTUs (operational taxonomic untis) are divided by a scaling factor chosen in such
a way that the sum of the scaled counts (Cscaled with integer or non-integer values) equals Cmin. In the sec-
ond step, the non-integer count values are converted into integers by an algorithm that we dub ranked
subsampling. The scaled count Cscaled for each OTU is split into the integer part Cint by truncating the dig-
its after the decimal separator (Cint= floor(Cscaled)) and the fractional part Cfrac (Cfrac=Cscaled−Cint). Since
6Cint ≤Cmin, additional 1C=Cmin−6Cint counts have to be added to the library to reach the total count
of Cmin. This is achieved as follows. OTUs are ranked in the descending order of their Cfrac values. Begin-
ning with the OTU of the highest rank, single count per OTU is added to the normalized library until the
total number of added counts reaches 1C and the sum of all counts in the normalized library equals Cmin.
When the lowest Cfrag involved in picking 1C counts is shared by several OTUs, the OTUs used for adding
a single count to the library are selected in the order of their Cint values. This selection minimizes the effect
of normalization on the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled
randomly without replacement.

Full-size DOI: 10.7717/peerj.9593/fig-1

total count of Cmin. This is achieved as follows. OTUs are ranked in the descending order
of their Cfrac values, which lie in the open interval (0, 1). Beginning with the OTU of
the highest rank, single count per OTU is added to the normalized library until the total
number of added counts reaches 1C and the sum of all counts in the normalized library
equals Cmin. For example, if 1C = 5 and the seven top Cfrac values are 0.96, 0.96, 0.88,
0.55, 0.55, 0.55, and 0.55, the following counts are added: a single count for each OTU
with Cfrac of 0.96; a single count for the OTU with Cfrac of 0.88; and a single count each
for two OTUs among those with Cfrac of 0.55. When the lowest Cfrag involved in picking
1C counts is shared by several OTUs, the OTUs used for adding a single count to the
library are selected in the order of their Cintvalues. This selection minimizes the effect of
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normalization on the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint

are sampled randomly without replacement. An R script that enables the reproduction of
this study as well as the test library used in the present study are available at the BonaRes
Repository: https://doi.org/10.20387/BONARES-T40J-7VAG.

An implementation of SRS in R is also available at the BonaRes Repository:
https://doi.org/10.20387/BONARES-2657-1NP3.

Test library
The library used for the evaluation of our normalization method represents a soil bacterial
microbial community sampled at an agricultural field in Germany. The library is part of a
dataset consisting of 60 samples that were sequenced in a single multiplex sequencing run.
Total soil DNAwas extracted and amplified using the primer pair 341F (5′-CCT ACGGGN
GGC WGC AG-3′)/785R (5′-GAC TAC HVG GGT ATC TAA KCC-3′) (Herlemann et al.,
2011), and sequenced using the Illumina MiSeq Reagent Kit v3 (2× 300 bp) (Illumina, San
Diego, CA, USA). Data processing in the QIIME 2 environment (v2019.10) (Bolyen et al.,
2019) included denoising, merging, chimera filtering, and removing singletons using dada2
(Callahan et al., 2016), clustering amplicon sequence variants, and taxonomic assignment
against the SILVA SSU database (release 132) (Quast et al., 2013) using VSEARCH (Rognes
et al., 2016). The library consisted of a total of 162,888 counts distributed among 936OTUs.
The library further contained 1,110 OTUs with zero counts, which were included because
these OTUs were found in other samples from the same dataset, and thus contained 2,046
OTUs in total. The Shannon diversity of the test library was 5.645.

Comparison of rarefying and SRS
The 162,888 counts of our test library were normalized to 39 different Cmin values
comprising all integer divisors (factors) 11, 12, 22, 24, 33, 44, 66, 88, 132, 264, 617, 1,234,
1,851, 2,468, 3,702, 4,936, 6,787, 7,404, 13,574, 14,808, 20,361, 27,148, 40,722, 54,296,
and 81,444 as well as an exponential series 10, 20, 40, 80, 160, 320, 640, 1,280, 2,560,
5,120, 10,240, 20,480, 40,960, and 81,920. Both rarefying and SRS were used, each with
10,000 replications. Two alpha diversity measures were calculated for each replication:
Shannon index H’ and species richness. The Shannon index was calculated using the
‘diversity’-function in the ‘vegan’ R-package v2.5-6 (Oksanen et al., 2019). Species richness
was determined employing the ‘specnumber’-function in the ‘vegan’ R-package v2.5-6.
Both alpha diversity measures were calculated in the R environment v3.6.1 (R Core Team,
2017).

The two methods were further compared by artificially raising the total counts of the
test library while keeping the relative frequencies of OTUs and alpha diversity constant.
To this end, each OTU count was multiplied by 100 and the resulting library of 16,288,800
counts was normalized to 2.5 × 105, 5 × 105, 7.5 × 105, 1 × 106, 2.5 × 106, 5× 106, 7.5
× 106, and 1 × 107 counts using both rarefying and SRS methods with 10,000 replications
each. Two alpha diversity measures were calculated and compared to the known alpha
diversity of the original library.

The effect of rarefying and SRS on species composition and their implications for beta
diversity were evaluated by determining the Bray–Curtis index of dissimilarity for all pairs
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of normalized library replications. As in the investigation of the effect of normalization on
the alpha diversity described above, the test library was normalized to 39 different Cmin (see
above) using both rarefying and SRS, each with 10,000 replications. The Bray–Curtis index
of dissimilarity among all normalized library replications at each Cmin was determined for
both normalization methods. The Bray–Curtis index of dissimilarity was calculated using
the ‘vegdist’-function in the ‘vegan’ R-package version 2.5-6 (Oksanen et al., 2019).

In order to examine changes in the relative abundances of OTUs, the test library was
normalized to 1× 103, 1× 104, and 1× 105 counts using both rarefying and SRS with 10,000
replications each. The OTUs of the non-normalized library were ranked in a descending
order of counts, every 50th OTU starting at the top rank was selected and its relative
abundance in all replications of the normalized libraries was determined.

RESULTS
Normalization of the test library
SRS showed on average greater alpha diversity as compared to rarefying (Figs. 2A, 2B).
The variance of the diversity measures was consistently lower after normalization by SRS
as compared to rarefying across all tested Cmin (Figs. 2C, 2D). No variation of the Shannon
index and species richness was observed after SRS. For normalization by rarefying, the
variance of the Shannon diversity increased as Cmin decreased (Figs. 2C, 2D). Variance ×
the species richness after normalization by rarefying was bell-curve-shaped (Fig. 2D).

Normalization of a library with artificially raised counts
To confirm our results from the normalization of our test library, wemultiplied all counts of
our test library by 100 (162,888× 100= 16,288,800) -which does not affect alpha diversity-
and then normalized the library to different Cmin above its initial size of 162,888 counts.
Ideally, alpha diversity after normalizationwould remain unchanged in all replications (zero
variance). The Shannon diversity of libraries normalized by SRS differed only marginally
from the Shannon diversity of the original library (Fig. S1A). Rarefying underestimated or
overestimated the Shannon diversity in an extent growing with decreasing Cmin (Fig. S1A);
on the average, Shannon diversity was slightly underestimated. SRS returned the species
richness of the original library at all selected Cmin, whereas rarefying underestimated species
richness by up to 9 species (Fig. S1B). Libraries normalized by SRS showed no variance
for both diversity measures (Figs. S1C, S1D). After rarefying, the variance increased with
decreasing Cmin for both diversity measures (Figs. S1C, S1D).

Effect of normalization on species composition and implications for
beta diversity
The species composition was evaluated by determining the beta diversity as the Bray–
Curtis index of dissimilarity among replications of normalized libraries. Ideally, the index
of dissimilarity among replications of the same library would be zero, corresponding
to identical species composition. Across 10,000 replications of normalized libraries by
rarefying, Bray–Curtis dissimilarity values above 0.5 were observed for the lowest 17 Cmin

(10, 11, 12, 20, 22, 24, 33, 40, 44, 66, 80, 88, 132, 160, 264, 320, and 617 counts) (Fig. 3A).
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Figure 2 Alpha diversity measures (Shannon indexH’ (A) and species richness (B) of the test library
and their standard deviation (σ) (C, D) normalized by rarefying or SRS. The sampled numbers of
counts were 10, 11, 12, 20, 22, 24, 33, 40, 44, 66, 80, 88, 132, 160, 264, 320, 617, 640, 1,234, 1,280, 1,851,
2,468, 2,560, 3,702, 4,936, 5,120, 6,787, 7,404, 10,240, 13,574, 14,808, 20,361, 20,480, 27,148, 40,722,
40,960, 54,296, 81,444, and 81,920. Means of 10,000 replications (A, B) are represented by points. The
minimum and maximum alpha diversity among all 10,000 replications are represented by error bars (A,
B). SRS, scaling with ranked subsampling.

Full-size DOI: 10.7717/peerj.9593/fig-2

From these 17 Cmin, the index of dissimilarity for some pairs of libraries normalized by
rarefying to the first nine Cmin values was one, which showed that some replications did
not share any OTUs. After rarefying, the variance in species composition increased with
decreasing Cmin, whereas this was not observed for SRS (Fig. 3B). Differences in species
composition among replications of libraries normalized by SRS were only observed when
random subsampling of OTUs with the lowest rank of Cfrac was necessary. For SRS, the
maximum dissimilarity found across all replications of all Cmin was 3.125 × 10−3 (found
at Cmin of 640) (Fig. 3A).

Evaluation of the relative abundance of OTUs
All OTUs above zero counts in the test library showed varying relative abundance among
replications of libraries normalized by rarefying to all three selected Cmin (1,000, 10,000,
and 100,000) (Fig. 4). In contrast, the maximum standard deviation after normalization
by SRS amounted to 0.001% relative abundance (OTU ‘1913’ at a Cmin of 1× 105 counts)
(Figs. 4E–4F).When normalized by rarefying to 1,000 counts, the relative abundance of our
most abundant OTU (3.186% relative abundance in the non-normalized library) varied
by factor of 4.6 (1.2 to 5.5% relative abundance) (Fig. 4A). Furthermore, our 51st most
abundant OTU (OTU ‘348’; 0.404% relative abundance in the non-normalized library) was
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Figure 3 Bray–Curtis index of dissimilarity (A) among 10,000 replications of the normalized test
library and its standard deviation (σ) (B) normalized by rarefying or SRS. The sampled numbers of
counts were 10, 11, 12, 20, 22, 24, 33, 40, 44, 66, 80, 88, 132, 160, 264, 320, 617, 640, 1,234, 1,280, 1,851,
2,468, 2,560, 3,702, 4,936, 5,120, 6,787, 7,404, 10,240, 13,574, 14,808, 20,361, 20,480, 27,148, 40,722,
40,960, 54,296, 81,444, and 81,920. Means of 10,000 replications (A) are represented by points. The
minimum and maximum dissimilarity among all 10,000 replications are represented by error bars (A).
SRS, scaling with ranked subsampling.

Full-size DOI: 10.7717/peerj.9593/fig-3

removed from some normalized libraries, whereas it reached 1.2% relative abundance in
other replications after rarefying to 1,000 counts (Fig. 4A). Overall, the variance in relative
abundance increased with decreasing Cmin when rarefying was used, whereas this was not
observed for SRS (Fig. 4).

DISCUSSION
It is well established that primer choice and library preparation can cause biases in
microbiome studies that use NGS technologies (Van Dijk, Jaszczyszyn & Thermes, 2014;
Schirmer et al., 2015; Tedersoo & Lindahl, 2016). In addition, a number of studies reported
that the choice of bioinformatic tools used to process the data can affect the results
(cf. Plummer et al., 2015; Allali et al., 2017; López-García et al., 2018; Siegwald et al., 2019).
Among these tools, the normalization ofmicrobiome count data ismuch debated. Rarefying
has become the standard procedure for normalization (Weiss et al., 2017), although it is
statistically inadmissible (McMurdie & Holmes, 2014). In the present study, we introduced
SRS as an alternative to rarefying.

Our results demonstrated that SRS has greater reproducibility and accuracy than
rarefying when alpha diversity measures (Shannon index H’ and species richness) were
investigated (Fig.2, S1). This was particularly true when the library size differed by multiple
orders ofmagnitude (Fig. 2, S1), which is not uncommon inmicrobiome studies (McMurdie
& Holmes, 2014). Additionally, we observed a strong variation in the relative abundance
of OTUs among library replicates normalized by rarefying (Fig. 4). Again, the variance
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Figure 4 Relative abundance (%) of selected operational taxonomic units (OTUs) at varying library
size (A, C, E) and their standard deviation (σ) (B, D, F) normalized by rarefying or SRS. The sampled
number of counts were 1× 103, 1× 104, and 1× 105. Means of 10,000 replications (A, C, E) are repre-
sented by points. The minimum and maximum relative abundance among all OTUs in all 10,000 replica-
tions are represented by error bars (A, C, E). SRS, scaling with ranked subsampling.

Full-size DOI: 10.7717/peerj.9593/fig-4

increased with the reduction of the library size (Fig. 4). Rarefying uses random subsampling
without replacement which follows the hypergeometric distribution (Simberloff, 1972).
Therefore, for an OTU occurring with the frequency f in the original library with N counts,
the variance (var) of its abundance a after rarefying to Cmin is:

var(a)=Cmin× f × (1− f)×
(N−Cmin)
(N−1)

For the most abundant OTU in Fig. 4 and Cmin of 1,000, var(a) equals 30.65,
corresponding to a relative standard deviation of 0.554% (cf. Fig. 4B). This variance results
from a subsampling error incurred by rarefying. SRS largely eliminates the subsampling
error.

The purpose of ranking OTUs in the last step of SRS in the order of their Cfrag and if
necessary by Cint is to minimize distortion of the species/OTU composition. When OTUs
with identical Cfrag values were picked randomly instead of according to the order of
their Cint, the variance of alpha diversity in libraries normalized to the same Cmin slightly
increased but never reached values comparable to rarefying (Fig. S2).

Due to the law of large numbers, the variance of relative frequencies of OTUs, alpha
diversitymeasures andother parameters after rarefying are expected to growwith decreasing
Cmin. Figure 2D shows, however, that the variance of species richness reaches a maximum
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at a medium library size, asymptotically approaching zero at both very large and very small
libraries (in Fig. S1D this effect is not apparent because only libraries of relatively large
size have been analyzed). The drop of variance of species richness for small libraries is
caused by a systematic error due to normalization to low counts. With the diminishing
library size, the number of different OTUs that can be obtained by random subsampling
declines; the variance in species richness declines accordingly. Concomitantly, differences
in species composition among replicates of libraries normalized by rarefying are expected
to grow with decreasing library size. Comparison of libraries normalized by rarefying to
the same size confirmed this expectation (Fig. 3). In contrast, the variation in species
composition among libraries normalized by SRS was either zero or negligibly low (Fig. 3).
The reproducibility of data normalization and the preservation of the original community
structure (OTU frequencies) is crucial for the determination of beta diversity among
samples.

Our results support the conclusion ofMcMurdie & Holmes (2014) that rarefying should
not be used to normalizemicrobiome count data. The reason is that random subsampling is
the source of variance, which is superimposed on the biological and technical variance. The
use of random subsampling in SRS is limited to a fraction of counts that have to be added to
the sum of counts scaled and rounded down to integers in order to reach the desired library
size. A complex combination of circumstances has to occur for random subsampling to
be used in SRS: several OTUs have to share both the integer part and the decimal fraction
of their scaled frequencies; in a list of OTUs ranked by frequencies, these OTUs have to
appear before the desired total number of counts is reached; and the number of counts that
is needed to fill the normalized library is lower than the number of these OTUs. As long
as at least one of these conditions is not fulfilled, SRS does not use random subsampling
with replacement and replicates of the normalized library are identical. Zero variance of
diversity measures for replicates of most libraries in Figs. 2 to 4 is the consequence. If
random subsampling is used, the relative abundance of the affected OTUs will be vary by at
most a single count. As a consequence, the relative abundance of a rare OTUwill be affected
more than the relative abundance of a dominant OTU. Therefore, the effect of random
subsampling in SRS is expected to be negligible in studies with a library size above 1,000
counts, unless some OTUs are removed while other are kept. Principally, libraries with a
high proportion of rare OTUs cannot be normalized to lower integer counts in such a way
that all OTUs as well as their frequencies are preserved. In analogy to quantization error
in signal processing, no mathematical procedure can circumvent the loss of information
due to downscaling counts to integer values. On this background, we believe that SRS is
currently the most adequate method for the normalization of species count data and OTU
libraries representing microbial communities.

CONCLUSION
SRS method for the normalization of species count data minimizes the subsampling
error. In contrast to rarefying, common parameters assessed in studies of biodiversity
and population structure (alpha diversity, species composition, and relative abundance of
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OTUs) calculated from data normalized by SRS were highly reproducible and the original
community structure (OTU frequencies) was preserved. We therefore propose SRS for the
normalization of biological count data.
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