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Abstract

Background: The polyphagous predatory bug Orius similis Zheng is an active predator used to
control thrips and aphids. The whitefly species Bemisia tabaci and Trialeurodes vaporariorum

are voracious pests of different economic agricultural crops and vegetables.

Method: In this study, Holling disc equation and age-stage, two-sex life table technique was
used to investigate the functional response and biological traits of third instar nymphs and adult

female O. similis when presented third instar nymphs of both whitefly species as prey.

Results: The results showed a type 11 functional response for each life stage of O. similis when
fed each whitefly species. The calculated prey handling time for different O. similis life stages
were shorter when fed T. vaporariorum than when fed B. tabaci nymphs. In contrast, the
nymphal development of O. similis was significantly shorter when fed B. tabaci than T.
vaporariorum nymphs. Additionally, the total pre-oviposition period of adult females was
statistically shorter when fed B. tabaci nymphs than T. vaporariorum nymphs. Furthermore, the
survival rates and total fecundity of O. similis were higher when fed B. tabaci than T.
vaporariorum. There were no significant differences in any population parameters of O. similis
when fed either whitefly species. These results show that O. similis could survive and maintain
its populations on both species of whitefly and could therefore serve as a biological control agent

in integrated pest management (IPM).

Key words: Orius similis (Anthocoridae), functional response, biological traits, predation,

whitefly species, biological control.
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Introduction

Invasive insect pests can significantly disturb native insect communities and cause considerable
damage to agriculture and forests (Pimentel et al. 2000). Among these pests, whiteflies
(Hemiptera: Aleyrodidae) are the most damaging insect pests to agricultural crops globally,
including China where more than 1450 species are known (Anderson et al. 2004; Lapidot et al.
2014; Martin et al. 2000). Included in these species are the silver-leaf whitefly (Bemisia tabaci)
and greenhouse whitefly (Trialeurodes vaporariorum), which are generally considered

responsible for major economic losses. However, B. tabaci is thought to be a complex of

morphologically indistinguishable sibling species, referred to as different biotypes (Wraight et al.

2017). Bemisia tabaci is considered to be one of the most significant plant pests and colonizes

over 600 host plants, causing significant damage (Polston et al. 2014). Bemisia tabaci is
distributed globally (De Barro et al. 2005; De Barro 1995; De Barro et al. 2000) and causes
significant damage to crop yield and quality by feeding on plant phloem and secreting honeydew
that stimulates the rapid growth of molds (Colvin et al. 2006; Prijovi¢ et al. 2013). However, the
most significant problem associated with outbreaks of B. tabaci is the transmission of plant
viruses (Navas-Castillo et al. 2011). Bemisia tabaci has been reported as the vector for the
transmission of over 300 viral species in major economically important agricultural and
vegetables crops (Gilbertson et al. 2015). Similarly Trialeurodes vaporariorum, commonly
known as greenhouse whitefly, is also considered an important pest of vegetable and agricultural
crops but transmits fewer viruses than does B. tabaci (Brown 2007; Jones 2003; Lépez et al.
2012; Navas-Castillo et al. 2011; Wisler et al. 1998). However, because of its short life cycle,
this species has been considered a more prevalent insect pest in greenhouse (Simmonds et al.

2002). Trialeurodes vaporariorum can also adapt to cold climates better than B. tabaci does and

[ Formatado: Realce
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is common at high elevations (Barboza et al. 2019). Because of its resistance to insecticides such
as neonicotinoids, T. vaporariorum has received much research attention (Gorman et al. 2007;

Karatolos et al. 2011).

Extensive use of pesticides not only causes environmental contamination and ozone layer

depletion, but also creates serious health problems in mammals, fesistance in pest populations!

and creates toxic conditions for beneficial insect species (Shaaya et al. 1997; Yoza et al. 2005).
Hence, to reduce insecticide use, biological control methods such as use of natural predators,
resistant varieties, and plants extracts are important in controlling pests in modern integrated pest
management (IPM) programs (Asare-Bediako et al. 2014; Kageyama et al. 2010; Yang et al.

2012; Yazdani & Zarabi 2011).

The genus Orius (Hemiptera: Anthocoridae) is the largest group of flower bugs,
containing around eighty species globally. They are polyphagous predators of small and soft-
bodied insects considered pests in agriculture and forestry, including spider mites, aphids, thrips,
and whiteflies in protected and open-field crops within its native range of Asia (Arno et al. 2008;
Carpintero 2002; Hernandez 1999; Herring 1966; Postle et al. 2001; Yamada et al. 2016; Zhao et
al. 2017). The artificial introduction of O. sauteri as a biological control agent provides potential
control against small insect pests on pepper and eggplant, especially under greenhouse
conditions (Jiang et al. 2011; Yin et al. 2013). Orius laevigatus is an effective biological control
species in Europe and is widely used in augmentative release programs (Van Lenteren & Bueno
2003). Studies have been conducted into predation by O. albidipennis, O. insidiosus, O.
majusculus, and O. niger on different prey species (Fritsche & Tamo 2000; Rutledge & O’Neil

2005; Tommasini et al. 2004). [ln a recent study, O. majusculus and O. laevigatus were reported

as potential natural enemies of B. tabaci eggs, nymphs, and adults (Wn() et al. 2008D.

[Comentado [Luis1]: 10.1007/s10340-020-01210-0

[Comentado [Luis2]: Recent 12 year??
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Orius similis Zheng is a common and effective natural enemy present in cultivated fields
in China and is used as a biological control agent against many small pests of economically
important agricultural crops (Zhang et al. 2012). Both pre-adult and adult stages prey on
lepidopteran insects including eggs or newly hatched larvae of Pectinophora gossypiella, Anomis
flava, and Helicoverpa armigera as well as Frankliniella formosae, Aphis gossypii, and
Tetranychus cinnabarinus. Large populations of O. similis in cotton fields are useful as
biological control agents (Zhou & Lei 2002). This Anthocorid species has many features that
make it a good biological control agent, such as high searching efficiency, the ability to increase
population levels with outbreaks coinciding with prey density, and an aptitude to aggregate in
regions of high prey populations (Hodgson & Aveling 1988). Mass rearing of O. similis and the
subsequent augmentative release into crop fields leads to the control of many insect pests,
decreasing their populations and hence reducing the use of pesticides (Bonte & De Clercq 2011;
Tommasini et al. 2004). However, it is important to estimate the effectiveness of a predator

before using it in an integrated pest program (Fathipour et al. 2006).

The potential of a predator to control a pest depends upon its functional response to

different ]populations of prey |(Butt & Xaaceph 2015). Therefore, the efficiency of a predator can

be assessed by its functional response (i.e., changes in attack rate in response to variations of
prey populations and number of prey consumed per unit time in relation to prey density (Riechert
& Harp 1987). Four types of functional response have been defined based on the predation rate
of a predator as a function of prey density: type I (a linear increase), type Il (an increase with a
slowdown at high prey densities), type I11 (a sigmoidal increase) and type IV (a dome shape in
prey consumption increase (Holling 1961; Pervez 2005; Sakaki & Sahragard 2011). Similarly,

the biological traits of a predator, influenced by changes in prey species, greatly affect its

[Comentado [Luis4]: Mainly “densities”
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predation activity. Thus, this study aims to investigate the interaction of the predator O. similis
with the prey species B. tabaci and T. vaporariorum under controlled conditions. The main aim
is to evaluate the functional response parameters, fitness parameters, biological traits, and

population parameters of O. similis when fed B. tabaci and T. vaporariorum nymphs separately.

Material and Methods

Insect rearing

Predator

Adults of O. similis were captured from vegetable and cotton fields of the Huazhong Agricultural
University (Wuhan, China) and mass reared in an insectarium following the method described by
Zhou et al. (2006) with slight modifications. The rearing arenas consisted of transparent boxes

(23.5 x 22.0 x 5.5 cm) with ventilation in the lid. Nymphs and adults of O. similis were supplied

black aphids ](Aphis fabae). [Small stems of Vitex negundo (3—4) wrapped with wet cotton over

the end were provided as oviposition substrate. Environmental conditions

Prey species

Adult B. tabaci were collected from vegetables grown in greenhouses and from other crops from
open fields located in the campus of the Huazhong Agricultural University. They were then
moved to insectaria and released on potted cotton (Gossypium hirsutum) plants (10 cm) to
develop the stock culture for the experiments (Khan & Wan 2015; Tomar et al. 2017). The stock
culture of T. vaporariorum was maintained from a few adults received from the Southwest
University (Chongging, China). Large screen cages (65 x 65 x 65 cm) were used as arenas for
both whitefly species. The obtained T. vaporariorum individuals were released on tobacco

(Nicotiana tabacum) plants (10 cm) for mass rearing (Haiyan et al. 2017; Wei et al. 2018). The

[ Comentado [Luis5]: Add libitum???
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following environmental conditions were maintained inside the insectaria: temperature 26 + 1°C,

RH 65 + 5%, and a photoperiod of 16 L: 8 D h at a light intensity of 1400-1725 lux.
Functional Response of O. similis

The third instar nymphs and three-day old adult females of O. similis were collected from the
insectaria and fed third instar nymphs of B. tabaci and T. vaporariorum for 48 h separately and
starved for 24 h. The predatory bugs were then individually transferred to small petri dishes (9
cm in diameter and 2 cm in depth) and supplied separately with third instar nymphs of B. tabaci
and T. vaporariorum with different densities (4, 6, 8, 10, 12, and 14) per predator. Wter 24 h, ]
predators were removed, and the prey consumed by both life stages of O. similis counted under
stereomicroscope. Bugs were used once only. All the dead/empty nymphs of both whitefly
species were assumed Killed by the predator as preliminary study indicated 100% survival of
bugs in the absence of whitefly nymphs. Thirty replications of the experiments involving the
third instar nymphs and adult females of O. similis were made for each treatment/density with

both prey species separately.
Life table study
Nymphal development

Approximately sixty freshly laid healthy eggs of O. similis were isolated from the insectaria and
incubated until hatched. All collected eggs of O. similis were equally distributed to feed on B.
tabaci and T. vaporariorum third instar nymphs separately. After hatching, O. similis neonates (<
24 h) were isolated in small Petri dishes (diameter: 9 cm; depth: 2 cm) firmed with filter paper.
From the results of functional responses, we supplied fifteen third instar nymphs of B. tabaci and

T. vaporariorum separately to each individual of the predatory bug as food. Dead/empty nymphs

[Comentado [Luis6]: Fed 48 h contradictory with line 147 ]
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of whitefly were replaced every day. A stem of V. negundo was placed in each Petri dish to
provide shelter and moisture to the predatory bugs. The end of each stem was wrapped with wet
cotton to keep them moist. Thirty nymphs were used in the experiment with three biological
replicates for each prey species. Developmental time for each nymphal instar was measured.
Individuals that died before reaching the adult stage were also recorded. Sex was confirmed as

soon as the adults emerged.

Adult longevity and fecundity

Newly emerged male and female O. similis adults were paired for mating. Females that mated
for more than 1.5 min were considered to have been mated (Butler and O’Neil, 2006). Each
mated female was placed separately in a new cylindrical translucent vial (2.5 x 14 cm diameter
and length respectively) enclosed with an adequate mesh nylon screen. A small section of Vitex
negundo stem was offered to each O. similis female as an oviposition substrate. Each stem was
wrapped with moist cotton at the end to provide moisture to the stem as well as the bugs using
the method of Zhou et al. (2006). Bemisia tabaci and T. vaporariorum nymphs (N = 15) were
supplied into each vial as a source of food for female O. similis. Stems of Vitex negundo were
examined under a stereomicroscope (15x) to confirm egg laying. The stem was changed every
day after the female laid the first egg. The total number of eggs laid by each female was counted
under a stereomicroscope (15x). All predatory bugs were observed until they died. Development
period, survival rate, pre-oviposition and oviposition period, fecundity, and longevity of female

and male adults of O. similis were recorded.

Data analysis

Functional response
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To find the functional response type, all the data collected from the experiment were fitted to
polynomial function. The polynomial function described the relationship between the proportion
of prey consumed (Na) in relation to the density of prey offered (No) (Holling, 1959a; Holling,

1959b). Hence, a cubic model was applied in a logistic regression analysis (Juliano, 2001):
Na/No = exp ((Po + PiNo + P2N2% + PaN3) / [1 + exp (Po + PiNo + P2NZ + P3N30)])

In this equation, Po, P1, P2, and Ps represent the intercept, linear, quadric, and cubic coefficients,
respectively. The negative and positive values of linear coefficient (P1) define type Il and 11l
functional responses, respectively. Modifying the Holling disc equation through reciprocal linear
transformation, functional response parameters (Th and a) were calculated (Livdahl & Stiven
1983). The equation for the linear regression was y = ax + b. Hence, the modified equation

obtained was:
1/Na=1/a. UTNo + TW/T

Where 1/Narepresents y, 1/a represents a, 1/TNo represents X, and Tw/T represents b. Na is the

number of prey killed by predators during time (fT: 24 h in our experiment). N, is the density of

prey and Th is the predator handling time for one prey item. For each prey density we calculated
total handling time (Th tota = Th X Na), search time (TS = T - Th totar), attack rate (a = Na/(No X
Ts)), and search efficiency (E = Na/No) (Hassell 2000; Rocha & Redaelli 2004). All statistical

analyses were performed in MINITAB 17.
Life table analysis

All the raw data for the life table of O. similis were analyzed based on the age-stage, two-sex life
table theory (Chi 1988; Chi & Liu 1985). The developmental period, fecundity of female adults,

and male and female longevity/survival of O. similis were evaluated using the computer program

[Comentado [Luis8]: Contradictory with line 144 (fed 48 h) ]
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two-sex MS-Chart (Akca et al. 2015). To calculate the standard error of pre-adult stage, adult
male and female longevity, female fecundity, and population parameters (rate of increase [r], [y],
the highest net reproductive rate [Ro], gross reproduction rate [GRR], and mean generation time
of individuals [T]), 100,000 bootstrap replicates were run (Akca et al. 2015; Akkdpri et al. 2015;
Tuan et al. 2016). Based on the confidence intervals of differences, paired bootstrap tests were
also used to compare the results of different treatments using two-sex MS-Chart (Akca et al.
2015; PRU et al. 2015). Equations used in the age-stage, two-sex life tables are listed in Table 1.
Sigma Plot 12.0 was used to create graphs of survival rates, fecundity, life expectancy, and

reproductive value.

In Table 1, Sy represents the age-stage specific survival rate, based on the probability that newly
hatched individuals will survive to age x and j (Chi & Liu 1985). The Ix and my were estimated
using equation 1 and 2 respectively. The intrinsic rate of increase (r) was calculated from the
Euler—Lotka equation with age indexed from 0 (Goodman 1982), equation 3. Equation 4 was
used to calculate the Ro (mean number of siblings that an individual can produce in its lifespan).
The gross reproduction rate (GRR) was estimated using equation 5. The time a population
required to rise to Ro-fold of its size as it acquired a stable age-stage distribution (T) was

determined with equation 6. To estimate the rate of increase (L), Equation 7 was used.

Results

Functional response of O. similis

The results of the logistic regression analysis for third instar nymphs of O. similis were highly
significant (P < 0.05) suggesting a type Il functional response as the linear coefficient (P1) was

negative against nymphs of both B. tabaci and T. vaporariorum (Table 2). Similarly, the adult
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females also showed a type |1 functional response against both prey species, although the

parameters were not significant.

The functional response curves of different life stages of O. similis to third instar nymphs
of B. tabaci and T. vaporariorum at different densities are show in Fig. 1. The number of
nymphs of both prey species consumed by third instar nymphs and adult females of O. similis
increased with increases in the prey density from 4 to 8 nymphs per predator, but plateaued with
no significant increase in prey consumption with densities of more than 8 nymphs per predator.
When only four nymphs of B. tabaci and T. vaporariorum were provided, the third instar
nymphs of O. similis consumed a mean of 3.8 and 3.3 nymphs per predator per day, respectively,

|indicating that the predator is more efficient at finding whitefly nymphs at low prey densitiesl.

Similarly, the mean consumption of whitefly nymphs by adult female O. similis was
higher at lower prey densities (Fig. 1). When provided with third instar nymphs of B. tabaci and
T. vaporariorum, the maximum and minimum prey consumption levels of third instar nymphs of
O. similis were (95% and 46.4%) and (82.5% and 44%), respectively. However, there were no
significant differences found in maximum prey consumption by adult female O. similis (92% and
92.5%) when preying on nymphs of B. tabaci and T. vaporariorum, respectively. The minimum
percentage of B. tabaci and T. vaporariorum nymphs killed by adult female O. similis was 48%

and 51%, respectively.
Functional response parameters

The parameters of functional response (handling time (Th), attack rate (a), and maximum
predation rate) of different stages of O. similis against whitefly species are listed in Table 3.

[There were no differences estimated in the Tr of third instar nymphs of O. similis against both

Comentado [Luis9]: Why this affirmation? Four is the
minimum provided preys. Support the affirmation




250  whitefly species. However, adult females undertook shorter handling times (1.75 h) when

251  pursuing, subduing, and consuming T. vaporariorum third instar nymphs when compared with

252 the handling times for B. tabaci (2.45 h).\ Comentado [Luis10]: Increase in the table 3 the SD or IC
with letter for differences or similarities in Th, a

253 In contrast, the coefficient of attack rate was higher, ranging from 0.05 to 0.06, when third instar
254  nymphs and adult females of O. similis were fed nymphs of B. tabaci compared to T.

255  vaporariorum (Table 3). However, there were no significant difference noted for different life
256  stages of O. similis in attack rate. The maximum predation rate (T/Th) of third instar nymphs of
257  O. similis per individual was higher (9.82 d*) for T. vaporariorum nymphs compared to B.

258  tabaci (9.78 d1). Similarly, the maximum predation rate of adult females was (13.70 d'1) and
259  (11.12 d'Y) for T. vaporariorum and B. tabaci nymphs, respectively. The functional response

260  parameters of different life stages of O. similis to different densities of whitefly species are given
261 in Table 4. The T for third instar nymphs and adult females of O. similis increased with

262 increasing prey densities. However, the searching time and searching efficiency show an inverse
263  relationship with both prey densities. The attack rates of both life stages of O. similis were

264  similar with no significant differences at different densities of both prey species.
265  Growth, development, and longevity of O. similis

266 Developmental characteristics of O. similis when fed of agairst-whitefly species (B. tabaci and

267  T.vaporariorum) are listed ]in Table 4. The nymphal development of O. similis took statistically [Comentado [Luis11]: Is correct?

268 longer from N1-N4 when fed T. vaporariorum than when fed B. tabaci. ( comentado [Luis12]: What is?? Is Nymph??, specific

269  However, there were no significant differences in development of fifth instar O. similis nymphs

270  against both whitefly species. In addition, higher mortality rates were observed in the fifth instar

271 when fed T. vaporariorum nymphs than when fed B. tabaci (fig 2??). The results also showed [Formatado: Fonte: Nao Italico
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272  that longevity of both male and female O. similis was statistically similar when B. tabaci and T.
‘273 vaporariorum were provided as prey (table 57??). h’he highest longevity of adult females was

274  recorded when they were fed B. tabaci nymphs (15.47 days), while when presented with T.

275  vaporariorum nymphs, it was comparatively shorter (13.82 days) (table 5222?). It was also Comentado [Luis13]: However, was not difference
statistic. Are similar, not highest not shorter.

276 observed that more individuals of the predatory bug survived and successfully reached the adult

277  stage when fed B. tabaci nymphs (86.66%) than when fed T. vaporariorum nymphs (56.70%).
278  Fecundity and oviposition of female adults

279  No significant effects of the presence of the two whitefly species were observed on adult pre-
280 ovipositional period (APOP) of O. similis (2.35 days for B. tabaci and 2.4 days for T.

‘281 vaporariorum, respectively; (Table 65). However, the total pre-ovipositional period (TPOP) of
282 0. similis was significantly longer when offered T. vaporariorum nymphs (20.5 days) compared

283  to B. tabaci (19.82 days) (Table 6).

284 It was also observed that the total reproductive days of female adult O. similis were

285  statistically similar with no significant difference for both whitefly species (8.29 and 7.80 days
’286 when fed B. tabaci and T. vaporariorum, respectively) (table 6). Furthermore, no significant
287  difference was recorded in total female fecundity against both prey species; lhowever, more eggs

288  were laid by adult females when fed B. tabaci nymphs (54.18 eggs) than T. vaporariorum (49.82

289  eggs). More females were produced when fed B. tabaci than T. vaporariorum. Comentado [Luis14]: Was not difference statistic, are
similar

290 Population parameters of O. similis

291  The influence of the two prey species on the population parameters of O. similis are listed in
292  Table 67. No significant differences were found in O. similis population parameters when fed B.

293  tabaci and T. vaporariorum separately. The intrinsic rate of increase (r) and finite rate of
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increase (1) for O. similis were (0.13 d* and 1.14 d!, respectively) when fed nymphs of B. tabaci
and (0.11 d*and 1.12 d ) when fed T. vaporariorum. |However, the highest net reproductive
rate (Ro) occurred when O. similis was fed B. tabaci (30.70 offspring per female) than when fed

T. vaporariorum (18.27). Furthermore, the mean generation time of individuals (T) and the

values of GRR were higher when B. tabaci was offered as prey (25.46 d and 54.62) compared to

T. vaporariorum (26.61 d and 61.57; Table 76).

Age-stage and age-specific survival of O. similis

The Ffig. 2 explains the age-stage specific survival rate (Syj; the possibility a newly hatched
individual that will successfully survive to age x and stage j) of O. similis when fed B. tabaci and
T. vaporariorum. Overlap occurs between stages as a result of variations in the developmental
rate of individuals. When fed nymphs of B. tabaci, 86.66% of O. similis eggs successfully
survived and reached to the adult stage. However, the survival rate was significantly lower

(56.7%) when O. similis were fed T. vaporariorum nymphs.

Age-specific survival rate (Ix; a simplified form of Syj), age-stage specific fecundity (fy),
age-specific total fecundity of the whole population (my), and age-specific maternity (Ixmy;
formed on the basis of fyand my) of O. similis when fed B. tabaci and T. vaporariorum are
presented in Fig. 3. As age increased, the Ix of O. similis decreased and showed an inverse
relationship for both prey species. The peak of the my curve was at 26.98 days (5.14 eggs) and
31.09 days (5.72 eggs) when O. similis fed on B. tabaci and T. vaporariorum, respectively. The
peak of fy was at 24.90 days (8.45 eggs) and 30.88 days (7.80 eggs) for B. tabaci and T.

vaporariorum nymphs respectively.

[Comentado [Luis15]: Was not difference statistic
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Life expectancy and reproductive values

The curves for life expectancy (exj) of O. similis at each stage when presented with B. tabaci and
T. vaporariorum are shown in Fig. 4. The life expectancy of a newborn O. similis egg was

greater when fed nymphs of B. tabaci (28.57 days) than those of T. vaporariorum (24.91 days).

The age-stage reproductive values (vyj) of adult female O. similis when exposed to different
species of whitefly are shown in Fig. 5. Age-stage specific reproductive value is a measure of the
contribution of an individual (from age x and stage j) to a future population. When adult female
O. similis fed on B. tabaci, the highest peak was observed at 21 days, which was greater than
when offered T. vaporariorum (19.79 days). The reproductive curve (Vy;j) indicated that the

presence of B. tabaci had a more positive effect on O. similis reproduction than T. vaporariorum.
Discussion

To quantify the ability of a predator to combat agricultural pests, the Holling functional response
model has been used for several years (Ganjisaffar & Perring 2015; Yazdani & Keller 2016).
Handling time (Th) and attack rate (a) are considered key parameters in explaining oscillations in
predator and prey interactions (Wang et al. 2019). A predator’s functional response to its prey
plays a significant role in the effect it has on a prey population (Begon et al. 1986). Similarly,
life table studies enable us to understand the ecology of an organism and supply some crucial
tools to study vital biological functions such as growth, survival, and reproductive rate when an
organism is in a diverse environment. Some drawbacks have been found in Jackknife methods;
therefore, a bootstrap method using 100,000 resamples was developed to calculate population
parameters with more accurate results (Huang & Chi 2012; Huang & Chi 2013). Numerous

studies have investigated Orius spp. as a predator of B. tabaci, (Adly 2016; Arng et al. 2008;
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Banihashemi et al. 2017; Shahpouri et al. 2019; Zandi-Sohani et al. 2018). lHowever, to our
knowledge, functional response and age-stage life table traits (age-specific survival, age stage
survival, female reproductive values and life expectancy) have not been investigated for O.
similis when preying on B. tabaci and T. vaporariorum. Thus, our study was designed to

determine the predatory potential of O. similis against both whitefly species.|

Our results indicate that the third instar nymphs and adult female of O. similis show type
Il functional responses when fed separately on six different densities of B. tabaci and T.
vaporariorum third instar nymphs. With increases in prey density, the net prey consumption of
both life stages of O. similis increased until a plateau was reached. Predators with type Il and I11
functional responses have a probability of being a stabilizing force in biological control
programs (Fernandez-arhex & Corley 2003). Orius spp. have shown a type Il functional response
in numerous other studies (Holling 1965). A type Il functional response was reported for O.
albidipennis when it was fed T. tabaci (Madadi et al. 2007), Megalurothrips sjostedti

(Thysanoptera: Thripidae) larvae (Gitonga et al. 2002), and Tetranychus turkestani (Acari:

Tetranychidae); (Hasanzadeh et al. 2015). In contrast to our results, the adult female O.
albidipennis showed a type Il functional response when fed B. tabaci third instar nymphs
(Shahpouri et al. 2019). Similarly, M. caliginosus showed a type 111 functional response when
presented with nymphs of T. vaporariorum (Enkegaard et al. 2001). These contradictory results
may be related to changes in predator species and differences in body size. Supporting our
results, O. majusculus and O. laevigatus exhibited a type Il functional response when fed
nymphs of T. vaporariorum (Montserrat et al. 2000). Predator functional response is influenced
by several factors, such size and density of predators and preys (Aljetlawi et al. 2004),

temperature (Gitonga et al. 2002; Zamani et al. 2006), occurrence of alternative prey (Abrams

[Comentado [Luis16]: Introduction, is not necessary here. ]
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1990), and internal state of the predator (Hassell et al. 1976). In our study, the arena consisted of
small Petri dishes. This small experimental arena accelerated the searching efficiency of the
predatory bugs and enabled them to repeatedly attack prey that initially escaped (Wiedenmann &
O'Neil 1991). The optimal foraging theory of predator-prey relationships has helped reveal the
influence of different prey densities on predator handling time, searching time, and predation rate
(Cook & Cockrell 1978; Stephens & Krebs 1986). In our study, searching time decreased with

increases in prey density for both third instar nymphs and adult female of O. similis.

To estimate the effectiveness of a predator in relation to its prey, handling time is thought
to be a key parameter because it shows how long a predator takes to capture, subdue, kill, and
digest a single prey item (Atlihan et al. 2010). In our study, the handling time was shortest when
adult female O. similis were offered T. vaporariorum nymphs. In contrast to our study, the
handling time was higher when adult female O. albidipennis fed on nymphs of B. tabaci
(Shahpouri et al. 2019). However, long handling time enables increased nutrient consumption
from prey and hence increases the persistence of predators (Montserrat et al. 2000). Recent
studies have shown that handling time is higher when O. albidipennis preys on B. tabaci nymphs
than eggs (Shahpouri et al. 2019). Similarly, handling time of O. laevigatus was longer than that
for other Orius species when tested again different densities of thrips (Montserrat et al. 2000).
Maximum prey consumption enhances the possibility of gaining optimal ratios between
predators and pests. Hence it can be useful to accelerate the application of inoculative releases
(Wang et al. 2019). Our results show that maximum predation occurred when adult female O.
similis fed on T. vaporariorum. Meanwhile, more nymphs were eaten by third instar nymphs of
O. similis when fed on T. vaporariorum. Higher prey densities (and thus greater prey

availability) or decreases in searching area accelerate predator attack rates while reducing
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handling time (Hassell et al. 1976). In a previous study (Opit et al. 1997), lower prey densities
induced reduction in predator searching activity to reduce the use of energy. In our study, no
significant differences in attack rate were observed when both life stages of O. similis preyed on
nymphs of B. tabaci and T. vaporariorum separately, even with six different densities. The attack
rate did not therefore depend on prey densities (Holling 1959). However, our results showed
higher attack rates with B. tabaci than T. vaporariorum for both third instar nymphs and adult
females of O. similis. In contrast to our results, previous work resulted in different values for
handling time and attack rate when O. majuscules and O. laevigatus were fed T. vaporariorum
(Montserrat et al. 2000). This may be due to changes in experimental design, environment, or
predator species (Van Alphen & Jervis 1996). The polyphagous predatory species of Orius prey
on a broad range of arthropods. Additionally, prey type can significantly alter the activity of their
predators (Bonte et al. 2015). The developmental and reproductive performance and fitness of
predators in relation to particular prey types highlights their potential as active biological control

agents (Grenier & De Clercq 2003).

The results obtained from the age-stage two-sex life table analysis indicate that O. similis
can survive and build strong populations when feeding on different species of whiteflies (B.
tabaci and T. vaporariorum). However, we found that the nymphal developmental durations of
the predator were significantly longer when praying on nymphs of T. vaporariorum than on
nymphs of B. tabaci. Moreover, adult male and female longevity was longer when presented B.
tabaci relative to T. vaporariorum, but a significant difference was not observed. Our results
agree with previous reports indicating that the developmental period of O. similis pre-adults is
greater when they prey on A. cracivora than on C. cephalonica eggs (Amer et al. 2018). The

same interaction was documented in numerous studies where the prey species strongly alter the
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developmental duration of pre-adults of O. similis (Kim 1997; Kim 1999; Ohta 2001; Sengonca
et al. 2008). Consequently, these fluctuations in the developmental period show that a prey
species can strongly influence the developmental time of the pre-adult stages of O. similis
(Sengonca et al. 2008). The survival of O. similis individuals was higher when fed on B. tabaci
nymphs than T. vaporariorum. Amer et al. (2018) documented that higher mortality rates
occurred in the pre-adult stages of O. similis when they fed on C. cephalonica eggs compared to
A. cracivora. Similarly, the survival rate of O. laevigatus, O. niger, and O. majusculus
individuals during development was very low (i.e., high mortality rates) when fed eggs of E.
kuehniella than those of F. occidentalis (Kiman & Yeargan 1985; Tommasini et al. 2004). Based
on our results and those of Arng et al. (2008), the total developmental duration and survival of O.
similis nymphs, when fed B. tabaci nymphs, were similar to those of O. majusculus and O.
laevigatus. Arno et al. (2008) also reported results similar to those reported by Riudavets &
Castafié (1998), suggesting that whitefly species could be considered suitable prey analogous to
F. occidentalis larvae predated upon by Orius spp. Furthermore, our results showed no
significant difference in adult-pre-oviposition period for both whitefly species. In contrast to our
study, Zhang et al. (2012) found that after mating, the development of the reproductive system of
adult female O. similis took longer (5-6 days) compared to our results. Similarly, the number of
eggs laid by adult female O. similis were comparatively higher for both whitefly species than that

of Tetranychus cinnabarinus (Zhang et al. 2012).

Chen et al. (2017) found that intrinsic rate of increase (r) is a key population parameter in
determining the development, growth, and survival of an organism. Southwood & Henderson
(2009) also documented that greater values of (r) i.e., r > 0 highlight the fit of a prey with its

host. Comparing our result with these studies shows that the intrinsic rate of increase was more
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than (0) and similar for both prey species Fable-4-The net reproductive rate (Ro) is also
considered an important demographic life table parameter. Values of Ro of more than 1 indicate
an increase in the mean population of an insect (Chen et al. 2017; Southwood & Henderson
2009). Our results agree with this theory, as the highest Ro was when O. similis was fed B. tabaci
relative to T. vaporariorum. In contrast to our study, low reproductive rates have been observed
when O. similis is fed T. cinnabarinus (Zhang et al. 2012). The gross reproduction rate (GRR) is
thought to be a symbol of a rapid increase of population, which is directly related to adult
eclosion and the number of eggs laid and hatched. All of these parameters can be significantly
influenced by prey species (Cocuzza et al. 1997; Huang & Chi 2013). In our results, the highest
GRR and greatest generation time (T) occurred when O. similis fed on T. vaporariorum when
compared to B. tabaci. However, in their study, Zhang et al. (2012) observed longer generation

times at three constant temperatures when individuals of O. similis preyed on T. cinnabarinus.

The survival of a predator from the neonate to the adult stage when presented specific
prey species highlights its role as an effective biological control agent (Van Lenteren & Woets
1988). Similarly, the searching ability and concomitance of predators and prey in space and time,
are thought to be a crucial factors in successful biological control of a pest (Arno et al. 2008).
Montserrat (2001) and Trottin-Caudal et al. (1991) both reported large populations of Orius spp.
on vegetable crops where thrips and whiteflies coexist. Thus, it can be assumed that if O. similis
remains on the crop after suppression of the population of their desired prey, they can play a vital
role in suppression of both whitefly species and could serve as an effective biological control
agent. Supporting our hypothesis, Riudavets (2001) reported more than 20 Orius per cucumber
plant when the population of F. occidentalis was very low, which may have been due to the

presence of other pests.



453 In summary, our results suggest that the predatory bug O. similis has the potential to
454  actively maintain strong populations when in the presence of species of whitefly such as B.
455 tabaci and T. vaporariorum and could serve as a biological control agent in cotton fields and
456 other vegetable crops, as well as in greenhouses where the populations of these species are
457  destructive pests. The results obtained from laboratory experiments should be useful in

458  understanding the biology of O. similis when in association with whitefly species, but field

459  experiments will be required to validate them.
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