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ABSTRACT

The development of explanatory models of protein sequence evolution has broad
implications for our understanding of cellular biology, population history, and disease
etiology. Here we analyze the GTEx transcriptome resource to quantify the effect of
the transcriptome on protein sequence evolution in a multi-tissue framework. We find
substantial variation among the central nervous system tissues in the effect of expression
variance on evolutionary rate, with highly variable genes in the cortex showing
significantly greater purifying selection than highly variable genes in subcortical
regions (Mann—-Whitney U p = 1.4 x 10~*). The remaining tissues cluster in observed
expression correlation with evolutionary rate, enabling evolutionary analysis of genes in
diverse physiological systems, including digestive, reproductive, and immune systems.
Importantly, the tissue in which a gene attains its maximum expression variance
significantly varies (p = 5.55 x 1072%) with evolutionary rate, suggesting a tissue-
anchored model of protein sequence evolution. Using a large-scale reference resource,
we show that the tissue-anchored model provides a transcriptome-based approach
to predicting the primary affected tissue of developmental disorders. Using gradient
boosted regression trees to model evolutionary rate under a range of model parameters,
selected features explain up to 62% of the variation in evolutionary rate and provide
additional support for the tissue model. Finally, we investigate several methodological
implications, including the importance of evolutionary-rate-aware gene expression
imputation models using genetic data for improved search for disease-associated
genes in transcriptome-wide association studies. Collectively, this study presents a
comprehensive transcriptome-based analysis of a range of factors that may constrain
molecular evolution and proposes a novel framework for the study of gene function
and disease mechanism.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies, Genomics, Molecular
Biology

Keywords Evolution, Transcriptome, Genomics, TWAS, GWAS, Developmental disorder,
Mendelian disease, Complex traits, PrediXcan, GTEx

INTRODUCTION

Protein sequence evolution is a central concern for the fields of molecular biology and
comparative genomics. Indeed, characterizing the determinants of the rate of protein
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evolution may help to clarify a wide range of biological processes and phenomena,
including the molecular basis of adaptation, the evolution of speciation, and the genetic
etiology of disease. Although numerous studies have proposed possible determinants
(Drummond et al., 2005; Drummond ¢ Wilke, 2008; Yang, Zhuang ¢ Zhang, 2010; Yang et
al., 2012), the underlying mechanisms and potential interactions remain unclear.

Protein evolution reflects both the rate at which new nucleotide mutations arise and the
rate of repair. A second engine of protein evolution, fixation of new mutations depends
upon the fitness effect of the relevant mutations and the balance between selection and
genetic drift, which is in part mediated by effective population size. We can quantify
selection pressures acting on protein-coding regions using the widely used dN/dS ratio.
The ratio compares the rate of substitutions (K, or dN) at nonsynonymous sites, which are
presumed to undergo selection, to the rate of substitutions (K or dS) at synonymous sites,
which are presumed neutral so that dS may serve as a proxy for mutation rate (Kimura,
1990) (although selection may operate on silent sites to favor certain codons (Akashi,
20015 Plotkin ¢» Kudla, 2011; Quax et al., 2015). The ratio provides evidence for selective
constraint if dN/dS is significantly less than 1, for neutrality if dN/dS equals 1, or for positive
selection if AN/dS is significantly greater than 1. Requiring dN/dS to be significantly greater
than one is generally conservative, as positive evolution generally acts on one region or
domain of a protein while the rest of the protein evolves under purifying selection; hence
dN/dS may potentially overlook positions under positive selection. Here we use the ratio
dN/dS as a measure of protein “evolutionary rate,” as previously described (Zhang ¢ Yang,
2015). The rate of protein evolution may vary greatly within and between species (Durer
& Mouchiroud, 2000; Rocha & Danchin, 2004; Drummond et al., 2005; Larracuente et al.,
2008), and elucidating the causes of this variation is an important question in molecular
evolution.

Genetic mutations typically alter phenotype either by altering proteins or by affecting
their regulation. Indeed, differential regulation of gene expression is thought to underlie
the remarkable divergence in traits (e.g., behavioral) between humans and chimpanzees
especially given the high degree of similarity between orthologous protein sequences (King
& Wilson, 1975). Much of the early work was performed in single cell organisms, such as
yeast, raising the question of the generalizability of the results to multicellular eukaryotes
(Pdl, Papp & Hurst, 20015 Akashi, 2003; Drummond, Raval ¢ Wilke, 2006). Different tissues
and cell types express different genes and the regulation of gene expression may vary
substantially across tissues and cell types, strongly influencing organism-level traits and
modulating the evolution of phenotypic novelty. Furthermore, the expression profile of
some genes may exhibit substantial developmental-stage specificity.

Molecular evolution in coding sequences has been investigated in many taxa, including
humans, and reported to be determined by several (potentially mutually correlated)
factors, including expression level, expression breadth, recombination rate, robustness to
mistranslation, and connectivity in a biophysical network (Duret ¢» Mouchiroud, 2000; Pdl,
Papp & Hurst, 2001; Fraser et al., 2002; Jordan et al., 2002; Wall et al., 2005; Drummond et
al., 2005; Larracuente et al., 2008; Drummond ¢ Wilke, 2008; Park ¢ Choi, 2010; Hudson ¢
Conant, 2011; Shen et al., 2011; Kryuchkova-Mostacci ¢ Robinson-Rechavi, 2015). Despite
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the complexity and spatiotemporality of gene expression in a multicellular organism (with
its long lifespan and developmental processes), the expression level of a gene has been
shown to be a primary predictor of the rate of protein sequence evolution with a variety
of possible underlying mechanisms proposed (Akashi, 2003; Rocha ¢ Danchin, 2004;
Lemos, Meiklejohn ¢» Hartl, 2004; Drummond et al., 2005). Expression breadth has also
been shown to affect protein evolutionary rate, though expression level and breadth have
a strong correlation (Duret & Mouchiroud, 2000; Zhang ¢ Li, 2004; Liao, Scott & Zhang,
20065 Park et al., 2012). However, studies of the relationship between gene expression and
protein evolution have been limited to divergence data for several hundred to thousand
genes, and to expression data measured in a small number of tissues (Duret ¢~ Mouchiroud,
20005 Wagner, 2005) using microarrays.

There has been an explosion of large-scale genomic and other types of omics data
in a variety of tissue and cellular contexts (Pickrell et al., 2010; GTEx Consortium, 2013;
Lappalainen et al., 2013), motivating our attempt at an integrated view of the evolutionary
signature of known genes. Here we report a comprehensive transcriptome-based analysis
of the factors that may constrain the rate of protein evolution and examine their relevance
to sets of genes that define a spectrum of clinical and disease effects, from one end, the
essential genes, to the other end, the loss-of-function (LOF) tolerant genes (Ashburner et
al., 20005 Blair et al., 2013). Notably, we examine several methodological implications on
genomic approaches to mapping disease-relevant genes and on the study of gene function.

MATERIALS & METHODS
Data

We utilized evolutionary conservation scores from BioMart (Smedley et al., 2015) for
human-chimp and human-mouse comparisons. In our analyses, we collected synonymous
(dS) and nonsynonymous (dN) substitution rates for 23,816 genes from these comparisons.
Proteins vary by two to three orders of magnitude in their rate of evolution (dN/dS).

We utilized GTEx v6p release expression data for 53 tissues involving 8,555 RNA-Seq
samples. The mean RPKM and median RPKM were calculated for each gene in each
tissue. The variance and ratio of variance to mean were also calculated for each gene
in each tissue to estimate inter-individual transcriptional variability (see sample size for
each tissue in Table S1). For each gene, we identified the tissue in which the gene shows
maximum expression variance. A list of the 53 tissues with information on sample size
is in Table S1. In addition to the multi-region sampling of the brain, “frontal cortex”
and “cerebellar hemisphere” (obtained after receipt by the brain bank) were sampled
by the GTEx Consortium in duplicate (“cortex” and “cerebellum,” respectively, as the
first replicate obtained at initial tissue collection). Availability of lymphoblastoid cell lines
(LCLs, derived from blood) and cultured primary fibroblasts (from skin) provided an
opportunity to compare the expression variance and network constraints (see below) in
the cell types with those in the tissues of origin.

For all correlation analyses presented, we used log2-transformed RPKM values. We
calculated the Spearman’s p and the corresponding p-value with evolutionary rate for all
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predictors using the R statistical software. To fit a nonlinear model (e.g., of the effect of
expression on evolutionary rate), we assumed a generalized additive model using cubic
regression spline as “smooth function.”

To test for the robustness of our results to technical and experimental confounding, we
calculated the Probabilistic Estimation of Expression Residuals (PEER) (Stegle et al., 2012)
factors (which are based on Factor Analysis) and used the residual to test the correlation
of expression level and expression variability with evolutionary rate. We compared results
across all tissues (Spearman correlation) between pre-PEER and post-PEER analysis.

To quantify tissue expression breadth, we applied the tau (7) statistic to the 53 GTEx
tissues, with the exception that the frontal cortex was the only brain region used so that the
highly correlated tissue samples from the brain would not bias the estimate (Yanai et al.,
2005; Kryuchkova-Mostacci & Robinson-Rechavi, 2016).

n 1_5&;
T:Zn—l

i=1

where

X; = x;/ max {x;}

1<j<n
and x; provides the expression value for the gene in tissue i, and #n is the number of
tissues. We note that t yields a score between zero and one, with zero indicating the same
expression across tissues and a value of one indicating strong tissue-specific expression.
Genes with similarly high levels or similarly low levels across tissues would have high
“expression breadth,” which here thus refers to the extent of similarity across tissues. In
the actual data, t attains a minimum of 0.204 and median of 0.82 for protein-coding genes,
underscoring the high tissue specificity of a large set of protein-coding genes. Thus, t also
reflects inter-tissue variability (to be distinguished from inter-individual variability in each
tissue) in the expression of a gene.

We utilized protein network data in Homo sapiens obtained from STRING v10
(Szklarczyk et al., 2015) to investigate the correlation of the number of interactions with
evolutionary rate and expression.

We examined several subsets of genes that define a spectrum of phenotypic effects.
We obtained and curated a compendium of Mendelian disease genes from the Online
Mendelian Inheritance in Man (OMIM). Essential genes were obtained from a study
(Georgi, Voight ¢ Bucan, 2013) that identified human orthologs of mouse genes with
known lethal phenotype from the Mouse Genome Database (Blake et al., 2011). LOF-
tolerant genes, which can be inactivated without obvious clinical effect, were collected
from a comprehensive survey of LOF variants in protein-coding genes (MacArthur et al.,
2012). We also investigated immune response genes and olfactory genes, as annotated by
the Gene Ontology Consortium (Gene Ontology Consortium, 2015).

Tissue-anchored model of evolutionary rate
We identified the tissue (MaxTissue) in which a gene attains its maximum inter-individual
expression variance (MaxVariance)—and, thus, perhaps the tissue in which the gene
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exhibits its full range of functional activity—and tested the MaxTissue’s association with
evolutionary rate. We should emphasize that the MaxTissue is not necessarily the only
tissue in which a gene functions, and indeed a gene may have multiple functions in different
tissues. A rejection of the null hypothesis would indicate support for the hypothesis (i.e., the
“tissue-anchored model”) that when genes are classified into their MaxTissues, the variance
02,5 I evolutionary rate across tissues is greater than the variance 0.2,
The MaxTissue’s association with evolutionary rate was tested using the non-parametric

of the tissues.

Kruskal-Wallis test. To determine whether rejection of the null hypothesis is driven by a
single outlier tissue or a class of tissues, we calculated the median evolutionary rate and a
metric, MaxTissue-38, for each MaxTissue, defined as

3.14(vs5 —va5)/4/1

where v75 and v,5 are the 75th and 25th percentile for evolutionary rate respectively and
n is the number of genes. We also performed empirical analysis by permutation-based
tissue assignment (N = 1000), preserving the gene count in the observed MaxTissue
configuration, for the entire protein-coding set with available human-mouse data on rates
of nonsynonymous and synonymous substitutions. For each permutation of the entire
set (RandomTissue), the H -statistic from the Kruskal-Wallis test was calculated. The
empirical p-value was the proportion of the total number of permutations in which the
RandomTissue H -statistic matched or exceeded the observed value from the MaxTissue
assignment.

We can define a novel evolutionary signature, the “evolutionary rate of a tissue,” as the
median evolutionary rate of the genes for which the tissue is a MaxTissue. MaxTissue-

8 is thus a kind of “confidence interval” for this evolutionary signature. Under the
tissue-anchored model, there is a statistically significant difference between tissues for this
evolutionary signature. (We note that this signature is to be distinguished from the median
evolutionary rate of all expressed genes in a tissue).

The tissue-anchored model starts from the observation that the correlation between
within-tissue features (e.g., expression level) and evolutionary rate significantly varies
by tissue, raising the centrality of a cross-tissue analysis. The model would suggest that
variation between developmental programs in which transcription and other within-tissue
features exert their effect may be contributing to variation in evolutionary rate. In each
MaxTissue, we ranked the genes according to expression variance from high to low. We
then identified the significant Gene Ontology biological processes (Benjamini-Hochberg
FDR < 0.05) for the top genes (N = 100) in a MaxTissue. The presence of significant, non-
overlapping biological processes between MaxTissues with significant difference in median
evolutionary rate (Kruskal-Wallis test) would suggest the importance of developmental
processes for constraining evolutionary rate.

Tissue-anchored model: constraint of developmental programs on
evolutionary rate

To further investigate the physiological and developmental mechanisms underlying the
tissue-anchored model of evolutionary rate, we sought to determine to what extent
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the MaxTissue for a gene could predict the primary affected tissue of developmental
disorders associated with the gene. We utilized a unique UK-wide collaborative resource
(generated by over 180 clinicians across 24 regional genetics services), the Deciphering
Developmental Disorders (DDD) study (Martin et al., 2018) which has conducted genome-
wide genotyping and whole-exome sequencing of children with developmental disorders
and their parents. This resource provides a list of genes associated with developmental
disorders as well as affected organs. For each gene, we considered the significance of the
overlap of MaxTissue with the primary affected organ (using a chi-square test of the null
hypothesis of the independence of the MaxTissue and affected tissue).

Testing for independent effects given noisy omics data and
estimation of spurious correlation

Partial rank correlation analysis of omics data between two variables, D (a determinant)
and K (evolutionary rate), while controlling for a third variable X may generate spurious
results (Liu, 1988; Drummond, Raval & Wilke, 2006). Consider the case in which a noisy

version X is distributed with mean equal to X and variance equal to 0)2(,:

’ ~ 2
X'~ (X.02).
We assume that D and K have the following distributions: D ~ (X , 01%) and K ~ (X , GI%).
Then the partial rank correlation rj,|  between Dand K given X " simplifies to the following
expression:

2
o
X/

Here the denominator is some function of all the variances. Importantly, the numerator
is nonzero in the presence of noise in X even under the null hypothesis (i.e., rpxx =0),
leading to a spurious correlation. To determine whether the determinant D contributes
to K after controlling for X (given that conventional partial rank correlation analysis
generates spurious correlations when applied to noisy biological data), we performed
permutation analysis, in which D and X were shuffled together (thus preserving their
correlation) 7 times (here n=1,000) and the partial rank correlation between D and K
was assessed within each such permutation null set. This generates an empirical p-value
for the significance of the observed nonzero correlation coefficient (as the proportion of
the permutation null sets that match or exceed the observed correlation coefficient) as well
as quantifies the magnitude of the spurious correlation. The permutation null distribution
M for rpy x can be used to estimate an adjusted partial rank correlation coefficient:

—
o —

Upk|x = - (%)2

2
rDK|X/
where @ is the observed partial rank correlation coefficient and E(.) is the expectation
operator. We call this approach Empirical Partial Rank Correlation Analysis (EPRCA),
which facilitates a test for independent effects on evolutionary rate. For example, since
expression level and tissue breadth were found to be correlated, we tested their independent
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effect on evolutionary rate using this approach. The approach, in addition, provides an
estimate of the extent of the spurious correlation (from the mean and standard deviation

of the permutation null distribution).

Correlation between expression and evolutionary rate given
co-expression

The correlation in gene expression (for genes that belong to the same co-expression
network) may bias our estimate of the correlation between gene expression and evolutionary
rate. We therefore fit a model using Generalized Least Squares (GLS) to account for the
non-independence of genes in a co-expression network (shown here, for convenience, for
the nonsynonymous substitution rate, but our approach extends, without loss of generality,
to dN/dS):

G=ndN +¢

var(e)=o’A

where dN is the vector of nonsynonymous substitution rates for a set of genes, G is a vector
of gene expression, 7 is the effect size, A is the (known) gene expression covariance matrix,
and o2 is the unknown (absolute) scale. The GLS effect size estimate solves the following

minimization problem:
7 =argmin(G — 7dN)TA™Y(G—7dN)
s

which implies:

#=ANTATYN)YANTATIG

var (1) = (ANTATVAN) 1o,

We can view the gene expression traits as mapping to a phylogenetic tree such that the
covariance matrix A captures the covariance between each pair of tips in the tree. The GLS
model implements regression that accounts for the phylogeny.

Null phylogenies and null networks

To assess the significance of the correlation between amino acid substitution rate and
expression while adjusting for branch assignment (defined in Supplementary Information),
we shuffled the evolutionary rate estimates for genes while preserving gene branch
assignment within the vertebrate phylogeny. Furthermore, we implemented a node
degree-preserving permutation method to generate null gene networks, which were
used to control for potential bias that may affect the correlation between evolutionary rate
and expression. For branch assignment or node degree, we calculated the empirical p-value
as the proportion of phylogeny- or degree- preserving permutations (out of 10,000),
respectively, for which the permutation correlation test statistic matched or exceeded the
observed statistic in the actual data.
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Confounding due to tissue diversity sampling

Despite the comprehensiveness of the GTEx resource, the collection of tissues examined
here is still only a partial subset of all human tissues and each tissue is composed of many
cell types. We therefore evaluated the robustness to tissue sampling of the correlation
between t and evolutionary rate by calculating the correlation on each of 100 random
subsets of 10 and 30 tissues (selected from the 44 tissues).

Cis heritability of gene expression

We estimated the proportion of gene expression variance captured by local genetic variation
and quantified its contribution to evolutionary rate. We considered the following linear
mixed model:

Y=W+T+¢

var(Y)=Ao*+Boj+Ia.

where Y is the residual gene expression phenotype n-dimensional vector after adjusting
for hidden factors (with n equal to the number of samples in the reference transcriptome
dataset), W is the polygenic cis contribution to gene expression for SNPs within 1 Mb of
the gene, A is the genetic relatedness matrix estimated from the local polymorphism data
(Yang et al., 2010), T is the polygenic trans contribution from the remaining common
variants (MAF > 0.05) in the genome, and B is the genetic relatedness matrix estimated
from these trans-variants on the other chromosomes. The variance of the polygenic cis
burden W is Ao? while that of the polygenic trans burden is BoZ; the remaining variance
attributable to environmental regulation is Io2. We estimated these variances using
restricted maximum likelihood, as implemented in GCTA (Yang et al., 2011), allowing us
to quantify the SNP-based cis heritability of gene expression as h3 =o?/(0% + 0% +02).
We used DGN whole blood samples (N = 922) for maximal power.

Gradient boosted regression for modeling of evolutionary rate
Selection of informative features among many predictors and incorporation of possibly
nonlinear effects into a functional form for evolutionary rate may provide insights into
potential causal factors and their relative contributions. The task is a variable selection
and model choice problem. Although prediction is not our primary aim in this context, a
modeling approach that is robust to overfitting and to redundancy (or multicollinearity)
is desired. We therefore modeled dN/dS, based on the human-mouse comparison, using
gradient boosted regression trees. The approach combines, in an iterative fashion, otherwise
“weak” models or classifiers into a “strong” learner. Using a loss function L(y, F (x)) on
the evolutionary rate y and the model F (x) built on a vector x of features, the approach
seeks to incrementally boost the prediction:

n
My(x) = argming ZL()/i, @)

i=1

My (x) = Mp_ (x)+argminy, Yy L(yi, Mp_1 () +h(x:))
i=1
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Here x; is a vector of features for y;, n is the number of training set observations, « is a
constant, p is the iteration index, M, is the p-th model, and % is a base learner (tree) fitted
to improve on the model M,,_;. (The residual y; — F (x;) can be interpreted as a negative
gradient.)

The models were fitted using the “gbm” R package with a squared error loss function.
We utilized a range of values for model parameters. We fitted N, (100, 500, 1000, 10,000)
trees with interaction depth of D;(1, 4, 5), indicating a model with up to D;-way interactions
(which limits the number of nodes in a tree), and a shrinkage parameter of 0.01 (which
shrinks the contribution of each tree). We also performed 10-fold cross validation to
evaluate the generalizability of the model. Each combination of model parameters provides
a “feature importance score”, generating a predictor importance spectrum that shows
the relative importance of each input feature in predicting evolutionary rate. The feature
importance score provides support for how MaxTissue is defined in the proposed tissue-
anchored model. In addition, using 100 and 500 iterations, N; = 1000, D; = 4, and shrinkage
parameter of 0.01, we trained on 70% of the data to predict the complement set and to
obtain a distribution of out-of-sample adjusted R?.

Gene expression imputation using PrediXcan

PrediXcan is an approach for estimating the genetically determined component of gene
expression (Gamazon et al., 2015a) using only the germline genetic profile; this estimate is
then tested for association with disease risk. Since the disease trait is not likely to modify the
germline genetic profile, an observed association comes with a proposed causal direction.
Thus, even when directly measured expression is available, its genetic component, though
likely to be correlated with the total expression level, provides additional mechanism-
relevant information not influenced by disease. Gene expression imputation models were
generated using the GTEx reference transcriptome panel in 44 tissues (each with at least
70 samples), as previously described (Gamazon et al., 2015a). Each gene expression model
(consisting of selected SNPs within 1 MB of the given gene and their additive regulatory
effect size on expression) comes with a measure of imputation performance, namely, the
10-fold cross-validation R? (the square of the correlation between imputed and observed
expression) estimated within each tissue (from GTEx or DGN). We note that the best eQTL
for a gene also provides an example of an imputation model, though possibly suboptimal in
predictive performance. Thus, the practice of testing such an eQTL for its association with
a trait is a specific instance, if suboptimal, of the PrediXcan framework. In contrast, our
study utilized multi-SNP imputation models for improved performance. The imputation
R? also provides an estimate of the aggregate effect of local genetic variation on gene
expression and can be evaluated, in each tissue, for its correlation with evolutionary rate.

Methodological implications

We assessed several methodological implications on the search for disease-associated genes

using both PrediXcan and conventional GWAS. We explored three scenarios.

1. Extent of local genetic control or cis heritability of gene expression: Cis heritability
provides an upper bound on how well local genetic variation may be utilized to impute

Evans et al. (2020), PeerJ, DOI 10.7717/peerj.9554 9/32


https://peerj.com
http://dx.doi.org/10.7717/peerj.9554

Peer

gene expression. We calculated the Spearman correlation between the imputation
R? (derived from 10-fold cross validation for each tissue within the PrediXcan
framework (Gamazon et al., 2015a) and evolutionary rate to evaluate to what extent
the genetically determined component of the expression of conserved genes, relative to
the complement set, may be reliably imputed. We estimated the reduction in statistical
power to detect disease associations for conserved genes (AN/dS < 0.01) relative to
fast-evolving genes (dAN/dS > 1) in transcriptome-wide association studies, assuming
a modestly sized GWAS (N = 1000) and using the empirical distribution of R? for the
gene sets in a typical tissue (skeletal muscle, chosen for its sample size). The significance
was assessed using the Mann—Whitney U test.

. Relevance of cross-tissue imputation models: We assessed the utility of cross-tissue

(versus single-tissue) predictors by evaluating the impact of expression tissue specificity
() on gene expression imputation. Genes with t close to zero have equal expression
levels across all tissues, and in this case, tissue-dependent imputation models are
likely to suffer from degraded imputation performance; on the other hand, tissue-
specific expression profiles would require tissue-dependent imputation models. We
tested for enrichment of broadly expressed genes (defined at multiple thresholds,

7 < 0.30,0.40,and 0.50) among conserved genes using random sampling from the set
of protein-coding genes without replacement (N = 1000). For protein-coding genes, T
has a distribution with a minimum of 0.20 and median of 0.82, indicating high tissue
specificity.

. Stratified analysis of GWAS data using eQTL information: Disease-associated loci

identified by GWAS have been shown to be enriched for cis eQTLs (Nicolae et al.,
2010; GTEx Consortium, 2015). Indeed, incorporation of eQTL information into
GWAS analysis has been shown to improve (quite substantially, for some traits and
tissues) the false discovery rate. We calculated the Spearman correlation between
the absolute magnitude of the largest cis genetic effect (within 1 Mb of target gene)
and evolutionary rate. A strong positive correlation would suggest, for instance, that
conserved genes may be less likely to be detected as eGenes. This observation would have
important implications on the task of attribution of gene mechanisms to GWAS loci.
We calculated the same correlation for the set of trait-associated SNPs (p < 5 x 107%)
found in the NHGRI GWAS catalog that are in linkage disequilibrium (r* > 0.80) with
a best eQTL using the eQTL’s effect size.

Functional enrichment analysis

We performed functional enrichment analyses using the DAVID Bioinformatics Database
(https://david.ncifcrf.gov/) and assuming the human genome as background. We analyzed
genes with the lowest 10% of 7 (i.e., high expression breadth) as well as genes that pass a
more stringent threshold (i.e., the 100 most widely expressed genes) to find significantly
enriched functional annotations and known pathways for tightly regulated genes. At the
other end of the distribution, the 100 genes with the most tissue-specific expression profile
were evaluated to identify enriched functional annotations. Similarly, we analyzed genes
with 1 to 10 interactions to characterize the genes that map to the oldest branch of the
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Figure 1 Correlation of measures of protein sequence evolution and expression features per tissue.
(A) Heatmap of (Spearman) correlation of evolutionary rate, nonsynonymous substitution rate, and syn-
onymous substitution rate with expression features. Expression (level or variability) constraints on evolu-
tionary rate and synonymous substitution rate vary widely by tissue and show intertissue correlation. (B)
Concordance between the human-mouse and human-chimp comparisons. The comparisons between the
two divergence datasets are shown for the correlation of dN, dN/dS, and dS with mean and ratio of vari-
ance to mean. (C) Robustness of results from technical confounding. PEER factors were used to quantify
hidden and technical confounders. The correlation between expression variance and evolutionary rate is
highly correlated across tissues between pre-PEER and post-PEER analysis. (D) Comparison of human-
mouse evolutionary rate and log, transformed expression level in skeletal muscle. A smooth curve was fit-
ted through the scatter plot with consistent results as the correlation analysis. The orange line denotes fit
from least squares regression, red line from LOESS, and blue from Generalized Additive Model.

Full-size & DOLI: 10.7717/peerj.9554/fig-1

phylogeny with unexpectedly low connectivity. We also tested the 100 genes at the other
end of the node degree distribution to characterize the genes that occupy central network
positions.

RESULTS

Expression level and variance as tissue dependent correlates of rate
of protein sequence evolution
We utilized RNA-seq data derived from 53 human tissues to estimate the mean and variance
of expression patterns for each gene (the number of samples for each tissue can be found
in Table S1). Throughout the paper, “expression level” refers to the mean expression
level. To assess evolutionary conservation, for each orthologous gene we estimated dN/dS
rates by comparing human sequences separately with chimpanzee and mouse sequences.
We present results from both human-mouse and human-chimp divergence comparisons
(Fig. 1), as the human-chimp comparison may be more relevant to the evolution of genes
involved in human diseases (discussed later) while the human-mouse comparison is less
sensitive to small numbers of mutations.

The rate of nonsynonymous substitution (dN) based on the human-chimp comparison
shows a significantly negative correlation (Spearman’s p ranges from —0.32 to —0.17,
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p < 1.41 x 10711%) with mean expression level in all 53 tissues. Whenever we present a

range for a test statistic, such as Spearman’s p, for all tissues, the p-value presented is always
the highest or least significant. The same observation holds (Spearman’s p ranges from

—0.32 to —0.15, p < 1.35 x 10~77) for evolutionary rate, dN/dS. Stronger correlations with
similar trends across tissues are obtained from the human-mouse comparison (Spearman’s
p ranges from —0.48 to —0.24, p < 1.37 x 1072%
Spearman’s p ranges from —0.42 to —0.19, p < 1.35 x 107!*8 for dN/dS and expression

for dN and expression level, and

level).

The uniform analytic pipeline applied to the breadth of tissues (from a large number
of the same individuals) enables us to investigate differences between tissues in the
correlation between expression in a tissue and support for either purifying selection or
positive selection. For each gene in a given tissue, we calculated the mean (to quantify
level) and variance or ratio of variance to mean (to quantify inter-individual variability)
of gene expression. Notably, the observed expression correlation with sequence divergence
varies considerably across tissues and displays tissue clustering (Fig. 1A; human chimp
divergence). The brain regions (as previously noted Duret ¢» Mouchiroud, 2000) and,
interestingly, cervical spinal cord show the largest absolute magnitude of correlation of
expression with evolutionary rate while testis, whole blood, and liver are at the other end of
the distribution in both divergence comparisons. The clustering for the remaining tissues
enables comparisons of the contribution of physiological systems, including reproductive,
immune, and gastrointestinal systems, to sequence divergence (Table 52). Notably, although
neural tissues tend to cluster together, gastrointestinal systems and reproductive tissues do
not. After the neural tissues, the alimentary canal —in particular, the muscularis mucosae
of the esophagus, gastro-esophageal junction, and sigmoid colon —has among the largest
absolute effects of expression in primary cells on nonsynonymous substitution rate in both
divergence datasets.

We examined the tissue distribution of the correlation of expression with silent
substitution rate. Selection on synonymous sites has been previously noted in other taxa
(Rocha & Danchin, 2004; Larracuente et al., 2008; Zhou et al., 2016). A negative correlation
is observed for dS in most tissues (Table S2) though at lower magnitude than for dN
despite the strong correlation between dN and dS (Spearman’s p = 0.415, p < 1 x 1073%)
based on human-chimp divergence. However, this relationship may merely be due to
selective constraints on amino acid changes. Previous studies have indeed attributed
the correlation between dN and dS to neighboring effects (Duret & Mouchiroud, 2000),
and suggested that neighboring sites may influence a site’s mutation rate (Aggarwala
¢ Voight, 2016). Interestingly, the tissue patterns of the correlation of gene expression
with synonymous divergence differ from that with non-synonymous divergence. For
example, the highest absolute correlation with dS, based on human-chimp divergence, is
in fibroblasts, lymphoblastoid cell lines (LCLs), and skeletal muscle (and not in any of the
brain regions); in contrast, the cortex now shows the lowest absolute correlation (Table S2).
The tissue dependence of the variation of silent substitution rate with expression becomes
more significant when using human-mouse divergence, with aorta, sigmoid colon, and
tibial nerve (for example) displaying significantly higher absolute effects than the brain
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regions (Fig. 1A). Collectively, these results support the notion that silent sites may be to
some degree under selective constraints.

We assessed the contribution of inter-individual transcriptional variability within each
tissue, using both the variance and the ratio of variance to mean (given the correlation
between expression mean and variance), to evolutionary rate. Expression variance explains
similar levels of variation in evolutionary rate as expression mean in all tissues (Fig. 1B), as
expected from the correlation between expression mean and variance. Highly significant
results on the effect of expression variance in each tissue on nonsynonymous substitution
rate and evolutionary rate are obtained with human-mouse divergence (Spearman’s p
ranges from —0.46 to —0.18, p < 2.20 x 10 —126 for AN and expression variance, and
Spearman’s p ranges from —0.42 to —0.15, p < 5.20 x 10~%° for dN/dS and expression
variance). Using the ratio of variance to mean to quantify variability, we continue to
observe a significant effect on evolutionary rate in each tissue (Spearman’s p ranging from
—0.39 to —0.08, p < 3.49 x 10726),

To evaluate the robustness of our conclusions, we tested the extent to which hidden
and unmeasured confounders in gene expression measurements, including any population
structure, may bias our analyses. We calculated the Probabilistic Estimation of Expression
Residuals (PEER) factors (Stegle et al., 2012) and utilized the residual (thereby reducing
the impact of technical artefacts, population structure, and other hidden confounders that
may be present in the measurement of gene expression) for downstream analysis. We
continued to observe a significant correlation between variance (using residual expression
after PEER adjustment) and evolutionary rate in each tissue (Fig. 1C), with results between
the pre-PEER and the PEER-adjusted analysis being significantly correlated (Spearman’s
0 =0.997).

The central nervous system (CNS) tissues, including the brain and spinal cord,
consistently show the largest absolute effects of within-tissue expression variability on
evolutionary rate using either variance or the ratio of variance to mean (Table 52 and
Fig. 1A), but there is also significant variation in observed effects across the CNS tissues.
Based on the human-mouse comparison, highly variable genes (defined as the top 1000 in
expression variance) in the cortex are under significantly greater purifying selection than
highly variable genes in the subcortical regions (Wilcoxon rank sum p = 1.4 x107%). On
the other hand, highly variable genes in the cervical spinal cord evolve more rapidly than
highly variable genes in the brain regions (Wilcoxon rank sum range from p=>5.17 x10~°
for anterior cingulate cortex BA24 to p = 0.007 for substantia nigra). Whole blood and
LCLs tend to show lower contribution of expression variance to variation in evolutionary
rate than solid tissues, suggesting that evolutionary analysis in these relatively accessible
tissues may not accurately reflect the transcriptome-wide contribution to molecular
evolution. Although cell type heterogeneity and Epstein-Barr virus transformation may
globally alter gene expression profiles in whole blood and LCLs respectively, we note
that spleen, a key component of the immune system, also displays among the lowest
absolute effects of expression variance on evolutionary rate (Spearman’s p=—0.217,
p=3.45 x1071¥7 compared to Spearman’s p=—0.419 for anterior cingulate cortex). Of
interest to pharmacogenomics studies, highly variable genes in the liver, a key tissue for
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drug metabolism and transport (Chhibber et al., 2017), tend to show relatively accelerated
evolution (Wilcoxon rank sum p =2.33 x 10! for the comparison of muscle and liver),
consistent with the hypothesis that pharmacogenes have evolved as a defense mechanism
against the accumulation of harmful xenobiotics.

A gene’s MaxTissue is significantly associated with rate of protein
sequence evolution

We find that the tissue (“MaxTissue”) in which a gene attains its maximum inter-individual
variance (“MaxVariance”) —and perhaps also the tissue in which the gene shows the full
range of its functional activity —is significantly associated with evolutionary rate (human-
mouse comparison, Kruskal-Wallis test p = 5.55 x107284). (We note that tissue-specific
(t > 0.95) essential genes demonstrate significantly higher expression variance than tissue-
specific non-essential genes (e.g., Mann—Whitney U p = 1.96 x107% in whole blood),
supporting the potential value of considering the tissues of high or maximal variance.)
The significantly greater variation in evolutionary rate across MaxTissues (than within)
suggests a tissue-anchored model (see Methods) in which the developmental program or
physiological process in which transcription takes place may constrain protein sequence
evolution. To illustrate, among 3 selected MaxTissues (cortex, liver, and testis) with
significant variance (p = 5.55 x1072%*) in median dN/dS of the genes in a MaxTissue,
the 100 genes with the highest expression variance from each MaxTissue are significantly
enriched (Benjamini—-Hochberg FDR < 0.10) for non-overlapping sets of functional
annotations (see Methods and Fig. 2A). In cortex, dendrite, cell junction, and neuron
projections are among the functional categories implicated (p = 4.6 x1072); in liver:
blood microparticle, complement and coagulation cascades, and metabolism of xenobiotics by
cytochrome P450 (p = 3.7 x107'0); in testis: spermatogenesis, chromosome condensation,
and multicellular organism development (p =5.74 x 10~*). The non-overlapping functional
categories and the significant difference (p = 5.55 x1072%*) in median evolutionary rate
between MaxTissues suggest that variation in the conservation of certain MaxTissue-
specific biological and developmental processes significantly contributes to the variation
in the rate of protein evolution. Furthermore, permutation analysis that preserves the gene
count in the observed MaxTissue configuration finds no random assignment of gene to
tissue (RandomTissue; N = 1000 datasets) of the entire protein-coding set that generates
a (Kruskal-Wallis) statistic as extreme (see Methods). As expected, the genes with the
highest expression variance in RandomTissues show no enriched functional categories.
The association is not driven by a single tissue or class of tissues. Using the MaxTissue-
8 metric (see Methods) to estimate the variability in evolutionary rate and to rank the
MaxTissues, the cortex (0.075), esophagus (0.061), and vagina (0.061) show among the
highest values while fibroblasts (0.013), skeletal muscle (0.014), and whole blood (0.015)
among the lowest. The other brain regions are spread throughout (e.g., anterior cingulate
cortex (0.016), hippocampus (0.017), and caudate basal ganglia (0.051)). Removing the
cortex as MaxTissue, the observed association remains significant (p = 1.04 x107284),
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Figure 2 MaxTissue and the regulatory genome as predictors of evolutionary rate. (A) Biological
and developmental processes implicated by MaxTissues. MaxTissue is significantly associated with
evolutionary rate (p = 5.55 x 10723). The top 100 genes with the highest MaxVariance within 3 chosen
MaxTissues—cortex, liver, and testis—are enriched for non-overlapping functional annotations. All
functional categories shown here satisfy Benjamini-Hochberg FDR < 0.10 (raw p-values range from 0.002
t0 6.55 x 107%%) and are in the top 25 in each MaxTissue. In cortex, dendrite, cell junction, and neuron
projections are among the functional annotations implicated. In liver: blood microparticle, complement
and coagulation cascades, and metabolism of xenobiotics by cytochrome P450. In testis: spermatogenesis,
chromosome condensation, and multicellular organism development. The non-overlapping enriched
functional annotations and the significant difference in evolutionary rate between MaxTissues suggest the
importance of MaxTissue-specific biological and developmental processes in constraining evolutionary
rate. (B) Estimated tissue specificity of a gene expression trait as a function of number of tissues (x-axis).
Less comprehensive tissue catalogs can have substantial variability (y-axis) in the estimated tissue
specificity of gene expression. For a given number of tissues, we randomly selected tissues from the
44 to generate a tissue catalog. We calculated the tissue specificity (tau) of each gene within the tissue
catalog. The y-axis is the standard deviation of tau across 100 replicates. (C) Regulatory genome and
protein sequence divergence. The comparison of local genetic control (measured in DGN whole blood
transcriptome) between conserved genes and fast-evolving genes is shown. The first, median, and third
quartile are displayed as horizontal lines within the two shaded regions. Conserved genes (defined here as
the bottom 25% of the distribution of dN/dS) have significantly lower (Mann-Whitney U p= 1.2 x 10~"7)
cis heritability than fast-evolving genes (defined as the top 25% of the distribution of dN/dS). The median
cis heritability for all genes is 0.058 (significantly higher, p = 9.61 x 10!, than for conserved genes).
Degree of local genetic control of gene expression is therefore a predictor of evidence for either purifying
selection or positive selection.

Full-size Gl DOI: 10.7717/peerj.9554/fig-2

A gene’s MaxTissue predicts primary affected tissue for
developmental disorders associated with the gene

To provide additional insights into how developmental programs within the MaxTissues
may constrain protein sequence evolution, as proposed by the tissue-anchored model, we
tested the extent to which the MaxTissue for a gene could predict the primary affected tissue
for developmental disorders associated with the gene using a large-scale, independently
curated resource (see Methods). We found that MaxTissue significantly overlapped (p = 3.5
x 10™*) with the primary affected tissue (Fisher’s exact test odds ratio = 4.62), suggesting
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a potential mechanism for the tissue-anchored model since developmental disorders are
likely to affect fitness and therefore the evolutionary rate of the protein.

In addition to MaxVariance, we tested an alternative cross-tissue feature for its effect on
evolutionary rate. We used the tau (7) statistic to capture the level of similarity of expression
across tissues (i.e., expression breadth) in GTEx (Yanai et al., 2005; Kryuchkova-Mostacci
& Robinson-Rechavi, 2016) (see Methods). In the distribution of 7 by gene type (Fig. S1),
protein-coding genes display the widest variation; in contrast, lincRNAs show substantial
tissue specificity in expression compared to protein-coding genes (Fig. 52). Importantly,
using tissue downsampling (see Methods), we find that less comprehensive tissue catalogs
than presented here can have substantial variability in the estimated tissue specificity of a
gene expression trait (Fig. 2B), with significantly higher variance in 7 among genes with
higher T (Spearman’s p = 0.359, p < 1.0 x 1073%),

We see a significant positive correlation between dN and t (Spearman’s p =0.32, p=1
x1073%) and dN/dS and 7 (Spearman’s p = 0.25,p=7.5x% 107%*3) from the human-mouse
comparison, consistent with the notion that intensity of selection on nonsynonymous sites
is strongly determined by how broadly expressed the gene is (Duret ¢ Mouchiroud, 2000).

We conjectured that the difference in tissue specificity between non-coding and
protein-coding genes may indicate functionally relevant differences between regulatory
genes and their targets and provide insights into how expression breadth may constrain
evolutionary rate. Indeed, functional enrichment analysis of the lowest 10% of 7 scores
(i.e., genes with the broadest expression profile) implicates functional annotations relating
to transcription (Benjamini-Hochberg adjusted p = 6.19 x107%) and mRNA processing
(Benjamini-Hochberg adjusted p = 1.57 x107>*) (Huang, Sherman ¢ Lempicki, 2009).
More stringently, the 100 genes with the greatest expression breadth are enriched in
Ubl conjugation pathway (n = 13, Benjamini—-Hochberg adjusted p = 3.7 x107?), a highly
conserved eukaryotic gene regulatory mechanism that frequently promotes protein-protein
interactions (Hochstrasser, 2009). Thus, a possible explanation for the importance of
expression breadth in constraining evolutionary rate is the conservation of genes involved
in multi-tissue gene regulation. In contrast, the 100 genes with the most tissue-specific
expression profile are enriched for secreted proteins (n = 31, Benjamini—-Hochberg adjusted
p=8.5 x107?) with gene products, for instance, located in extracellular region or involved
in signaling.

Comparing the two cross-tissue features, we find that v explains only 0.88% (p = 6.0
x107%%) of the variability in MaxVariance. Using EPRCA, we find that evolutionary rate
and MaxVariance are significantly correlated after controlling for expression breadth
(Spearman’s p=—0.151, permutation p < 0.001). These results suggest that expression
breadth and MaxVariance, as predictors of between-tissue effects, may independently
constrain evolutionary rate.

Joint feature analysis of rate of protein sequence evolution (dN/dS)
Besides MaxTissue and MaxVariance (above), we identified additional correlates of dN/dS.
Heritability provides a measure of the potential of a trait to respond to selection (Roff,
2000). Gene expression level as a quantitative trait has a heritable component. For many
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Figure 3 Joint analysis of possible determinants of evolutionary rate. (A) The pairwise (Spearman) cor-
relation values for all features. Expression breadth is given by the tau statistic with smaller tau indicating
wider expression breadth. Pairwise correlation was restricted to protein-coding genes (even though some
correlations could be calculated with non-coding genes) because of our focus on protein evolutionary rate.
(B-J) Comparison of feature importance scores. MaxVariance shows the highest feature importance score
using a range of model parameters for the number of trees (500; 1,000; 10,000) and the interaction depth
(1, 4, 5) in gradient boosting. In particular, MaxVariance shows a stronger influence on predicting evolu-
tionary rate than the other cross-tissue features: maximum expression level and expression breadth.
Full-size Gal DOI: 10.7717/peerj.9554/fig-3

genes, expression level can be predicted, to a degree measured by heritability and in a
tissue-dependent manner, based on genetic polymorphism data (Gamazon et al., 2015a).
We find a significant relationship between the cis (common variant) heritability of gene
expression and dN/dS (Supplementary Information and Fig. 2C). Conserved genes tend to
have lower cis heritability than other genes (Mann-Whitney U p=1.2 x10~!7). Although
gene age and PPI node degree have been previously investigated (and although the method
for gene age estimation may generate methodological artifacts (Moyers & Zhang, 2017), we
report their relationship with the unique expression data analyzed here (controlling for
potential confounders) and find these variables to be significant associated with dN/dS
(Supplementary Information).

The features we have examined are mutually correlated (Fig. 3A), posing a challenge to
the search for causal factors. A comparison of the generalized additive models based on the
human-mouse comparison using AIC (which is asymptotically equivalent to leave-one-out
cross-validation for ordinary linear regression (Stone, 1977)), is shown in Table S4. Notably,
tissue expression breadth is the model with the best univariate fit.

We then implemented an approach that performs variable selection and model choice
(given the number of correlated predictors) and incorporates potentially nonlinear effects
(given the univariate observation on the presence of such effects). We utilized gradient
boosted regression trees to model evolutionary rate (see Methods), based on human-mouse
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Figure 4 Model of evolutionary rate. (A) Variance explained by model. The joint model from gradient
boosting explains an average of 62% of the variability in evolutionary rate from out-of-sample prediction.
The distribution is from 100 cross validation analyses. (B) Variability versus level. MaxVariance (right his-
togram) consistently shows a higher relative importance than maximum expression level (left histogram)
in determining evolutionary rate using 100 replicates from gradient boosting. We therefore used MaxVari-
ance to define MaxTissue, a key element of the tissue-anchored model of evolutionary rate. (C) Interac-
tion of MaxVariance and function. Mendelian disease genes and essential genes show substantially lower
MaxVariance effect (empirical p < 0.001), in terms of variance explained, on evolutionary rate than the
full set of proteins, indicating that MaxVariance and gene function may interact to constrain evolutionary
rate.

Full-size & DOI: 10.7717/peerj.9554/fig-4

divergence, jointly analyzing all the features. Notably, we find that MaxVariance, among all
features, has the highest feature importance score using a range of model parameters for the
number of trees and the number of interactions (see Methods) (Fig. 3B), providing further
support to the proper centrality of this feature in our tissue-anchored model of evolutionary
rate. In particular, MaxVariance has a stronger influence on predicting evolutionary
rate than maximum expression level. We find that the combined model explains an
average (and median) of 62% of the variability in evolutionary rate (Fig. 4A) based on
out-of-sample prediction (see Methods), with MaxVariance consistently having a higher
relative importance than maximum expression level (Fig. 4B). The relative importance of
MaxVariance in the gradient boosted model is consistent with the single-model finding that
a significant association with evolutionary rate characterizes the MaxTissue configuration
and is not observed for a random tissue reconfiguration (permutation p < 0.001; see
Methods).

We also considered specific gene sets to determine to what extent the observed
relationships between evolutionary rate and expression features apply (Supplementary
Information). Mendelian disease genes and essential genes display substantially lower
MaxVariance effect, in terms of variability explained, on evolutionary rate than randomly
drawn sets (N = 1,000) of proteins, indicating that MaxVariance and gene function may
interact to influence evolutionary rate (Supplementary Information and Fig. 4C). As in the
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full set of protein-coding genes, when restricted to Mendelian disease genes for all model
assumptions examined, gradient boosted modeling analyses indicate that MaxVariance
continues to have a higher relative importance than maximum expression level.

Methodological implications on genomic studies of disease

Our collective findings have important methodological implications for the search
for disease-associated genes and the study of gene function. We explore three specific
applications (using the human-chimp comparison for illustration).

The genetically determined component of gene expression in a tissue (see Methods) is
typically tested for association with disease in transcriptome-wide association studies (e.g.,
using PrediXcan (Gamazon et al., 2015a)). Our study would suggest that imputation of
genetically determined expression for conserved genes using genetic variants within the
cis region of a gene (1 Mb) should be less accurate than for fast-evolving genes. Genes
with less accurate expression imputation would suffer from lower statistical power in
an association analysis. We note that even if directly measured gene expression data are
available, estimation and inference on the genetically determined expression should yield
additional information on underlying disease mechanisms.

Our hypothesis is supported by the significant positive correlation across genes between
the out-of-sample imputation R? for gene expression (see Methods) and dN/dS (Spearman’s
0 =0.09, p=28.6 x 10~ for adipose subcutaneous; Spearman’s p =0.057, p=2.6 X 107
for skeletal muscle; and Table S6 for the remaining tissues). For most tissues, imputation
performance is significantly lower for conserved genes than for fast-evolving genes (Fig. 5A).
The differential performance has important implications for mapping disease-associated
genes. Indeed, in a tissue (skeletal muscle, chosen for its sample size) with significant
differential imputation performance (Bonferroni-adjusted p < 0.05 for number of tissues
tested) and a modestly sized genome-wide association study (N = 1000), we estimate
that conserved genes would have significantly lower statistical power than fast-evolving
genes (median power 0.16 versus 0.41, Mann—Whitney U test p =2.2 x 107°; see Methods).
Furthermore, a smaller proportion of conserved genes (0.32 versus 0.41) would have at least
80% power (Fig. 5B). Finally, the significant correlation with out-of-sample imputation R 2
confirms the significant positive correlation between evolutionary rate and cis heritability,
for which estimation, using linear mixed models, depends on a rather strong assumption
of polygenicity of gene expression.

A second application involves the utility of multi-tissue imputation models. We find
that genes involved in multi-tissue gene regulation are notable for the relative strength
of purifying selection acting on them, contributing to the strong correlation between
expression breadth and evolutionary rate. Our study would suggest that imputation of
gene expression for conserved genes could be substantially improved using multi-tissue
(versus tissue-specific) genetic predictors. Consider the hypothetical case where a gene is
broadly expressed and, indeed, has equal expression across all tissues (i.e., T =0). Clearly,
an imputation model that varies by tissue would be inconsistent with the gene’s true
expression profile and, thus, have suboptimal imputation performance. On the other
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Figure 5 Correlation between evolutionary rate and out-of-sample imputation R? for gene expression.
(A) The out-of-sample R? assumes local predictors and is derived from 10-fold cross validation within the
PrediXcan framework applied to GTEx data. For a wide range of tissues, out-of-sample imputation ac-
curacy is significantly correlated with evolutionary rate. In particular, this suggests that transcriptome-
wide association analyses using local predictors in a range of tissues have significantly less power to de-
tect disease associations for conserved genes than for fast-evolving genes. Orange line indicates Bonferroni
threshold for the number of tissues tested. (B) Conserved genes have significantly lower statistical power
than fast-evolving genes (median power 0.16 versus 0.41, Mann—Whitney U test p = 2.2 x 107°). Fur-
thermore, a smaller proportion of conserved genes (0.32 versus 0.41) would have at least 80% power. Here
skeletal muscle was used.

Full-size ) DOI: 10.7717/peerj.9554/fig-5

hand, a gene with highly tissue-specific expression profile (e.g., T = 1) would require
tissue-dependent models for optimal imputation.

Consistent with this hypothesis, among the most highly conserved genes (human-chimp
dN/dS < 0.01, N =2,750), a significant enrichment (p < 0.001) for broadly expressed
genes can be found (see Methods). In general, 4.41% of the variance in evolutionary rate
is explained by expression breadth. These genes that are subject to the strongest purifying
selection show a significant 15% decrease in tissue specificity (t) (Wilcoxon rank sum
p=9.57 x10778) relative to the remaining protein-coding genes.

For a final application, we investigated whether our findings would also yield
methodological insights into traditional single-variant analyses of complex traits. Since
trait-associated SNPs identified by GWAS have been shown to be enriched for cis eQTLs,
we asked where the target genes of these regulatory variants lie in the overall distribution
of evolutionary rate. We calculated the Spearman correlation between the best cis eQTL
effect (within 1 Mb of target gene) in absolute value and evolutionary rate. We find a
significant positive correlation (Spearman’s p = 0.204 between absolute cis effect size and
dN/dS, p=1.3 x10713%), suggesting that conserved genes may be less likely to be detected as
eGenes. Furthermore, using reproducible trait-associated variants (p < 5x 10~%) curated in
the NHGRI GWAS catalog that are in linkage disequilibrium (r > > 0.80) with a best eQTL,
this correlation becomes even greater (Spearman’s p = 0.36, p = 6 x 107%%), suggesting
that conserved genes may be under-represented as target genes of variants identified by
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genome-wide association studies. This finding raises the possibility that attribution of gene
mechanisms to GWAS loci using only cis eQTLs has underestimated the influence of this

class of genes.

DISCUSSION

The GTEx resource consisting of RNA sequencing data collected in multiple individuals
across 53 different tissues permitted a comprehensive analysis of protein sequence evolution
for genes in diverse physiological systems. We examined a variety of expression-based
models of evolutionary rate in a comprehensive multi-tissue framework, evaluated the
relevance of the framework to characterizing human disease-associated genes, and explored
a number of methodological implications for transcriptome-wide association studies
(Gamazon et al., 2015b; Gusev et al., 2016). We also present a tissue-anchored model, with
MaxTissue a significant tissue configuration for evolutionary rate, and a combined feature
set that explains a large proportion of the variation.

The greatest effects of expression level, in terms of variance explained, on evolutionary
rate are observed for the CNS, including the brain, consistent with an earlier report (Duret
& Mouchiroud, 2000; Gu & Su, 2007; Tuller, Kupiec & Ruppin, 2008; Kryuchkova-Mostacci
¢ Robinson-Rechavi, 2015), and cervical spinal cord. However, we also find a remarkably
similar level of contribution from expression variance in the CNS tissues, which remains
significant after controlling for the mean level. The sampling of diverse CNS tissues enabled
us to observe significant variation in expression constraints on sequence divergence.
Notably, highly variable genes in the cortex are under significantly greater purifying
selection than highly variable genes in the subcortical regions, illustrating differences in
evolutionary conservation for this class of genes even among related neural tissues. The
higher absolute effect of expression level or variance on evolutionary rate observed in the
CNS system than in other systems may be in part attributable to increased selection to
prevent toxicity from protein misfolding and aggregation of highly expressed genes.

A uniform analytic pipeline applied to the diversity of tissues provides a unique
opportunity to estimate the contribution of transcriptional variance in each tissue to
evolutionary rate. We tested both variance and ratio of variance to mean and observe similar
tissue-dependent patterns. Several mechanistic hypotheses, for the role of expression level in
constraining evolutionary rate, have been proposed (Akashi, 2003; Rocha ¢ Danchin, 2004;
Lemos, Meiklejohn ¢ Hartl, 2004; Drummond et al., 2005). On the other hand, expression
variance captures the range of expression level over which a gene functions in a given
tissue and thus potentially reflects a temporal component to expression or a cellular
or developmental process. Instead of maintaining a steady-state value near the mean,
some conserved genes may express at low levels and then quickly express to high levels
when activated. Rapid cycling of expression of such genes in a tissue may also therefore
play a role for the protein folding accounts previously proposed for expression level.

In contrast with these within-tissue predictors of evolutionary rate, the association of
tissue (MaxTissue) with maximum expression variance with evolutionary rate, which our
empirical analysis shows to be a significant tissue configuration, highlights the importance
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of cross-tissue predictors and the developmental or physiological component of the
variation in evolutionary rate.

Here, we measure expression breadth in tissues derived primarily from adults (GTEx
Consortium, 2015), which may underestimate the true expression breadth of genes that
have a strong temporal component to their expression. Importantly, tissue downsampling
shows that expression breadth for genes expressed in a large number of tissues is robust to
tissue sampling but, for genes expressed in a limited set of tissues, is highly sensitive to the
choice of tissues. This vulnerability of tissue-specific genes to mismeasurement underscores
the utility of a large-scale resource in assessing the importance of tissue breadth, as previous
studies of protein sequence evolution have examined only a small number of tissues. This
has further implications for studies of younger genes (e.g., primate-specific), which tend
to have more tissue-specific expression. In a comparison of cross-tissue predictors (versus
within-tissue expression features), expression breadth accounts for only a small proportion
(8.9%) of the variability in MaxVariance, which may therefore represent independent
constraint and, indeed, shows the greatest contribution to predicting evolutionary rate
among all features.

We find, using whole blood transcriptome data, that cis heritability of gene expression
is significantly positively correlated with nonsynonymous substitution rate as well as with
evolutionary rate. Genes with low cis heritability of expression tend to be conserved.
However, the linear mixed model approach to SNP-based heritability estimation assumes a
polygenic cis architecture of gene expression; this approach may therefore perform poorly in
the presence of large-effect regulatory variants. Nevertheless, the out-of-sample imputation
R? (which provides an estimate of the cis heritability and should be more robust to model
misspecification) from the gene expression (PrediXcan) model also varies with evolutionary
rate. One explanation for the observed relationship between heritability and evolutionary
rate is that conserved genes have less standing genetic variation in ¢is in a population,
and therefore, lower heritability. However, the estimated heritability does not include the
effects of more complex forms of genetic variation or of rare regulatory variation. The
tissue variation in the correlation of the imputation R? (as an estimate of heritability) with
evolutionary rate suggests that the implied effect of the regulatory genome on protein
sequence evolution may in part arise from genetic control of tissue-specific biological
processes. For example, genes that underlie specific developmental programs may evolve
significantly more slowly than those for other developmental programs, contributing to
variation in evolutionary rate.

Notably, the correlation of evolutionary rate with gene expression heritability and with
MaxTissue are not predicted by the translational robustness hypothesis (Drummond et al.,
2005), which proposes that highly expressed genes are conserved due to selection against
protein misfolding caused by nonoptimal amino acids. Importantly, the translational
robustness hypothesis leaves unanswered the question of why the correlation between
expression and evolutionary rate should, as reported here, significantly vary by tissue.
Our proposed tissue-anchored model highlights the centrality of tissue-specific biological
processes and indicates that a specific tissue configuration, i.e., the one that maps a gene
to its tissue of maximum variance (thus, the tissue which perhaps most accurately reflects
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the gene’s range of functional activity), may be unique for its constraint on evolutionary
rate. The observed constraint of the regulatory genome (with its potential tissue specificity)
on evolutionary rate and the evidence for the tissue-anchored model would suggest the
importance of the developmental and physiological processes in which transcription takes
place (thus determining gene function in a context-specific way) as a primary driver of
protein sequence evolution in humans. Notably, using a reference UK-wide genomic
resource, we find that the MaxTissue for a gene significantly predicts the primary affected
tissue for developmental disorders associated with the gene, lending substantial empirical
support to the tissue-anchored model since developmental disorders are likely to affect
fitness and thus evolutionary rate.

We explored several methodological applications of our evolutionary analysis to genomic
studies of disease. Gene expression imputation (Gamazon et al., 2015a; Wang et al., 2016) is
a powerful approach to mapping disease-associated genes that is now becoming more widely
used (Hoffman et al., 2017; Son et al., 2017; Xu et al., 2017; Xu et al., 2018; Zeng, Wang &
Huang, 2017; Gottlieb et al., 2017; Li et al., 2018; Sanchez-Roige et al., 2018; Lamontagne
etal, 2018). In this framework, the imputed genetically determined expression in a
tissue is tested for its contribution to disease phenotype. An observed correlation with
the genetically determined component (unlike the directly measured expression level)
proposes a causal direction of effect, as the disease trait is not likely to alter the germline
genetic profile. (Of course, definitive identification of causal genes may ultimately require
perturbation experiments.) Thus, estimating the genetically determined component of
gene expression extends differential expression analysis of the directly measured gene
expression. As predicted by our framework, the expression of conserved genes is not
as accurately imputed, using local genetic variation, as the expression of fast-evolving
genes. Thus, transcriptome-wide association studies, such as implemented in PrediXcan
(Gamazon et al., 2015a), in search of disease-associated genes may be substantially enhanced
by incorporating the possible determinants of evolutionary rate into the analysis. Since
Mendelian disease genes are enriched for conserved genes, the lower imputation quality for
these genes implies that their reported effects on complex traits from local genetic variation
may be severely underestimated despite the substantial comorbidity associations between
Mendelian and complex disorders that have been uncovered (Blair et al., 2013).

A major methodological implication of our study is the importance of building
evolutionary-rate-aware models of genetically determined expression for increased
statistical power. Fast-evolving genes tend to be highly tissue-specific, suggesting the
importance of tissue-specific imputation models for these genes. On the other hand, genes
under strong purifying selection, including essential genes, tend to be broadly expressed,
suggesting the importance of multi-tissue imputation models that explicitly utilize their
tissue-shared expression profile. Current models, which are indifferent to evolutionary rate
and its contributing features, are thus likely to be underpowered for a class of genes.

Here we provide a comprehensive transcriptome-based analysis of the factors that
may constrain protein sequence evolution. We highlight the importance of cross-
tissue predictors, whose properties can be more accurately characterized using a more
comprehensive tissue collection than previously available and a uniform analysis pipeline.
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Importantly, we show, using gradient boosted regression, that the feature set explains
62% of the variability in evolutionary rate and provides additional support to the tissue-
anchored model. The tissue-anchored model reinforces the notion that rather than a
single mechanism (gene expression) being significant for protein evolution, variation in
the conservation of certain developmental programs in which transcriptional dynamics
unfolds in space and time may be a primary driver of evolutionary rate. Mechanistically,
the regulatory genome may constrain evolutionary rate through its overall effect on the
phenome (Nicolae et al., 2010; GTEx Consortium, 2015). Contrary to studies suggesting
that evolutionary rate is primarily driven by constraints on protein or mRNA folding
(Drummond et al., 2005; Yang et al., 2012), Mendelian disease and essential genes show
significantly lower absolute effect of expression on evolutionary rate than random genes.
This observation, coupled with the tissue-anchored model, supports the greater role of
gene function than of protection from protein misfolding, in the evolution of these genes.

Our study used species divergence to measure protein evolution and selection, but we
have not utilized the polymorphism data within GTEx to examine signatures of more recent
selection (Voight et al., 20065 Field et al., 2016). It would be interesting to test whether our
conclusions hold at shorter human evolutionary time-scales. Furthermore, the use of
additional species (given the availability of dozens of mammalian genomes now) may
improve the evolutionary analyses presented here. We also examined mRNA expression,
which may not reflect protein-specific regulatory mechanisms. Incorporation of protein
expression, translational efficiency, and codon bias will likely improve our model of protein
evolution and provide additional mechanistic insights into disease biology.

CONCLUSIONS

We evaluated several expression-based models of protein evolutionary rate in a multi-
tissue framework, assessed their relevance to characterizing human disease-associated
genes, and explored methodological implications for transcriptome-wide association
studies. We propose a tissue-anchored model for protein evolutionary rate and a combined
feature set that explains a large proportion of the variation. The tissue-anchored model
provides a transcriptome-based approach to predicting the primary affected tissue of
developmental disorders, as we confirmed using a large-scale and independently curated
resource, suggesting a potential mechanism since developmental disorders are likely to
affect fitness and thus the evolutionary rate of the protein.
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