Assessment of fish biodiversity in four Korean rivers by using the environmental DNA metabarcoding technique (#43068)

First submission

Guidance from your Editor

Please submit by 15 Dec 2019 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

8 Figure file(s) 7 Table file(s)

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Assessment of fish biodiversity in four Korean rivers by using the environmental DNA metabarcoding technique

Md Jobaidul Alam ¹, Nack-Keun Kim ¹, Sapto Andriyono ², Hee-Kyu Choi ³, Ji-Hyun Lee ⁴, Hyun-Woo Kim ^{Corresp. 1, 4}

Corresponding Author: Hyun-Woo Kim Email address: kimhw@pknu.ac.kr

Environmental DNA (eDNA) metabarcoding is a cost-effective novel approach to estimate the biodiversity in an ecosystem with high efficiency. Here, we adopted the MiFish Pipeline to know if the system is reliable to estimate the fish biodiversity from the river water samples. We analyzed 16 water samples from four Korean rivers (Hyeongsan, Taehwa, Seomjin, and Nakdong) and identified 73 fish species simply by a single survey indicating MiFish Pipeline would be a useful tool to estimate the biodiversity without any destructive effects on the ecosystem. Among the 4 rivers, the highest biodiversity was identified in the Seomjin River (52 species), followed by the Taehwa River (42 species), the Hyeongsan River (40 species), and the Nakdong River (26 species) suggesting the ecosystem in Nakdong River is relatively unhealthy for its metropolitan location. However, we were also able to know, that representative haplotype information of the endemic fish species, should be supplemented for the better species-identification. Five invasive species (Carassius cuvieri, Cyprinus carpio, Cyprinus megalophthalmus, Lepomis macrochirus, and Micropterus salmoides) were also widely distributed in all examined rivers, which would be problematic in the Korean river ecosystem. These findings will be helpful for the effective management or conservation of fish resources in Korean rivers at a relatively low cost.

¹ Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong National University, Busan, Republic of Korea

² Fisheries and Marine Faculty, Universitas Airlangga, Surabaya, Indonesia

³ Department of Biological Science, College of Science & Engineering, Sangji University, Wonju, Republic of Korea

⁴ Department of Marine Biology, Pukyong National University, Busan, Republic of Korea

27

Assessment of fish biodiversity in four Korean rivers by using the environmental DNA 1 metabarcoding technique 2 3 Md. Jobaidul Alam¹, Nack-Keun Kim¹, Sapto Andriyono^{1,2}, Hee-Kyu Choi³, Ji-Hyun Lee⁴, and 4 Hyun-Woo Kim^{1,4}* 5 ¹Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering, Pukyong 6 7 National University, Busan, 48513, Republic of Korea 8 ²Fisheries and Marine Faculty, C Campus Jl. Mulyorejo Surabaya 60115. Universitas Airlangga, 9 Surabaya, East Java, Indonesia ³Molecular Ecology and Evolution Laboratory, Department of Biological Science, College of 10 11 Science & Engineering, Sangji University, Wonju 26339, Republic of Korea ⁴Department of Marine Biology, Pukyong National University, Busan 48513, Republic of 12 Korea 13 14 15 * Corresponding author: 16 Hyun-Woo Kim, Ph. D 17 Department of Marine Biology 18 19 Pukyong National University 48513, Republic of Korea 20 Tel: 82-51-629-5926 21 22 Fax: 82-51-629-5930 23 E-mail: kimhw@pknu.ac.kr 24 25

30

31

32

33

34

35

36

37

38

39

40

41

42

43

		7
28	ABSTRACT	

Environmental DNA (eDNA) metabarcoding is a cost-effective novel approach to estimate the biodiversity in an ecosystem with high efficiency. Here, we adopted the MiFish Pipeline to know if the system is reliable to estimate the fish biodiversity from the river water samples. We analyzed 16 water samples from four Korean rivers (Hyeongsan, Taehwa, Seomjin, and Nakdong) and identified 73 fish species simply by a single survey indicating MiFish Pipeline would be a useful tool to estimate the biodiversity without any destructive effects on the ecosystem. Among the 4 rivers, the highest biodiversity was identified in the Seomjin River (52) species), followed by the Taehwa River (42 species), the Hyeongsan River (40 species), and the Nakdong River (26 species) suggesting the ecosystem in Nakdong River is relatively unhealthy for its metropolitan location. However, we were also able to know that representative haplotype information of the endemic fish species should be supplemented for the better speciesidentification. Five invasive species (Carassius cuvieri, Cyprinus carpio, Cyprinus megalophthalmus, Lepomis macrochirus, and Micropterus salmoides) were also widely distributed in all examined rivers, which would be problematic in the Korean river ecosystem. These findings will be helpful for the effective management or conservation of fish resources in Korean rivers at a relatively low cost.

45

44

46 Keywords: biodiversity, Korea, next-generation sequencing, metabarcoding, eDNA

47

48

49

52

53	INTRODUCTION
54	As an excellent indicator of biological integrity, monitoring of fish communities has always been
55	as part of a-bio-monitoring program to explain the various environmental issues as pollution,
56	climate changes, and other alterations of habitat either by anthropogenic or natural causes.
57	Traditional monitoring methods for fish biodiversity, which have relied on the direct capture or
58	observations of an individual specimen, are often difficult to a lack of taxonomic expertise
59	and extensive fieldwork. Environmental DNA (eDNA) metabarcoding (detection of
60	multispecies by using degraded DNA from environmental sample) has been introduced as an
61	alternative strategy to analyze the fish biodiversity and demonstrated a potential to improve the
62	traditional methods in-cost-effective way (Shaw et al., 2016; Stoeckle, Soboleva, & Charlop-
63	Powers, 2017; Yamamoto et al., 2017). This strategy was so highly sensitive that the rarely
64	identifying species (Pilliod, Goldberg, Laramie, & Waits, 2013), invasive species (Ardura et al.,
65	2015; Cai et al., 2017; Clusa, Miralles, Basanta, Escot, & García-Vázquez, 2017; Dejean et al.,
66	2012; Klymus, Marshall, & Stepien, 2017; Takahara, Minamoto, & Doi, 2013; Williams,
67	Huyvaert, Vercauteren, Davis, & Piaggio, 2018) or migration of fish species (Gustavson et al.,
68	2015; Pont et al., 2018; Yamamoto et al., 2016; Yamanaka & Minamoto, 2016) were also
69	identified by eDNA metabarcoding analysis.
70	Since eDNA metabarcoding analysis for fish biodiversity is mainly based on the amplicon of
71	homologous genes by PCR, the universal primers with high taxon-specificity and wide taxon-
72	coverage are essential. Among two primer sets targeting 12S rRNA regions; Eco Primers (Riaz

73 et al., 2011) and MiFish (M. Miya et al., 2015) and one targeting 16S rRNA (Shaw et al., 2016),

/4	MIF ish primer set demonstrated its reliability for fish biodiversity analysis both in seawater
75	(Ushio et al., 2017; Yamamoto et al., 2017) and freshwater (Sato, Miya, Fukunaga, Sado, &
76	Iwasaki, 2018). Most recently, the web-based MiFish pipeline in MitoFish was publically open
77	(http://mitofish.aori.u-tokyo.ac.jp/mifish/), which would considerably change the way of the fish
78	biodiversity analysis by eDNA metabarcoding alleviating the time-consuming bioinformatics
79	analysis for the users (Sato et al., 2018).
80	Although metabarcoding analysis by the MiFish pipeline is one of the most reliable tools at
81	this moment, the numbers of MiFish sequences in the database would be one of the last hurdles
82	to overcome for the global use of MiFish pipeline. Since the average length of the MiFish region
83	is approximately 170 bp, which is much smaller than typically used 670 bp of the COI barcodes,
84	a high-quality database is critical for the successful species assignment. In fact, species
85	identification by MiFish primer could not discriminate closely related species in several genera
86	including Sebastes spp. and Takifugu spp. (Yamamoto et al., 2017). Especially, freshwater
87	habitats have been fragmented and isolated for the long-term periods and fishes in freshwater
88	generally underwent various types of independent evolutional processes resulting in a
89	tremendous diversity of species (Seehausen & Wagner, 2014). Therefore, before using the
90	MiFish pipeline, DNA sequence information of the MiFish region for the local freshwater fish
91	species should be supplemented for the reliable local fish biodiversity analysis.
92	In this study, we firstly conducted the eDNA metabarcoding analysis of water samples
93	collected from the four rivers using MiFish primer set to know freshwater fish biodiversity in
94	Korea. Although MiFish successfully presented the high numbers of fish haplotypes inhabiting
95	in Korean rivers, there was difficulty in assigning species names in many of them. From the
96	reason, we used 85 sequences from the NCBI (indicated with GB), among the 44 haplotypes

97	were uploaded from the Korean waters, these sequences were used for constructing the
98	phylogenetic tree to identify the Korean haplotypes.) We also identified that a high amount of
99	invasive species currently inhabit in Korean rivers by eDNA metabarcoding analysis.
100	
101	
102	MATERIALS AND METHODS
103 105	Sample collection and environmental DNA extraction
105	Sample collection and environmental DNA extraction
106	The eDNA water samples were collected on June 11 and 12, 2018 from 16 stations of the four
107	large rivers in the southern Korean peninsula including Hyeongsan River, Taehwa River,
108	Seomjin River, and Nakdong River (Fig.1 and Table 1). Four sample stations in each river
109	covered the upstream as well as downstream to the estuary. Two liters of water samples were
110	collected at each station with disposable plastic bottles. After collecting water, the bottles were
111	immediately stored in ice until brought to the laboratory for filtration. After measuring the
112	temperature and salinity with a conductivity meter (CD-4307SD, LUTRON). One liter of water
113	was filtered (250 ml X 4) with 0.45 μm pore-sized GN-6 membrane (PALL Life sciences,
114	Mexico), the filtration system was cleaned up with 10% commercial bleach to prevent the cross-
115	contamination. After filtration, the membranes were put into 2.0 ml tubes and stored at -20°C
116	before DNA purification.
117	The genomic DNA was extracted directly from the membrane filters by using the DNeasy®
118	Blood and Tissue Kit (Qiagen, Germany) according to the producer's manual. The membrane
119	filters were cut into smaller pieces before homogenization by TissueLyser II motorized
120	homogenizer (QIAGEN, Hilden, Germany). The extracted genomic DNA was quantified by ND-
121	1000 NanoDrop (Thermo Scientific, Waltham, MA, USA), aliquoted, and stored at -20°C.

Construction of	f Library a	and MiSeq	sequencing
-----------------	-------------	-----------	------------

124	To know the fish biodiversity, amplicon libraries of partial 12S rRNA region by the MiFish
125	universal primer set were constructed (Masaki Miya et al., 2015). The first PCR was performed
126	to amplify MiFish regions with an overhanging linker sequence for each Nextera XT index
127	(Illumina, USA). The PCR mixture (20 μ L) contained1.0 μ L of MiFish (Forward & Reverse)
128	primers (5pmol each), 2.0 μ L template, 2.0 μ L dNTPs (2.5mM), 2.0 μ L of 10X EX Taq buffer,
129	$0.6~\mu L$ DMSO (3%), $0.2~\mu L$ of EXTaq Hot Start polymerase (TaKaRa Bio Inc. Japan) and 11.20
130	μL of ultra-pure water. The PCR reaction began with denaturation temperature at 95°C for 3 min,
131	followed by 30 cycles of 94°C for 20 sec, 65°C for 15 sec, and 72°C for 15 sec with a final
132	extension at 72°C for 5 min. The amplicon with the expected size (250 bp~350 bp) was purified
133	by AccuPrep® Gel Purification Kit (Bioneer, Republic of Korea) after 1.5 % agarose gel
134	electrophoresis. The purified amplicons were undergone additional PCR to link each amplicon
135	with the corresponding Nextera XT index. The second PCR mixture (20 $\mu L)$ contained 5 μL
136	template, 1 μL of a couple of index primers (10 pmol), 0.5 μL dNTPs (10 mM), 4 μL 5X
137	Phusion HF Buffer, 8.3 μL ultrapure water, and 0.2 μL Phusion Hot Start Flex DNA polymerase
138	(New England Biolabs, Hitchen, UK). The second PCR conditions began with 94°C for 5 min
139	followed by 15 cycles of 94°C for 30 sec, 55 °C for 30 sec, and 72°C for 30 sec, and an
140	additional 5 min at 72 °C. In 1.5% agarose gel electrophoresis, no noticeable bands were detected
141	in the desired ranges for 16 field negative controls; consequently, the 16 negative controls were
142	discarded from the next analysis. After gel purification, the quality and quantity of the indexed
143	PCR products with the expected sizes were analyzed by qubit dsDNAHS Assay Kit (Invitrogen,
144	Carlsbad, CA, USA) followed by the sequencing using MiSeq platform (2 X 300 bp).

Bioinformatics analysis of NGS data
In MiFish pipeline, the raw reads by MiSeq sequencing run FASTQC, low-quality tail of reads
(QV≤20) were trimmed, assembled paired-end reads, removed N-containing reads, filtered
reads by length (229 \pm 25 bp), run Usearch (minimum read size for filtering =10, and identity)
threshold for clustering = 0.99), run BLASTN, created multi-FASTA files for each samples, run
(MAFFT for each samples, run Morphy for each samples, run Morphy against merged samples,
run BLASTN, process BLASTN results and finalized the results. The total sequences assigned to
OTUs were compared with the GenBank database, if the sequence identity of the query sequence
and top BLASTN hit was more than or equal to 99%, then the sequences were ascertained as
species. In case of the sequence uniformity within 97% to 98%, the sequence was ascertained as
genus, and the sequences having 95% to 97% similarity with the database were assigned as
'unidentified' genus. The distribution for each species was confirmed by FishBase
(http://www.fishbase.org).
RESULTS
Physico-chemical parameters
The water temperature of the sample sites ranges from 18.6 °C in SJ1 (Table 1). The Hyeongsan
River showed the highest difference (5.4 °C) in temperature from the upstream (HS1) to the
downstream (HS4), whereas the low degree of temperature changes in the Seomjin River (0.8 °C)
and the Nakdong River (1.5 °C). Salinity level increased from the upstream to the downstream in
all three rivers except for the Nakdong River, where the artificial dike has been constructed to
blocking the water flows from the Ocean (Table 1).

1	6	Q

169	Analysis of the fish haplotypes obtained by the MiFish pipeline
170	The reliability of MiFish pipeline (http://mitofish.aori.u-tokyo.ac.jp/mifish/workflows/new) for
171	the biodiversity analysis of fish species inhabiting the Korean rivers was analyzed (Table 2).
172	From the 2,315,605 raw reads, 2,280,850 merged reads were obtained by the MiFish pipeline
173	showing 98.50% yields from the raw reads. A total of 238 representative haplotypes were
174	assigned at the default cutoff sequence identity (95%). Among the 238 haplotypes, we found 125
175	unique haplotypes, which identified by using the phylogenetic tree analysis (rig. 2-5). At ≥99%
176	identity, total 2,241,130 reads (98.26%) were assigned into 189 haplotypes (73 species), 46
177	genus and 13 families. The remaining 39,720 reads (49 haplotypes), which showed less than 99%
178	identity were named as putative haplotypes, assigned into 11 genera, and 8 unidentified genera
179	(Table 3). A total of 34,755 reads (1.50%) were discarded from further analysis, because of their
180	lower identity (80% to 95%) to the NCBI database. The highest number of species were
181	identified in the family Cyprinidae (35) followed by Gobiidae (11), Cobitidae (8), and the
182	remaining (19) from the other family. Four species were identified in the genus Acheilognathus,
183 184 185	while 3 were in genera Carassius, Misgurnus, Tridentiger, and Squalidus (Table S1).
186	Cyprinidae
187	A total of 65 haplotypes were identified in the family Cyprinidae, in which 51 haprotypes were
188	assigned to 35 fish species with \geq 99% sequence identity to the NCBI database, and 8 haplotypes
189	showed between 97% to 98% identity and their genus names were assigned. The remaining 6
190	haplotypes showed less than 97% identity and named as "unidentified" genera (Figure 2). Two
191	haplotypes were identified in the genus <i>Hemibarbus</i> from the Seomjin River (SJ1) and the

192	Nakdong River (ND2) showed 100% and 99% identity to the Korean haplotype Hemibarbus
193	labeo (GenBank Number: DQ347953), and the Japanese haplotype Hemibarbus maculatus
194	(LC146032) respectively. Currently, among the four known species of the genus Hemibarbus in
195	Korea, Hemibarbus labeo and Hemibarbus longirostris are the most widely distributed species in
196	the Korean waters (WO. Lee, Zhang, Oh, Baek, & Song, 2012). Two haplotypes were
197	identified from the Seomjin River (SJ1 and SJ2) showed 97% identity with Hemibarbus
198	longirostris (LC049889); another haplotype from the Taehwa River showed lower identity (95%)
199	to the Hemibarbus sp., which suggests that these three haplotypes may be either Hemibarbus
200	longirostris or Hemibarbus mylodon (Fig. 2). The Hemibarbus mylodon is an endangered
201	freshwater endemic species to Korea (W. J. KIM, LEE, & BANG, 2007), so the further study
202	should be made for confirmation.
203	Four species are reported from Korean waters in the genus Squalidus; e.g., Squalidus gracilis,
204	Squalidus japonicus, Squalidus multimaculatus, and Squalidus chankaensis (IS. Kim & Park,
205	2002). Five haplotypes were identified in the genus Squalidus, two haplotypes from the Taehwa
206	River (TH3) and the Hyeongsan River (HS1) showed 100% identity to the Korean haplotype
207	Squalidus japonicas coreanus (GenBank Number: KR075134) and the Korean haplotype
208	Squalidus multimaculatus (GenBank Number: KT948081). Another haplotype from the
209	Hyeongsan River (HS3) showed 100% identity to the Japanese haplotype Squalidus japonicas
210	(GenBank Number: LC277782). Two haplotypes from the Seomjin River showed 99% identity
211	to the Korean haplotype Squalidusc hankaensis tsuchigae (GenBank Number: KT948082).
212	The subfamily Acheilognathinae, commonly known as the bitterlings, deposits their eggs into
242	
213	the gill cavities of freshwater mussels (Ji. Kitamura, 2007; J. Kitamura, Nagata, Nakajima, &

215	(Acheilognathus, Tanakia, and Rhodeus; (Arai, 1988). Eight species including Acheilognathus
216	intermedia, Acheilognathus macropterus, Acheilognathus majusculus, Acheilognathus rhombeus,
217	Rhodeus suigensis, Rhodeus uyekii, Tanakia somjinensis, Tanakia signifier showed 99% to 100%
218	sequence identity. Three haplotypes from the Seomjin River showed 99% sequence identity to
219	the Korean haplotypes of Acheilognathus intermedia (EF483933), Acheilognathus, somjinensis
220	(FJ515921), and Acheilognathus, signifier (EF483930); even though the scientific name of
221	Acheilognathus somjinensis and Acheilognathus signifier has changed to Tanakia somjinensis
222	and Tanakia signifier respectively (I. Kim, 1997).
223	One haplotype from the Taehwa River (TH3) showed 100% identity to the Korean haplotype
224	of <i>Phoxinus</i> , semotilus (KT748874), the scientific name of <i>Phoxinus semotilus</i> has been
225	changed to Rhynchocypris semotilus (I. Kim, 1997; Yu, Kim, Kim, Yeo, & Kim, 2017), and
226	currently this fish categorized as critically endangered in the Red Data Book of endangered
227	fishes in Korea (Ko, Kim, & Park, 2011).
227	fishes in Korea (Ko, Kim, & Park, 2011). Two species are currently known in the genus <i>Sarcocheilichthys</i> in Korea; the
228	Two species are currently known in the genus Sarcocheilichthys in Korea; the
228 229	Two species are currently known in the genus Sarcocheilichthys in Korea; the Sarcocheilichthys nigripinnis morii and Sarcocheilichthys variegatus wakiyae (IS. Kim & Park,
228229230	Two species are currently known in the genus <i>Sarcocheilichthys</i> in Korea; the <i>Sarcocheilichthys nigripinnis morii</i> and <i>Sarcocheilichthys variegatus wakiyae</i> (IS. Kim & Park, 2002). Two haplotypes from the Seomjin River (SJ2) and the Hyeongsan River (HS2)showed
228229230231	Two species are currently known in the genus <i>Sarcocheilichthys</i> in Korea; the <i>Sarcocheilichthys nigripinnis morii</i> and <i>Sarcocheilichthys variegatus wakiyae</i> (IS. Kim & Park, 2002). Two haplotypes from the Seomjin River (SJ2) and the Hyeongsan River (HS2)showed 100% and 97% sequence identity to the Korean haplotype <i>Sarcocheilichthys variegatus wakiyae</i>
228229230231232	Two species are currently known in the genus <i>Sarcocheilichthys</i> in Korea; the <i>Sarcocheilichthys nigripinnis morii</i> and <i>Sarcocheilichthys variegatus wakiyae</i> (IS. Kim & Park, 2002). Two haplotypes from the Seomjin River (SJ2) and the Hyeongsan River (HS2)showed 100% and 97% sequence identity to the Korean haplotype <i>Sarcocheilichthys variegatus wakiyae</i> (GenBank Number: KU301744). One haplotype from the Hyeongsan River (HS2) showed 100%
228229230231232233	Two species are currently known in the genus <i>Sarcocheilichthys</i> in Korea; the <i>Sarcocheilichthys nigripinnis morii</i> and <i>Sarcocheilichthys variegatus wakiyae</i> (IS. Kim & Park, 2002). Two haplotypes from the Seomjin River (SJ2) and the Hyeongsan River (HS2)showed 100% and 97% sequence identity to the Korean haplotype <i>Sarcocheilichthys variegatus wakiyae</i> (GenBank Number: KU301744). One haplotype from the Hyeongsan River (HS2) showed 100% and 99.43% sequence identity to the Japanese haplotype <i>Sarcocheilichthys soldatovi</i> (LC146036)

237	sequence identity to Sarcocheilichthys davidi (NC03/403) and Sarcocheilichthys variegatus
238	(KU301744) respectively, so the further study should be needed for confirmation.
239	
240	Gobiidae
241	We identified 16 haplotypes in the family Gobiidae, which covers 11 species, 7 genera.
242	Questionable haplotypes (<99% identity) were 2 in this family (Fig. 3), Five haplotypes were
243	identified in genus <i>Tridentiger</i> , the five known species under the genus <i>Tridentiger</i> in Korea (I.
244	Kim et al., 2005), one haplotype from the Taehwa River (TH4) showed 100% identity with the
245	Korean haplotype Tridentiger obscurus (GenBank Number: KT601092). One haplotype from the
246	Hyeongsan River (HS4) showed 100% identity to the Japanese haplotype Tridentiger
247	trigonocephalus (GenBank Number: LC385175) and another haplotype from the Seomjin River
248	(SJ3) showed 100% identity with the Korean haplotype Tridentiger trigonocephalus (GenBank
249	Number: KM030481). From the phylogenetic tree, we can say the Tridentiger trigonocephalus
250	haplotype from the Seomjin River is different from the Hyeongsan River (Fig. 3). All three
251	haplotypes in the genus <i>Rhinogobius</i> showed 100% identity to the database. Two of each
252	haplotype was assigned as the respective Korean (KM030471) and Japanese (LC049760) type or
253	Rhinogobius brunneus with 100% identity, whereas the other one was 100% identity to
254	Rhinogobius giurinus (KM030475) covering all two endemic species in Korea. Two haplotypes
255	of Gymnogobius sp. from the Taehwa River and the Hyeongsan River showed 98% sequence
256	identity to <i>Gymnogobius taranetzi</i> (GenBank Number: LC385155) (Figure 3). Currently, 9
257	species in the genus Gymnogobius is reported in the Korean waters (I. Kim et al., 2005), and its
258	MiFish (12S rRNA) sequences should be supplemented to the NCBI.
259	

260	Cobitidae
261	Sixteen species in 5 genera under the family Cobitidae are currently reported in Korean rivers (I
262	S. Kim, 2009). We here identified 18 haplotypes, which cover 7 genera in the family Cobitidae
263	(Fig. 4). Two haplotypes in the genus <i>Cobitis</i> were identified only from the Seomjin River, both
264	were most closely related to the Japanese haplotype Cobitis tetralineata (LC146139) with 100%
265	and 99% identity rather than showed 98% identity to the Korean haplotype EU670794).
266	Moreover, two haplotypes from the Taehwa River showed 98% and 97% identity to Corbitis
267	hankugensis (LC146140). Currently, two known species in the genus Misgurnus have been
268	reported from the Korean waters, e.g. Misgurnus anguillicaudatus and Misgurnus
269	mizolepis. restingly, two phylogenetically distant clades for M. anguillicaudatus, were
270	identified by the phylogenetic analysis (Fig. 4), one was clustered with the Chinese haplotype
271	Misgurnus bipartitus (KF562047), while the others grouped with the Korean
272	haplotype Misgurnus mizolepis (AP017654). The Misgurnus bipartitus is originally known to be
273	endemic in China, but both M. bipartitus and M. anguillicaudatus are currently used for the pond
274	loach in Korea. Morphology of these three species is highly similar to one another, a
275	reexamination of genetic structure for the loach species in Korea should be made.
276	Two haplotypes of <i>Paramisgurnus dabryanus</i> from the Hyeongsan River (HS1; KJ699181),
277	and the Taehwa River (TH4; KM186182) showed 100% identity with the Chinese haplotype
278	of Paramisgurnus dabryanus, which is endemic species in China (Fig. 4). It also supports the
279	previous study about the existence of two populations of <i>P. dabryanus</i> suggested that the early
280	introduction of this species originated from different locations (Shimizu & Takagi, 2010).
281	P. d yanus is often imported Korea with Misgurnus anguillicaudatus for its morphological
282	similarity, Sequence identity between the two haplotype sequences was 100% indicating that

283	P. dabryanus has been imported from various geographical locations. Three haplotypes in the
284	family Cobitidae showed a low sequence identity to the database (Fig. 4). One haplotype from
285	the Taehwa River (TH1) showed 100% sequence identity to the Korean haplotype Niwaella
286	multifaciata (EU670806), while another from the Hyeongsan River (HS1) showed lower (96%)
287	identity to Niwaella sp., further study should be made for confirmation.
288	
289	Other families [=]
290	Besides the three major families, we were also able to identified 27 haplotypes (19 species and
291	one genus) belonging to 11 families (4 in Bagridae, 3 in Mugilidae, 1 in Anguillidae, 2 in
292	Centrarchidae, 1 in Channidae, 1 in Clupeidae, 2 in Odontobutidae, 1 in Pleuronectidae, 2 in
293	Siluridae, and 2 in Sinipercidae, and 1 in Amblycipitidae). All haplotypes in the family Bagridae
294	were well assigned each corresponding species names including Pseudobargrus ussuriensis,
295	Pseudobargrus koreanus, Tachysurrus nitidus, and Tachysurus fulvidraco (Fig. 5). Two species
296	in the genus Silurus are currently known in the Korean waters, Silurus microdorsalis, and Silurus
297	asotus (Park & Kim, 1994). One haplotype from the Taehwa River (TH1) showed 99% sequence
298	identity with the Korean haplotype Silurus microdorsalis (GenBank Number: KT350610)
299	confirming the species, whereas another haplotype from the Seomjin River (SJ1) showed lower
300	identity (96%) with the Silurus microdorsalis (KT350610), which requires further analysis (Fig.
301	5).
302	Five endemic cies in the family Amblycipitidae are currently known in the Korean
303	peninsula (IS. Kim & Park, 2002), which include Liobagrus andersoni, Liobagrus obesus,
304	Liobagrus mediadiposalis, Liobagrus somjinensis, and Liobagrus hyeongsanensis; and their
305	sequences should be supplemented. One haplotype from the Seomjin River in the family

306

Amblycipitidae showed 97% and 96% identity to the Chinese haplotype Liobagrus styani
(KX096605) and the Korean haplotype Liobagrus mediadiposalis (KR075136), respectively.
Further studies should be made to identify the species. Three species are currently known in the
genus Odontobutis in Korea, Odontobutis interrupta, Odontobutis platycephala, and Odontobutis
obscura (I. Kim et al., 2005). Two of them (O. interrupta and O. platycephala) were identified in
this study and O ₁ obscura is known to inhabit exclusively in the Geoje island. To haplotypes
were identified in genus Coreoperca, and showed 100% and 97% sequence identity to the
Korean haplotype Coreoperca herzi (KR075132). Since it is currently known that two endemic
Coreoperca species in the Korean peninsula (I. Kim et al., 2005), the second haplotype appears
to be the Coreoperca kawamebari, but further study should be conducted for confirmation. Two
invasive fish species in the family Centrarchidae-including the Bluegill (Lepomis macrochirus)
and the Largemouth bass (Micropterus salmoides) were also identified in this study. Those two
species in the Centrarchidae family are endemic in North America, which has been introduced in
the Korean peninsula for the aquaculture industry, without considering the effects on the
ecosystem. Fish species in four families including Anguillidae, Clupeidae, Mugilidae,
Pleuronectidae were those inhabit both in brackish and coastal waters which include Anguilla
japonica, Konosirus punctatus, Mugil cepephalus, Kareius biocoloratus.
Fish biodiversity in four rivers
Based on the eDNA metabarcoding analysis by the MiFish pipeline, fish biodiversity in the four
rivers was analyzed. The highest Shannon Index (SI) found in the Seomjin River (3.480)
followed by the Taehwa River (3.067), the Hyeongsan River (2.954), and the Nakdong River
(2.864). Among the 16 surveyed station, station 1 of the Seomjin River (SJ1) showed the highest

329	diversity [197], whereas the lowest (1.008) was in the station 4 of Nakdong River (ND4). From
330	the upstream to downstream the average biodiversity has been changed from 1.951 to 1.415
331	(Table 4).
332	The Cyprinidae family was more dominant than other family members found in the 4 rivers,
333	the highest number of fish species (52) was found in the Seomjin River, followed by the Taehwa
334	River (42 species), the Hyeongsan River (40 species), and the Nakdong River (26 species) (Fig.
335	6). In the Seomjin River, the <i>Tanakia signifer</i> was relatively abundant (12.14%) than the <i>Mugil</i>
336	cephalus (11.14%), but Mugil cephalus was abundant in the Taehwa River (16.36%) than the
337	Gymnogobius $sp_{\bar{a}}(14.91\%)$. In the Hyeongsan River, an invasive fish species, Bluegill (Lepomis
338	macrochirus) was dominant (17.20%) than the Zacco platypus (15.20%). In the Nakdong River,
339	the Tridentiger obscurus was more dominant (23.20%) than the Pseudogobio vaillanti (13.35%).
340	Among 73 fish species detected in this study, 13 species were commonly identified in all four
341	rivers. Total 17 species were exclusively identified in the Seomjin River, which included
342	Squalidus gracilis, Cobitis tetralineata, Tanakia somjinensis, Acanthogobius hasta, Siniperca
343	scherzeri, Pseudobagrus koreanus, Acheilognathus majusculus, Sarcocheilichthys variegatus,
344	Coreoleuciscus splendidus, Tanakia signifier, Acheilognathus rhombeus, Microphysogobio
345	yaluensis, Rhodeus suigensis, Kareius bicoloratus, Rhodeus uyekii, Phoxinus oxycephalus, and
346	Acheilognathus intermedia (Fig. 7).
347	
348	Salinity and relationship
349	Salinity, was increased from the upstream to the downstream, the lowest salinity (0.15 PSU) was
350	measured at the upstream (station 1) of the Seomjin River, while the highest (20.20 PSU) was
351	found at the downstream (station 4) of the Hyeongsan River. Fish species distribution with the

352	salinity level also measured and found that freshwater fish species distributed at the upstream of
353	rivers and brackish water fish species distributed at the downstream of rivers.
354	
355	Clustering analysis
356	In this study, we have categorized the sampling stations of each river is upstream (station 1 and
357	2), midstream (station 3), and downstream (Station 4). Among the 73 identified species in this
358	study we have taken the top 30 species and by using a statistical program (Primer v7), we have
359	drawn a heat map, that clearly demonstrated species distribution in different sampling stations
360	(Fig. 8). In the upstream, the dominant species are Zacco platypus, Odontobutis interrupta,
361	Odontobutis platycephala, Nipponocypris temminckii, Rhynchocypris lagowskii, Misgurnus
362	mizolepis, Coreoperca herzi, Acheilognathus intermedia, and Tanakia signifier (Fig. 8); these
363	species are absolutely non-migratory freshwater species and most of them are endemic in Korean
364	peninsula (I. Kim, 1997). In the midstream of rivers we found the dominant species are
365	Pseudorasbora parva, Gymnogobius breunigii, Rhinogobius giurinus, Rhinogobius brunneus,
366	and Mugil cephalus, while in the downstream we found Tridentiger obscurus, Tridentiger
367	trigonocephalus, Konosirus punctatus, Mugil cephalus, Anguilla japonica, Planiliza
368	haematocheila, and these all fish are euryhaline and anadromous species
369	(https://www.fishbase.org) _z
370	
371	DISCUSSION
372	We here identified that eDNA metabarcoding using the MiFish pipeline is a useful tool for the
373	fish biodiversity analysis obtaining 125 unique haplotypes with at least 73 fish species (13
374	families) simply by one time 16 sample collections from four Korean rive According to the

375	"Survey and Evaluation of Aquatic Ecosystem Health (SEAEH)" in Korea, which costed several
376	millions dollars by hundreds of researchers, total of 130 freshwater fish species (28 families)
377	were identified from two times 01233 sites in Korean waters (Yoon, Jang, Kim, & Joo, 2012). It
378	is quite impressive to know 56.15% freshwater fish species were identified by a single day
379	environmental DNA analysis with only 16 water samples and its numbers will increase as the
380	water sample numbers increase. These results strongly suggest that a freshwater fish biodiversity
381	survey would be possible by the eDNA metabarcoding using the MiFish pipeline with 10% of
382	total cost and labors of conventional morphological surveys in Korea. Another important benefit
383	of eDNA metabarcoding is allowing us to survey or monitor more sites in a cheaper and faster
384	way; feasibility study of suitable environments for potential species possible (Bista et al.,
385	2017; Deiner, Fronhofer, Mächler, Walser, & Altermatt, 2016). This approach also suitable for
386	surveying aquatic species inside in a-protected area, conventional sampling methods (i.e. netting,
387	electrofishing or direct observation, nould be neglected as much as possible to avoid disturb
388	vulnerable communities e.g. mountain stream or reservoir (1 crnandez et al., 2018). Moreover,
389	this approach also disclosed fish communities in localized ecosystems. It will open a new
390	approach to unlock the interaction among fish communities and the local habitats.
391	Although we identified that metabarcoding analysis of eDNA using the MiFish pipeline is a
392	useful tool to monitor the biodiversity of freshwater fish species, we also able to see several
393	drawbacks to overcome in applying the platform for fish biodiversity analysis. st, MiFish
394	sequence data for endemic fish species in Korean water should be supplemented. ording to
395	the Archive of Korean species (https://species.nibr.go.kr), 67 endemic freshwater species are
396	reported and many of their MiFish sequences are still not uploaded in the database. sides,
397	historically freshwater fish living separately in their habitat (iver, lake, reservoir, stream). So

398	each count should have its database of genetic information (DNA sequences) for the accuracy
399	of endemic cies detection. From the result, we failed to assign the species name for 49
400	haplotypes with low sequence identity to the database (Table 2).
401	Secondly, MiFish primer amplifies the 12S rRNA gene (163-185 bp) region of mitochondrial
402	DNA, which is different from the most widely used COI region, and based on this 12S rRNA
403	region, it is difficult to differentiate some close related fish species e.g. Sebastes spp.
404	and Takifugu spp. (Sato et al., 2018; Yamamoto et al., 2017). The Overall average genetic
405	distance of species under the family Cyprinidae was measured by using the Mega 7.0 program
406	(Kumar, Stecher, & Tamura, 2016) and found that the lowest genetic distance (0.010) was found
407	in the genus <i>Carassius</i> and the highest (0.164) was in the genus <i>Rhodeus</i> (Table S2). Due to
408	having the lowest genetic distance in the MiFish region, it was not clearly distinguished between
409	species under the genus Carassius, on the other hand, it was very clearly differentiated species
410	under the genus Rhodeus (Fig. 2).
411	Thirdly, quantitative analytic methods should be introduce. Ithough we identified 125
412	unique haplotypes to know the biodiversity of fish species, the quantitative analysis of each
413	species is still far away from realization. The presence or absence of species by using real-
414	time PCR (qPCR) has been undertaken successfully. Moreover, based on the concentration of
415	environmental DNA in water, researchers also tried to estimate species abundance and
416	biomass in water (Doi et al., 2017; Doi et al., 2015; Pilliod, Goldberg, Arkle, & Waits, 2013;
417	Takahara, Minamoto, Yamanaka, Doi, & Kawabata, 2012; Thomsen et al., 2012; Wilcox et al.,
418	2016; Yamamoto et al., 2016). These studies showed positive correlations between the eDNA
419	concentration and the abundance and/or biomass of species. Even though having more
420	advantages, the estimation of fish abundance/ biomass by using the eDNA approach in large

421	rivers/streams, and their comparison with other survey methods have not been yet found (Doi
422	et al., 2017). The spatial distribution of environmental DNA in a lotic environment is more
423	difficult to detect species accurately in rivers or streams (Deiner et al., 2016; Jerde et al., 2016).
424	Environmental DNA can be transported from 50 m. up to several kilometer downstream (Deiner
425	& Altermatt, 2014; Jerde et al., 2016; Wilcox et al., 2016). We also should consider the decaying
426	time of eDNAs in different temperatures, UV radiation, the action of bacteria, fungi and other
427	factors (Shapiro, 2008). Several studies exhibited that in a controlled environment 300-400 bp
428	DNA fragments detected in water upon one week (Alvarez, Yumet, Santiago, & Toranzos, 1996;
429	Matsui, Honjo, & Kawabata, 2001; Zhu, 2006). Normally short fragments of DNA are degraded
430	very slowly and we can detect them from the environmental sample. Deagle, Eveson, & Jarman,
431	2006). In dry and cold environments with the absence of light the short fragments DNA could be
432	found in well preserved (Shapiro, 2008). Further studies required for better understanding and
433	quantify eDNA transport dynamics in rivers/streams.
434	Fourthly, the standardized collection methods and pretreatment procedures for the NGS
435	sequencing analysis should be established. One of the most strong points of biodiversity survey
436	by the eDNA metabarcoding is the large data size due to the convenient sample collection and
437	fast and reliable analyses compared with the conventional survey. Those high amounts of data
438	can be further used for the various statistical analyses, which has been difficult from the low
439	sample size. However, those large amounts of data are now produced by the different water
440	collection methods, eDNA preparation, sequencing and bioinformatics platforms in the
441	respective research group. We here found the MiFish pipeline would be the feasible
442	bioinformatic platform for the eDNA metabarcoding analysis for fish biodiversity as long as
443	several drawbacks improved. If the other methods including water collection and eDNA

444	preparation are established, automated fish biodiversity monitoring system would be possible
445	soon, which would be one of the main hubs for the fish ecologists.
446	We also identified the overall highest fish biodiversity i e Seomjin River (3.48) compared
447	with the other three rivers including Nakdong, Taehwa, and Hyeongsan river. The low
448	biodiversity may have come from the anthropogenic effects. As commonly shown in the other
449	Korean rivers, those three rivers run through the highly populated metropolitan cities, in which
450	rivers are to be exposed to the various human activities directly or indirectly cause changes in the
451	diversity and distribution of freshwater fish (Finkenbine, Atwater, & Mavinic, 2000). In
452	particular, a large weir talled in the Nakdong River aggravated the condition showing the
453	lowest biodiversity (2.86) among the examined rivers. The various construction along the
454	urbanized watershed including dams and weirs have caused the simplification and reduction of
455	the habits decreasing the biodiversity in the river (Nilsson, Reidy, Dynesius, & Revenga, 2005;
456	Riley et al., 2005). Different from those three rivers, there is no metropolitan city along with the
457	Seomjin River with a low chance to be exposed to the anthropogenic effects, Since the
458	freshwater area is a region where is easily disturbed and takes a long time to recover compared to
459	other ecosystems (Ricciardi & Rasmussen, 1999), long-term monitoring should be continued for
460	scientific conservation and management of the resources in the rivers.
461	The eDNA metabarcoding analysis also revealed the widely distributed invasive fish species
462	in the inland Korean waters. We were able to identify at least five invasive fish species e.g.,
463	Carassius cuvieri, Cyprinus carpio, Cyprinus megalophthalmus, Lepomis macrochirus, and
464	Micropterus salmoides (Table S3). Including these five species Carassius auratus, Misgurnus
465	anguillicaudatus, and Paramisgurnus dabrynus are now classified as invasive species in
466	different countries (Copp, Garthwaite, & Gozlan, 2005; Hewitt, 2006; Mukai, Umemura, &

467	Takagi, 2011). The pond loach/Oriental weather fish, <i>Misgurnus anguillicaudatus</i> —which is
468	native to Siberia (Tugur and Amur drainages), Korea, Japan, China and Vietnam (Masuda, 1984;
469	Talwar & Jhingaran) also considered invasive species (Freyhof & Korte, 2005; van Kessel,
470	Dorenbosch, Crombaghs, Niemeijer, & Binnendijk, 2013), because of their competition nature,
471	with the native fish for food, reduce macroinvertebrates from the habitat, and decrease water
472	quality by increasing ammonia, nitrate/nitrite, and turbidity levels, having almost similar effect
473	on the water quality as Cyprinus carpio. The M_{χ} anguillicaudatus may impact on the native
474	fishes for shelter and spawning sites,-and also preying on eggs, larvae, and juveniles; and due to
475	having the high reproductive ability and high survivorship capacity is es it tential invasive
476	species (Keller & Lake, 2007; Koster et al, 2002; Nico & Fuller 2010). Surprisingly that the
477	largemouth bass, M. salmoides, and bluegill L. macrochirus inhabit throughout the all examined
478	four rivers. As native to eastern North America, those two species were artificially introduced in
479	the 1970's, as freshwater fish stock without any further consideration of the effects on the
480	freshwater ecosystem in Korea. The species has spread throughout the peninsula and now
481	became a serious problem damaging crops, competing with the native species, and serving as
482	disease vectors.
483	The Common carp (Cyprinus carpio) and Cyprinus megalophthalmus were found in the
484	Hewangsan, Nakdong and Taehwa River. The Japanese crucian carp, Carassius cuvieri was
485	found from the Hewangsan, the Seomjin, and the Taehwa River. From July 1999 to January 2000,
486	a nationwide survey was done in 28 sites of 9 river systems in Korea by Jang et al. (2002), and
487	they reported 62 fish species of 16 families, which was 32% of known Korean freshwater
488	ichthyofauna (194), they also identified 5 exotic fish species e.g. Carassius cuvieri, Cyprinus
489	carpio, Micropterus salmoides, Lepomis macrochirus, and Oreochromis niloticus (Min-Ho Jang

490	et al., 2002). Korean National Long-term Ecological Research (KNLTER) and Evaluation of
491	Aquatic Ecosystem Health (SEAEH) reports-reveal that some exotic species are widely
492	distributed in the Korean streams. The Micropterus salmoides, Lepomis macrochirus, and
493	Carassius cuvieri were found in all river systems (Yoon et al., 2012). These introduced fish has a
494	fast-growing and disease resistance characteristics. The bluegill (Lepomis macrochirus) and the
495	Largemouth bass (Micropterus salmoides) are indicated as harmful exotic fish species, and
496	invasively spreading throughout the Korean river systems (Yoon et al., 2012). Using traditional
497	methods, detection rates can be low, required huge labor, time, and sometimes it is impossible to
498	detect the alien or invasive species until the density or abundance reaches a certain threshold.
499	The eDNA metabarcoding approach would be of enormous importance because of its ability to
500	identify target species at a very low concentration (Rees, Maddison, Middleditch, Patmore, &
501	Gough, 2014). Since freshwater ecosystems are much more vulnerable to invasive s = ies
502	causing biodiversity loss and global change (Clavero & García-Berthou, 2005). The eDNA
503	metabarcoding analysis would be useful to monitor the distribution patterns of the invasive
504	species and its surveys are urgently required throughout all Korean freshwaters.
505	In this study, we identified 35 fish species from Cyprinidae (47.94%), 11 from Gobiidae
506	(15.07%), 8 from Cobitidae (10.96%), and the remaining 19 fish species from the other families
507	(26.03%) ₃ Here we identified that the eDNA metabarcoding by using the MiFish pipeline is a
508	useful tool for the fish biodiversity analysis in Korean rivers. From the environmental DNA
509	metabarcoding, we identified 52 fish species from the Seomjin River, and the lowest fish species
510	identified from the Nakdong River (26 species), 42 and 40 fish species from the Taehwa River
511	and the Hyeongsan River respectively. Yoon et al. (2012) reported 72 fish species from the
512	Seomjin River, and Lee et al. (2015) reported 18 fish species from the Nakdong River by using

513	traditional survey methods (J. W. Lee et al., 2015; Yoon et al., 2012). In 2009, a total of 124
514	freshwater fish species, belonging to 27 families were found in the four major river systems (Han
515	River, Nakdong River, Geum River, Yeongsan/ Seomjin River) of the Korean Peninsula. Among
516	them, the most abundant (85.7%) family was Cyprinidae (54 fish species), 15 and 12 species
517	were belonging to Cobitidae and Gobiidae family respectively (Yoon et al., 2012). In 2006, 83
518	native fish species and 5 exotic fish species were recorded from 31 sampling stations of 12
519	different river basins of Korea (M-H Jang, Joo, & Lucas, 2006), whereas we identified 68 native
520	and 5 exotic fish species from the 16 sampling stations of four rivers by simply one time water
521	sample collection.
522	
523	CONCLUSION
524	The eDNA metabarcoding approach, combination with NGS to identify multiple species is a
525	potential technique to monitor species diversity in aquatic habitat and will offer a more precise
526	estimation of biodiversity rather than single or a handful of species surveillance. The present
527	study revealed that MiFish metabarcoding can uncover the freshwater fish biodiversity in four
528	Korean rivers. It is an example of the potential of environmental DNA metabarcoding for the
529	investigation, monitoring, and distribution of the native and invasive fish species in the running
530	waters for the first time in Korea. This result may be able to utilize for various purposes, e.g. take
531	some effective steps to enhance efforts from the government and improve public conversa
532	the better management of the freshwater resources. Our findings suggest that environmental
533	DNA metabarcoding required less time and taxonomic expertise, and itis better to understantile
534	fish distribution and biodiversity in rivers/streams than the traditional survey systems.

536	
537	Acknowledgments
538	The authors are thankful to the Ministry of Oceans and Fisheries, Republic of Korea.
539	
540	Additional information and declarations:
541	Funding:
542	This research was a part of the project titled "Long-term change of structure and function in
543	marine ecosystems of Korea", funded by the Ministry of Oceans and Fisheries, Korea.
544	
545	Role of funding
546	The funding sources had no role in the research design, sample collection, data analysis, manuscript
547	writing, or the decision to submit the article for publication.
548	
549	Competing Interests
550	The authors declare that they have no competing interests.
551	
552	Author Contributions
553	• Md. Jobaidul Alam collected the samples, performed the experiments, analyzed the data, prepared
554	figures and/or tables, wrote the manuscript
555	• Nack-Keun Kim collected the samples, analyzed the data
556	• Sapto Andriyono performed the experiments, analyzed the data, prepared figures and/or tables
557	• Hee-Kyu Choi analyzed the data, prepared figures and/or tables
558	• Ji-Hyun Lee analyzed the data, prepared figures and/or tables
559	• Hyun-Woo Kim conceived and designed the experiments, analyzed the data, contributed
560	reagents/materials/analysis tools, authored or reviewed drafts of the manuscript, approved the
561	final draft, wrote the manuscript.
562	
563	
564	

REFERENCES

- Alvarez, A. J., Yumet, G. M., Santiago, C. L., & Toranzos, G. A. (1996). Stability of manipulated plasmid DNA in aquatic environments. *Environmental Toxicology and Water Quality: An*
- 571 *International Journal*, 11(2), 129-135.
- Arai, R. (1988). Acheilognathus melanogaster, a senior synonym of A moriokae, with a revision of the genera of the subfamily Acheilogathinae (Cypriniformes, Cyprinidae). *Bul Nat Sci Mus Tokyo Ser*
- 574 *A*, *14*, 199-213.
- 575 Ardura, A., Zaiko, A., Martinez, J. L., Samulioviene, A., Semenova, A., & Garcia-Vazquez, E. (2015).
- eDNA and specific primers for early detection of invasive species—a case study on the bivalve
- Rangia cuneata, currently spreading in Europe. *Marine Environmental Research*, 112, 48-55.
- Bista, I., Carvalho, G. R., Walsh, K., Seymour, M., Hajibabaei, M., Lallias, D., ... Creer, S. (2017).
- Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake
- ecosystem biodiversity. *Nature communications*, 8, 14087.
- 581 Cai, W., Ma, Z., Yang, C., Wang, L., Wang, W., Zhao, G., . . . Douglas, W. Y. (2017). Using eDNA to
- detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World
- 583 Heritage site. *PloS one*, *12*(5), e0177724.
- Clavero, M., & García-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions.
- 585 Trends in Ecology & Evolution, 20(3), 110. doi: https://doi.org/10.1016/j.tree.2005.01.003
- Clusa, L., Miralles, L., Basanta, A., Escot, C., & García-Vázquez, E. (2017). eDNA for detection of five
- highly invasive molluscs. A case study in urban rivers from the Iberian Peninsula. *PloS one*,
- 588 *12*(11), e0188126.
- Copp, G., Garthwaite, R., & Gozlan, R. (2005). Risk identification and assessment of non-native
- freshwater fishes: a summary of concepts and perspectives on protocols for the UK. *Journal of*
- 591 *Applied Ichthyology, 21*(4), 371-373.
- 592 Deagle, B. E., Eveson, J. P., & Jarman, S. N. (2006). Quantification of damage in DNA recovered from
- 593 highly degraded samples—a case study on DNA in faeces. Frontiers in zoology, 3(1), 11.
- Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural
- 595 river. *PloS one*, 9(2), e88786.
- 596 Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C., & Altermatt, F. (2016). Environmental DNA
- reveals that rivers are conveyer belts of biodiversity information. *Nature communications*, 7,
- 598 12544.
- 599 Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C. (2012). Improved
- detection of an alien invasive species through environmental DNA barcoding: the example of the
- American bullfrog Lithobates catesbeianus. *Journal of applied Ecology*, 49(4), 953-959.
- 602 Doi, H., Inui, R., Akamatsu, Y., Kanno, K., Yamanaka, H., Takahara, T., & Minamoto, T. (2017).
- Environmental DNA analysis for estimating the abundance and biomass of stream fish.
- 604 Freshwater Biology, 62(1), 30-39.

- Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T. (2015). Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. *PloS one*, 10(3), e0122763.
- Fernandez, S., Sandin, M. M., Beaulieu, P. G., Clusa, L., Martinez, J. L., Ardura, A., & García-Vázquez, E. (2018). Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area. *PeerJ*, 6, e4486.
- Finkenbine, J. K., Atwater, J., & Mavinic, D. (2000). STREAM HEALTH AFTER URBANIZATION 1.

 JAWRA Journal of the American Water Resources Association, 36(5), 1149-1160.
- Freyhof, J., & Korte, E. (2005). The first record of Misgurnus anguillicaudatus in Germany. *Journal of Fish Biology*, *66*(2), 568-571.
- Gustavson, M., Collins, P., Finarelli, J., Egan, D., Conchúir, R., Wightman, G., . . . Carlsson, J. (2015).
 An eDNA assay for Irish Petromyzon marinus and Salmo trutta and field validation in running
- 617 water. *Journal of Fish Biology*, 87(5), 1254-1262.
- 618 Hewitt, C. L. (2006). Alien species in aquaculture: considerations for responsible use: IUCN.
- Jang, M. H., Joo, G. J., & Lucas, M. (2006). Diet of introduced largemouth bass in Korean rivers and potential interactions with native fishes. *Ecology of Freshwater Fish*, 15(3), 315-320.
- Jang, M. H., Kim, J. G., Park, S. B., Jeong, K. S., Cho, G. I., & Joo, G. J. (2002). The current status of the distribution of introduced fish in large river systems of South Korea. *International Review of Hydrobiology*, 87(2-3), 319-328.
- Jerde, C. L., Olds, B. P., Shogren, A. J., Andruszkiewicz, E. A., Mahon, A. R., Bolster, D., & Tank, J. L. (2016). Influence of stream bottom substrate on retention and transport of vertebrate environmental DNA. *Environmental science & technology*, 50(16), 8770-8779.
- Kim, I.-S. (2009). A Review of the Spined Loaches, Family Cobitidae (Cypriniformes) in Korea [A
 Review of the Spined Loaches, Family Cobitidae (Cypriniformes) in Korea]. *Korean Journal of Ichthyology*, 21(s), 7-28.
- 630 Kim, I.-S., & Park, J.-Y. (2002). Freshwater fishes of Korea: Kyo hak sa.
- Kim, I. (1997). Illustrated encyclopedia of fauna and flora of Korea, Vol. 37. *Freshwater Fishes. Min Edu Korea, Seoul (in Korean)*.
- Kim, I., Choi, Y., Lee, C., Lee, Y., Kim, B., & Kim, J. (2005). Illustrated book of Korean fishes. *Kyo-Hak Publishing*, 417-418.
- 635 KIM, W. J., LEE, Y. A., & BANG, I. C. (2007). Isolation and characterization of polymorphic 636 microsatellite markers for the endangered Korean freshwater fish Hemibarbus mylodon. 637 *Molecular ecology notes, 7*(3), 516-518.
- Kitamura, J.-i. (2007). Reproductive ecology and host utilization of four sympatric bitterling (Acheilognathinae, Cyprinidae) in a lowland reach of the Harai River in Mie, Japan.
- Environmental Biology of Fishes, 78(1), 37-55.

- Kitamura, J., Nagata, N., Nakajima, J., & Sota, T. (2012). Divergence of ovipositor length and egg shape in a brood parasitic bitterling fish through the use of different mussel hosts. *Journal of*
- 643 *evolutionary biology, 25*(3), 566-573.
- Klymus, K. E., Marshall, N. T., & Stepien, C. A. (2017). Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. *PloS one, 12*(5), e0177643.
- Ko, M., Kim, K., & Park, J. (2011). Red Data Book of endangered fishes in Korea. *National Institute of Biological Resources, Incheon. (in Korean)*.
- Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol Biol Evol*, *33*(7), 1870-1874.
- Lee, J. W., Yoon, J. D., Kim, J. H., Park, S. H., Baek, S. H., Yu, J. J., . . . Min, J. I. (2015). Length-weight relationships for 18 freshwater fish species from the Nakdong River in South Korea. *Journal of Applied Ichthyology*, 31(3), 576-577.
- Lee, W.-O., Zhang, M.-M., Oh, C.-W., Baek, J.-M., & Song, K.-J. (2012). Age and Growth of Barbel Steed Hemibarbus labeo in Goe-san Lake in Korea. *Fisheries and aquatic sciences*, *15*(4), 353-359.
- 656 Masuda, H. (1984). *The fishes of the Japanese Archipelago* (Vol. 2): Tokai University Press.
- 657 Matsui, K., Honjo, M., & Kawabata, Z. i. (2001). Estimation of the fate of dissolved DNA in thermally 658 stratified lake water from the stability of exogenous plasmid DNA. *Aquatic Microbial Ecology*, 659 *26*(1), 95-102.
- Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., . . . Araki, H. (2015). MiFish, a set of
 universal PCR primers for metabarcoding environmental DNA from fishes: detection of more
 than 230 subtropical marine species. *Royal Society open science*, 2(7), 150088.
- Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., . . . Iwasaki, W. (2015). MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. *Royal Society open science*, *2*(7). doi: 10.1098/rsos.150088
- Mukai, T., Umemura, K., & Takagi, M. (2011). First record of Paramisgurnus dabryanus accompanied with the invasion of Chinese lineage of Misgurnus anguillicaudatus in Gifu Prefecture, Japan.

 Bulletin of the Biogeographical Society of Japan, 66, 85-92.
- Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. *science*, *308*(5720), 405-408.
- Park, S.-W., & Kim, Y.-G. (1994). Studies on disease of catfish, Silurus asotus, in Korea. III. Edwardsiella ictaluri infection. *Journal of fish pathology, 7*(2), 105-112.
- Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013). Estimating occupancy and abundance
 of stream amphibians using environmental DNA from filtered water samples. *Canadian Journal* of Fisheries and Aquatic Sciences, 70(8), 1123-1130.

- 676 Pilliod, D. S., Goldberg, C. S., Laramie, M. B., & Waits, L. P. (2013). Application of environmental DNA
- for inventory and monitoring of aquatic species: US Department of the Interior, US Geological
- Survey.
- Pont, D., Rocle, M., Valentini, A., Civade, R., Jean, P., Maire, A., . . . Dejean, T. (2018). Environmental
- DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream
- transportation. Scientific reports, 8(1), 10361.
- 682 Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R., & Gough, K. C. (2014). The detection of
- aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology.
- 684 *Journal of applied Ecology*, 51(5), 1450-1459.
- Riaz, T., Shehzad, W., Viari, A., Pompanon, F., Taberlet, P., & Coissac, E. (2011). ecoPrimers: inference
- of new DNA barcode markers from whole genome sequence analysis. *Nucleic acids research*,
- 687 39(21), e145-e145. doi: 10.1093/nar/gkr732
- Ricciardi, A., & Rasmussen, J. B. (1999). Extinction rates of North American freshwater fauna.
- 689 *Conservation Biology, 13*(5), 1220-1222.
- 690 Riley, S. P., Busteed, G. T., Kats, L. B., Vandergon, T. L., Lee, L. F., Dagit, R. G., . . . Sauvajot, R. M.
- 691 (2005). Effects of urbanization on the distribution and abundance of amphibians and invasive
- species in southern California streams. *Conservation Biology*, 19(6), 1894-1907.
- 693 Sato, Y., Miya, M., Fukunaga, T., Sado, T., & Iwasaki, W. (2018). MitoFish and MiFish Pipeline: A
- Mitochondrial Genome Database of Fish with an Analysis Pipeline for Environmental DNA
- Metabarcoding. *Molecular Biology and Evolution, 35*(6), 1553-1555. doi:
- 696 10.1093/molbev/msy074
- 697 Seehausen, O., & Wagner, C. E. (2014). Speciation in Freshwater Fishes. Annual Review of Ecology,
- 698 Evolution, and Systematics, 45(1), 621-651. doi: 10.1146/annurev-ecolsys-120213-091818
- 699 Shapiro, B. (2008). Engineered polymerases amplify the potential of ancient DNA. *Trends in*
- 700 biotechnology, 26(6), 285-287.
- 701 Shaw, J. L. A., Clarke, L. J., Wedderburn, S. D., Barnes, T. C., Weyrich, L. S., & Cooper, A. (2016).
- Comparison of environmental DNA metabarcoding and conventional fish survey methods in a
- river system. *Biological Conservation*, 197, 131-138. doi:
- 704 https://doi.org/10.1016/j.biocon.2016.03.010
- 705 Shimizu, T., & Takagi, M. (2010). Two genetic clades in populations of Paramisgurnus dabryanus, an
- exotic invader in ehime prefecture. *Jpn J Ichthyol*, *57*, 125-134.
- 707 Stoeckle, M. Y., Soboleva, L., & Charlop-Powers, Z. (2017). Aquatic environmental DNA detects
- seasonal fish abundance and habitat preference in an urban estuary. *PloS one*, 12(4), e0175186.
- 709 doi: 10.1371/journal.pone.0175186
- 710 Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA to estimate the distribution of
- an invasive fish species in ponds. *PloS one*, 8(2), e56584.
- 712 Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z. i. (2012). Estimation of fish
- biomass using environmental DNA. *PloS one*, 7(4), e35868.

714	Talwar, P., & Jhingaran, A. Inland fishes of India and adjacent countries. 1991. In 2 vols: Oxford&IBH
715	Publishing Co., New Delhi, Bombay, Calcutta, Inland fishes of

- 716 Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., . . . Willerslev, E.
- 717 (2012). Monitoring endangered freshwater biodiversity using environmental DNA. *Molecular*
- 718 *ecology, 21*(11), 2565-2573.
- 719 Ushio, M., Murakami, H., Masuda, R., Sado, T., Miya, M., Sakurai, S., ... Kondoh, M. (2017).
- Quantitative monitoring of multispecies fish environmental DNA using high-throughput
- 721 sequencing. *bioRxiv*. doi: 10.1101/113472
- van Kessel, N., Dorenbosch, M., Crombaghs, B., Niemeijer, B., & Binnendijk, E. (2013). First record of
- Asian weather loach Misgurnus anguillicaudatus (Cantor, 1842) in the River Meuse basin.
- 724 *BioInvasions Records*, 2(2), 167-171.
- Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard, B. B., Jane, S. F., . . .
- Schwartz, M. K. (2016). Understanding environmental DNA detection probabilities: A case study
- using a stream-dwelling char Salvelinus fontinalis. *Biological Conservation*, 194, 209-216.
- Williams, K. E., Huyvaert, K. P., Vercauteren, K. C., Davis, A. J., & Piaggio, A. J. (2018). Detection and
- persistence of environmental DNA from an invasive, terrestrial mammal. *Ecology and evolution*,
- 730 *8*(1), 688-695.
- 731 Yamamoto, S., Masuda, R., Sato, Y., Sado, T., Araki, H., Kondoh, M., . . . Miya, M. (2017).
- Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea.
- 733 Scientific reports, 7, 40368.
- 734 Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H., Murakami, H., . . . Horiuchi, T.
- 735 (2016). Environmental DNA as a 'snapshot' of fish distribution: A case study of Japanese jack
- mackerel in Maizuru Bay, Sea of Japan. *PloS one*, 11(3), e0149786.
- 737 Yamanaka, H., & Minamoto, T. (2016). The use of environmental DNA of fishes as an efficient method
- of determining habitat connectivity. *Ecological indicators*, 62, 147-153.
- 739 Yoon, J.-D., Jang, M.-H., Kim, H.-W., & Joo, G.-J. (2012). Fish Biodiversity Monitoring in Rivers of
- South Korea *The Biodiversity Observation Network in the Asia-Pacific Region* (pp. 175-191):
- 741 Springer.
- 742 Yu, J.-N., Kim, B.-J., Kim, C., Yeo, J.-H., & Kim, S. (2017). The complete mitochondrial genome of the
- 743 black star fat minnow (Rhynchocypris semotilus), an endemic and endangered fish of Korea.
- 744 *Mitochondrial DNA Part A, 28*(1), 114-115.
- 745 Zhu, B. (2006). Degradation of plasmid and plant DNA in water microcosms monitored by natural
- transformation and real-time polymerase chain reaction (PCR). Water research, 40(17), 3231-
- 747 3238.

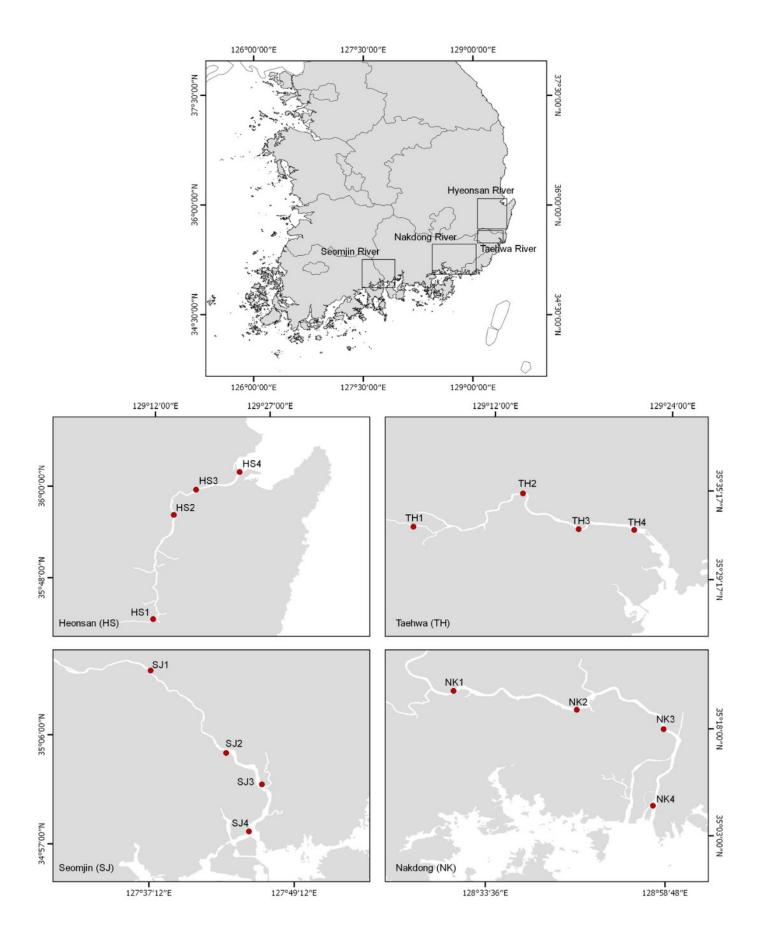
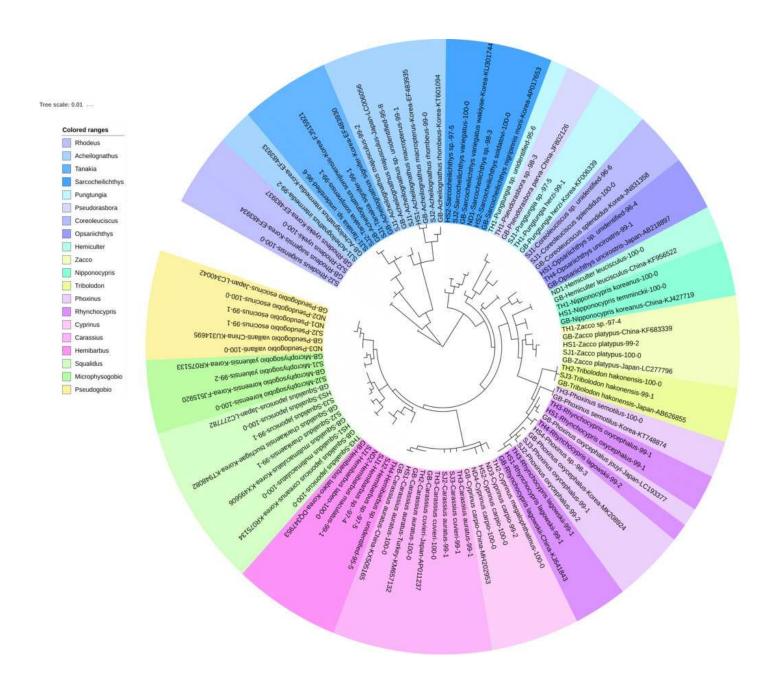
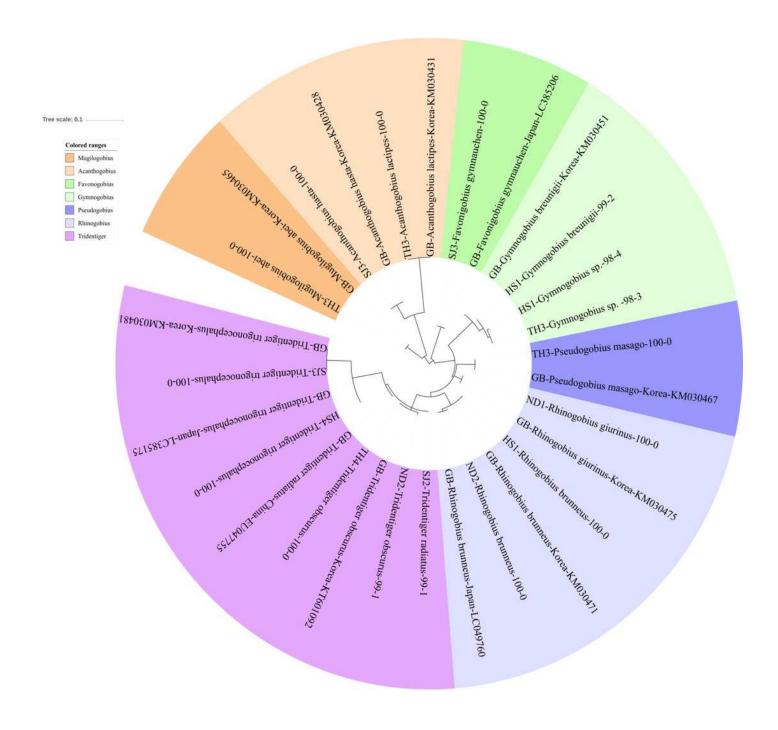
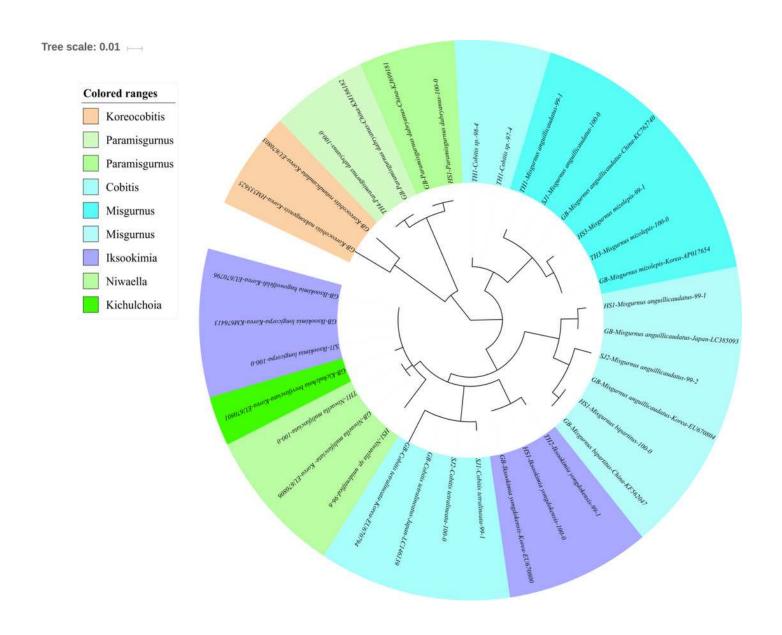

749

Figure 1

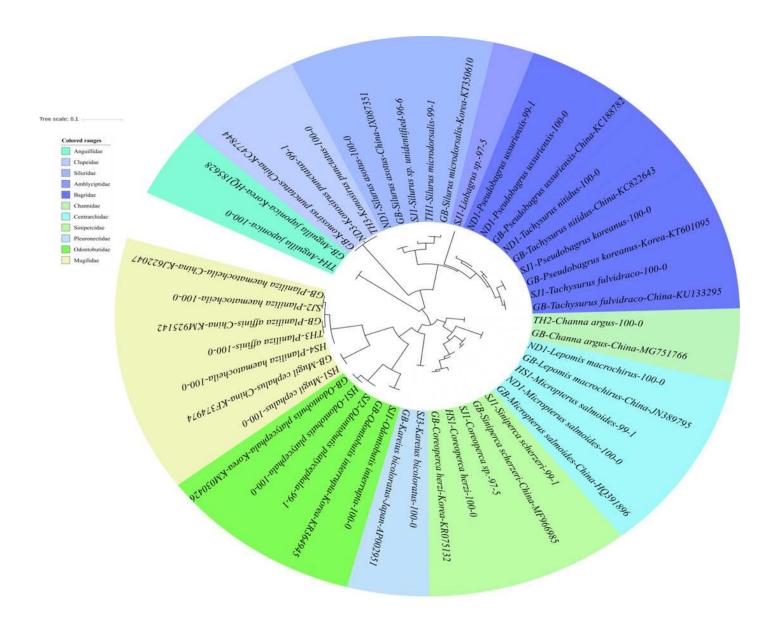

Environmental DNA water sample collection sites of the four rivers



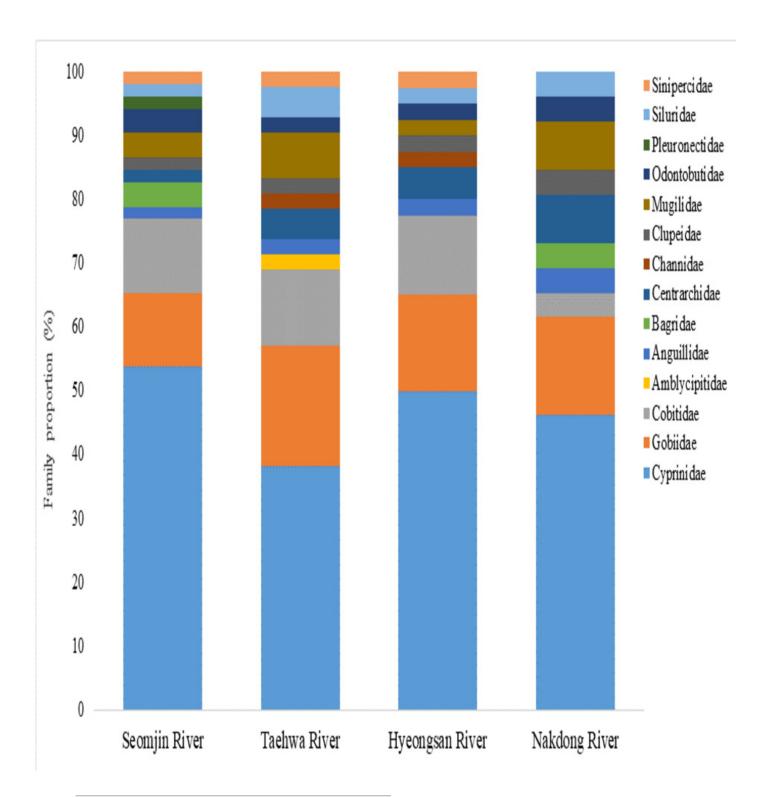
Phylogenetic tree of the fish species under the family Cyprinidae



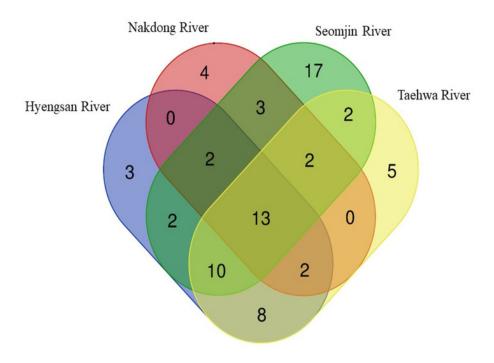
Phylogenetic tree of the fish species under the family Gobiidae



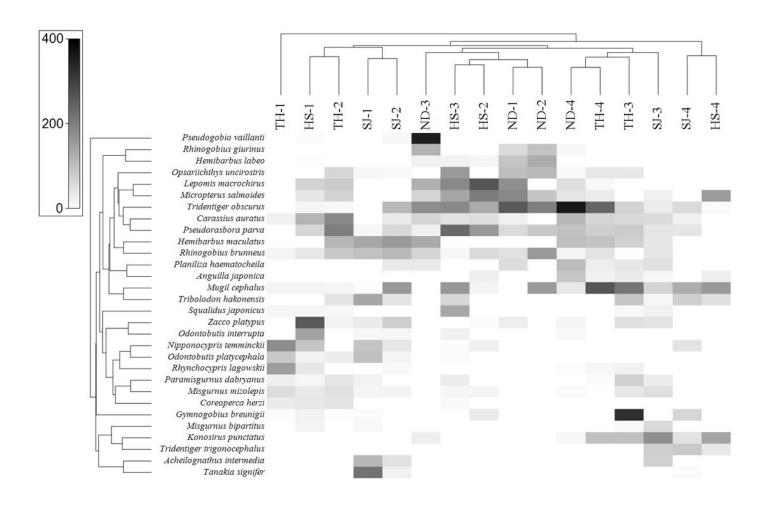
Phylogenetic tree of the fish species under the family Cobitidae



Phylogenetic tree of the fish species under the other families



Proportion of the fish species under different families



Venn diagram of fish species identified in the four Korean rivers

Heat map of top 30 fish species identified in 16 sampling stations of the four rivers

Table 1(on next page)

Environmental DNA sample collection sites with the physico-chemical parameters of the four rivers, South Korea

1

Table 1. Environmental DNA sample collection sites with the physico-chemical parameters of the four rivers, South Korea

River	Date	Station	GPS location	Temp. (0c)	Salinity (PSU)
Hyeongsan	2018.06.11	HS1	N 35° 42' 36", E 129° 11' 42"	18.6	1.00
		HS2	N 35° 56' 14", E 129° 14' 24"	19.5	2.02
		HS3	N 35° 59' 32", E 129° 17' 19"	20.0	3.20
		HS4	N 36o 01' 51", E 129° 23' 01"	24.0	20.20
Taehwa	2018.06.11	TH1	N 35° 32' 52", E 129° 06' 27"	19.4	1.02
		TH2	N 35° 35' 07", E 129° 13' 52"	19.8	2.04
		TH3	N 35° 32' 42", E 129° 17' 38"	22.7	14.02
		TH4	N 35° 32' 39", E 129° 21' 24"	19.2	17.80
Seomjin	2018.06.12	SJ1	N 35° 11' 18", E 127° 37' 21"	24.2	0.15
		SJ2	N 35° 04' 30", E 127° 43' 35"	23.4	2.01
		SJ3	N 35° 01' 54", E 127° 46' 32"	23.0	12.9
		SJ4	N 34° 58' 01", E 127° 45' 28"	23.25	16.8
Nakdong	2018.06.12	ND1	N 35° 23' 19", E 128° 29' 09"	24.0	1.92
		ND2	N 35° 20' 40", E 128° 46' 26"	24.1	2.40
		ND3	N 35° 17' 57", E 128° 58' 37"	23.2	2.78
		ND4	N 35° 07' 13", E 128° 57' 07"	22.5	4.50

Table 2(on next page)

Summary of taxonomic assignment of the MiSeq reads from 4 rivers eDNA samples

1 Table 2. Summary of taxonomic assignment of the MiSeq reads from 4 rivers eDNA samples

	Seomjin River	Taehwa River	Hyeongsan River	Nakdong River	Total
Raw reads	561,473	609,755	601,165	543,212	2,315,605
Processed Merged reads	553,175	600,744	592,281	534,650	2,280,850
Total Haplotypes	76	67	53	42	238 (125)
Haplotypes with species name	61	49	48	31	189 (105)
Total species	52	42	40	26	160 (73)

^{*} Shared species numbers in brackets

5

2

Table 3(on next page)

List of fish haplotypes with the GenBank numbers identified from the eDNA metabarcoding study of the four rivers

Table 3: List of fish haplotypes with the GenBank numbers identified from the eDNA metabarcoding study of the four rivers

No.	Family	Haplotype	Haplotypes	Identity	Korean	Chinese	Japanese	Others
	-	ID		(%)	haplotype	haplotype	haplotype	
1	Gobiidae	SJ3	Acanthogobius hasta	100	KM030428	KM891736	-	
2	Gobiidae	TH3	Acanthogobius lactipes	100	KM030431	-	LC385140	
3	Cyprinidae	SJ1	Acheilognathus intermedia	99	EF483933	-	-	
4	Cyprinidae	HS1	Acheilognathus macropterus	99	EF483935	KJ499466	LC092100	
5	Cyprinidae	SJ1	Acheilognathus majusculus	99	-	-	LC006056	
6	Cyprinidae	SJ2	Acheilognathus rhombeus	99	KT601094	-	LC146100	
7	Cyprinidae	SJ1	Acheilognathus sp. (unidentified)	95			LC006056	
8	Anguillidae	TH4	Anguilla japonica	100	HQ185628	MH050933	LC193417	
9	Cyprinidae	HS1	Carassius auratus	100	-	KX505165		
10	Cyprinidae	TH2	Carassius auratus	100				Turkey KM657132
11	Cyprinidae	TH3	Carassius auratus	99		AY771781	LC193299	KIVI03/132
12	Cyprinidae	SJ2	Carassius auratus	99	_	AY771781	LC193299	
13	Cyprinidae	TH3	Carassius cuvieri	100	_	-	AP011237	
14	Cyprinidae	SJ3	Carassius cuvieri	100			AP011237	
15	Channidae	TH1	Channa argus	100	_	MG751766	AB972107	
16	Cobitidae	TH1	Cobitis sp.	97	EU670794	-	LC146139	
17	Cobitidae	TH1	Cobitis sp.	97	EU670794	_	LC146139	
18	Cobitidae	SJ2	Cobitis tetralineata	100	EU670794	_	LC146139	
19	Cobitidae	SJ1	Cobitis tetralineata	99	EU670794	_	LC146139	
20	Cyprinidae	SJ1	Coreoleuciscus sp. (unidentified)	96	JN831358	_	AP011258	
21	Cyprinidae	SJ1	Coreoleuciscus splendidus	100	JN831358	_	AP011258	
22	Sinipercidae	HS3	Coreoperca herzi	100	KR075132	_	-	
23	Sinipercidae	SJ1	Coreoperca sp.	97	KR075132	_	_	
24	Cyprinidae	ND4	Cyprinus carpio	100	-	KX710076	AP017363	
25	Cyprinidae	HS2	Cyprinus carpio	100	_	KX710076	AP017363	
26	Cyprinidae	ND3	Cyprinus carpio	99	-	KX710076	AP017363	

27	Cyprinidae	TH2	Cyprinus megalophthalmus	100	-	KR869143	-	
28	Gobiidae	SJ3	Favonigobius gymnauchen	100	-	-		
							LC385206	
29	Gobiidae	HS1	Gymnogobius breunigii	99	KM030451	-	-	
30	Gobiidae	HS1	Gymnogobius sp.	98	KM030451	_	-	
31	Gobiidae	TH3	Gymnogobius sp.	98	KM030451	-	-	
32	Cyprinidae	SJ1	Hemibarbus labeo	100	DQ347953	KP064328	LC049898	
33	Cyprinidae	ND2	Hemibarbus maculatus	99	_	NC018534		
34	Cyprinidae	SJ1	Hemibarbus sp.	97	DQ347953	KP064328	LC049898	
35	Cyprinidae	SJ2	Hemibarbus sp.	97	DQ347953	KP064328	LC049898	
36	Cyprinidae	TH4	Hemibarbus sp. (unidentified)	95	DQ347953	KP064328	LC049898	
37	Cyprinidae	ND1	Hemiculter leucisculus	100	-	-	LC340359	
38	Cobitidae	SJ1	Iksookimia longicorpa	100	KM676413	-	LC146135	
39	Cobitidae	HS1	Iksookimia yongdokensis	100	EU670800	-	-	
40	Cobitidae	TH2	Iksookimia yongdokensis	99	EU670800	-	-	
41	Pleuronectidae	SJ3	Kareius bicoloratus	100	-	-	AP002951	
42	Clupeidae	TH3	Konosirus punctatus	100	-	KC477844	LC020951	Taiwan AP011612
43	Clupeidae	ND3	Konosirus punctatus	99	-	KC477844	LC020951	Taiwan AP011612
44	Centrarchidae	TH4	Lepomis macrochirus	100	-	JN389795	AP005993	USA KP013118
45	Amblycipitidae	SJ1	Liobagrus sp.	97	KR075136	KX096605	AP012015	
46	Cyprinidae	SJ2	Microphysogobio koreensis	100	FJ515920	-	-	
47	Cyprinidae	SJ1	Microphysogobio yaluensis	99	KR075133	-	AP012073	
48	Centrarchidae	ND1	Micropterus salmoides	100	-	HQ391896	LC069536	USA DQ536425
49	Centrarchidae	HS1	Micropterus salmoides	99	-	HQ391896	LC069536	USA DQ536425
50	Cobitidae	SJ1	Misgurnus anguillicaudatus	100	-	KC762740	-	

51	Cobitidae	TH1	Misgurnus anguillicaudatus	99	-	KC762740	-	
52	Cobitidae	SJ2	Misgurnus anguillicaudatus	99	EU670804	-	-	
53	Cobitidae	HS1	Misgurnus anguillicaudatus	99	-	-	LC385093	
54	Cobitidae	HS1	Misgurnus bipartitus	100	-	KF562047	LC091592	
55	Cobitidae	TH3	Misgurnus mizolepis	100	AP017654	-	-	
56	Cobitidae	HS3	Misgurnus mizolepis	99	AP017654	-	-	
57	Mugilidae	HS1	Mugil cephalus	100	-	KF374974	LC278014	
58	Gobiidae	TH3	Mugilogobius abei	100	KM030465	-	LC421743	Taiwan KF128984
59	Cyprinidae	TH1	Nipponocypris koreanus	100	-	KJ427719	-	
60	Cyprinidae	HS1	Nipponocypris temminckii	100	-	-	AP012116	
61	Cobitidae	TH1	Niwaella multifasciata	100	EU670807	-	LC146133	
62	Cobitidae	HS1	Niwaella sp. (unidentified)	96	EU670807	-	LC146133	
63	Odontobutidae	SJ1	Odontobutis interrupta	100	KR364945	-	-	
64	Odontobutidae	HS1	Odontobutis platycephala	100	KM030426	-	-	
65	Odontobutidae	SJ2	Odontobutis platycephala	99	KM030426			
66	Cyprinidae	HS1	Opsariichthys sp. (unidentified)	96	-	-	AB218897	
67	Cyprinidae	TH3	Opsariichthys uncirostris	99	-	-	AB218897	
68	Cobitidae	TH4	Paramisgurnus dabryanus	100	-	KM186182	LC146125	
69	Cobitidae	HS1	Paramisgurnus dabryanus	100	-	KJ699181	LC146125	
70	Cyprinidae	SJ2	Phoxinus oxycephalus	99	MK208924	-	AB626852	
71	Cyprinidae	SJ3	Phoxinus oxycephalus	99	MK208924	-	AB626852	
72	Cyprinidae	TH3	Phoxinus semotilus	100	KT748874	-	-	
73	Mugilidae	TH3	Planiliza affinis	100	-	KM925142	LC277843	
74	Mugilidae	SJ2	Planiliza haematocheila	100	-	KJ622047	LC021099	
75	Mugilidae	HS4	Planiliza haematocheila	100	-	KJ622047	LC021099	
76	Bagridae	SJ1	Pseudobagrus koreanus	100	KT601095	-	-	
77	Bagridae	ND1	Pseudobagrus ussuriensis	100	-	KC188782	-	
78	Bagridae	ND2	Pseudobagrus ussuriensis	99	-	KC188782	-	
79	Cyprinidae	ND2	Pseudogobio esocinus	100	-	-	LC340042	
80	Cyprinidae	ND1	Pseudogobio esocinus	99	-	-	LC340042	

81	Cyprinidae	ND3	Pseudogobio vaillanti	100	-	KU314695	LC146041	
82	Cyprinidae	SJ2	Pseudogobio vaillanti	99	-	KU314695	LC146041	
83	Gobiidae	TH3	Pseudogobius masago	100	KM030467	-	LC049791	
84	Cyprinidae	TH1	Pungtungia herzi	99	KF006339	-	AB239598	
85	Cyprinidae	SJ1	Pungtungia sp.	97	KF006339	-	AB239598	
86	Cyprinidae	TH1	Pungtungia sp. (unidentified)	96	KF006339	-	AB239598	
87	Gobiidae	HS1	Rhinogobius brunneus	100	KT601096	-		
88	Gobiidae	ND2	Rhinogobius brunneus	100			LC049760	
89	Gobiidae	ND1	Rhinogobius giurinus	100	KM030475	KP892753	LC049748	
90	Cyprinidae	SJ2	Rhodeus suigensis	100	EF483934	-	-	
91	Cyprinidae	SJ1	Rhodeus uyekii	100	EF483937	-	-	
92	Cyprinidae	HS1	Rhynchocypris lagowskii	99	-	KJ641843	-	
93	Cyprinidae	TH3	Rhynchocypris lagowskii	99		KJ641843		
94	Cyprinidae	TH4	Rhynchocypris lagowskii	99		KJ641843		
95	Cyprinidae	SJ2	Rhynchocypris oxycephalus	99	-	-	LC193377	
96	Cyprinidae	SJ3	Rhynchocypris oxycephalus	99			LC193377	
97	Cyprinidae	HS4	Rhynchocypris sp.	98			LC193377	
98	Cyprinidae	HS2	Sarcocheilichthys soldatovi	100	-	-	LC146036	
99	Cyprinidae	HS2	Sarcocheilichthys sp.	97	KU301744	-	AP012067	
100	Cyprinidae	ND3	Sarcocheilichthys sp.	97	KU301744	-	AP012067	
101	Cyprinidae	SJ2	Sarcocheilichthys variegatus	100	KU301744	-	AP012067	
102	Siluridae	ND1	Silurus asotus	100	-	JX087351	NC015806	
103	Siluridae	TH1	Silurus microdorsalis	99	KT350610	-	-	
104	Siluridae	SJ1	Silurus sp. (unidentified)	96	KT350610			
105	Sinipercidae	SJ1	Siniperca scherzeri	100	-	MF966985	-	Taiwan AP014527
106	Cyprinidae	SJ2	Squalidus chankaensis	100	KT948082	-	-	111 017321
107	Cyprinidae	HS3	Squalidus japonicus	100			LC277782	
108	Cyprinidae	SJ3	Squalidus japonicus	99			LC277782	
109	Cyprinidae	TH3	Squalidus japonicus coreanus	100	KR075134	-		

110	Cyprinidae	HS1	Squalidus multimaculatus	100	KX495606	-	-
111	Bagridae	SJ1	Tachysurus fulvidraco	100	-	KU133295	LC193372
112	Bagridae	ND2	Tachysurus nitidus	100	-	KC822643	-
113	Cyprinidae	SJ1	Tanakia signifer	99	EF483930	-	-
114	Cyprinidae	SJ2	Tanakia somjinensis	99	FJ515921	-	-
115	Cyprinidae	SJ1	Tanakia sp.(unidentified)	96	FJ515921		
116	Cyprinidae	TH2	Tribolodon hakonensis	100	-	-	AB626855
117	Cyprinidae	SJ3	Tribolodon hakonensis	99	-	-	AB626855
118	Gobiidae	TH4	Tridentiger obscurus	100	KT601092	MF663787	LC193168
119	Gobiidae	SJ2	Tridentiger radiatus	99	-	EU047755	-
120	Gobiidae	ND2	Tridentiger radiatus	99			
121	Gobiidae	SJ3	Tridentiger trigonocephalus	100	KM030481		
122	Gobiidae	HS4	Tridentiger trigonocephalus	100		KT282115	LC385175
123	Cyprinidae	SJ1	Zacco platypus	100	-		LC277796
124	Cyprinidae	HS1	Zacco platypus	99		KF683339	
125	Cyprinidae	TH1	Zacco sp.	97		KF683339	

2

3

4

5

Table 4(on next page)

Shannon Index (SI) measured from the four Korean rivers by the eDNA metabarcoding technique

Table 4 Shannon Index (SI) measured from the four Korean rivers by the eDNA metabarcoding technique

	Seomjin River	Taehwa River	Hyeongsan River	Nakdong River	Average
Station 1	2.197	2.073	1.755	1.777	1.951
Station 2	2.182	1.941	1.709	1.734	1.892
Station 3	2.125	1.631	1.691	1.465	1.728
Station 4	2.105	1.443	1.102	1.008	1.415
Overall SI index	3.48	3.067	2.954	2.864	-